
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao Discussion 14A

1 Markov Chains Intro I
Note 22 A Markov chain models an experiment with states, transitioning between states with some prob-

ability. A Markov chain is uniquely defined with the following variables:

• X is the set of possible states in the Markov chain. For this course, we’ll only be working
with Markov chains with a finite state space.

• Xn is a random variable denoting the state of the Markov chain at timestep n.

• P is the transition matrix. The element row i and column j in the matrix is defined as

P(i, j) = P[Xn+1 = j | Xn = i].

In particular, this is the probability that we transition from state i to state j.

• π0 is the initial distribution; it is a row vector, where π0(i) = P[X0 = i]. (Similarly, πn is the
distribution of states at timestep n; we have πn(i) = P[Xn = i].)

Markov chains also have the Markov property:

P[Xn+1 = j | Xn = i,Xn−1 = an−1, . . . ,X0 = a0] = P[Xn+1 = j | Xn = i].

That is, the next state depends only on the current state, and not on any prior states (this is also
known as the memoryless property of Markov chains).

The stationary distribution (or the invariant distribution) of a Markov chain is the row vector
π such that πP = π . (That is, transitioning does not change the distribution of states.)

Irreducibility: A Markov chain is irreducible if one can reach any state from any other state in a
finite number of steps.

Periodicity: In an irreducible Markov chain, we define the period of a state i as

d(i) = gcd{n > 0 | Pn(i, i) = P[Xn = i | X0 = i]> 0}.

If d(i) = 1 for all i, then a Markov chain is aperiodic. Otherwise, we say that the Markov chain is
periodic.

Fundamental Theorem of Markov Chains: If a Markov chain is irreducible and aperiodic, then
for any initial distribution π0, we have that πn → π as n → ∞, and π is the unique invariant distri-
bution for the Markov chain.

(a) Consider the transition matrix P of a Markov chain.
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(i) Is it always true that every row of P sums to the same value? If so, state this value and
briefly explain why this makes sense. If not, briefly explain why.

(ii) Is it always true that every column of P sums to the same value? If so, state this value
and briefly explain why this makes sense. If not, briefly explain why.

(b) Compute P[X1 = j] in terms of π0 and P. Then, express your answer in matrix notation—
that is, give an expression for the row vector π1, where π1( j) = P[X1 = j]. Generalize your
answer to express πn in matrix form in terms of n, π0, and P.

(c) Note that we only need to provide X , P, and π0 in order to uniquely define a Markov chain;
the random variables Xn are implicitly defined.

(i) Explain how you can compute the distributions of the random variables Xn for n ≥ 0
using only these parameters. (Hint: Part (b) can be helpful.)

(ii) The Markov property is also implicit in this definition of a Markov chain. If the Markov
property does not hold, are X , P, and π0 sufficient to compute the distributions of Xn
for n ≥ 0? Justify your answer.

Solution:

(a) (i) Yes, every row must sum to 1. Note that the element at row i and column j gives the
probability of transitioning from state i to state j; the sum of the elements of a row gives
us the sum of all transition probabilities out of state i. The fact that this must sum to 1
means that we will always transition from any given state to some next state—we must
do something at every timestep.

(ii) No, there are no restrictions on the sum of each column. The sum here would represent
the sum of all transition probabilities into a state j, which has no inherent restrictions;
these probabilities depend on the starting state, not the ending state.

(b) By the Law of Total Probability,

P[X1 = j] = ∑
i∈X

P[X1 = j,X0 = i] = ∑
i∈X

P[X0 = i]P[X1 = j | X0 = i] = ∑
i∈X

π0(i)P(i, j).

If we write π1( j) = P[X1 = j] and π0 as row vectors, then in matrix notation we have π1 =

π0P.

The effect of a transition is right-multiplication by P. After n time steps, we have πn = π0Pn.

At this point, it should be mentioned that many calculations involving Markov chains are
very naturally expressed with the language of matrices. Consequently, Markov chains are
very well-suited for computers, which is one of the reasons why Markov chain models are so
popular in practice.

(c) (i) The important insight here is that πn is exactly the distribution of Xn, where Xn takes
on values in X . We can compute the distribution of Xn as P[Xn = i] = πn(i), where
πn = π0Pn.
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(ii) If the Markov property does not hold, then P would not be sufficient to determine πn
from πn−1; we’d need to know additional information about how the transition proba-
bilities depend on the entire history of states.

2 Can it be a Markov Chain?
Note 22 (a) A fly flies in a straight line in unit-length increments. Each second it moves to the left with

probability 0.3, right with probability 0.3, and stays put with probability 0.4. There are two
spiders at positions 1 and m and if the fly lands in either of those positions it is captured.

Given that the fly starts at state i, where 1 < i < m, model this process as a Markov Chain.
(Don’t forget to specify the initial distribution!)

(b) Take the same scenario as in the previous part with m = 4. Let Yn = 0 if at time n the fly is
in position 1 or 2 and let Yn = 1 if at time n the fly is in position 3 or 4. Is the process Yn a
Markov chain?

Solution:

(a) We can draw the Markov chain as such:

1 2 · · · m−1 m

1 10.4
0.4

0.3

0.3
0.3 0.3

0.3

The initial distribution is π0(i) = 1, and π0( j) = 0 for j ̸= i.

(b) No, because the memoryless property is violated.

For example, say P[X0 = 2] = P[X0 = 3] = 1/2 and P[X0 = 1] = P[X0 = 4] = 0. Then

P[Y2 = 0 | Y1 = 1,Y0 = 0] = P[X2 ∈ {1,2} | X1 = 3,X0 = 2]
= P[X2 = 2 | X1 = 3] = 0.3

P[Y2 = 0 | Y1 = 1,Y0 = 1] = P[Y2 = 0,Y1 = 1,Y0 = 1]/P[Y1 = 1,Y0 = 1]
= P[X2 = 2,X1 = 3,X0 = 3]/(P[X1 = 3,X0 = 3]+P[X1 = 4,X0 = 3])

=
0.5 ·0.4 ·0.3

0.5 ·0.4+0.5 ·0.3
=

6
35

If Y was Markov, then P[Y2 = 0 | Y1 = 1,Y0 = 0] =P[Y2 = 0 | Y1 = 1] =P[Y2 = 0 | Y1 = 1,Y0 = 1].
However, 0.3 > 6/35, and so Y cannot be Markov.

3 Allen’s Umbrella Setup
Note 22 Every morning, Allen walks from his home to Soda, and every evening, Allen walks from Soda

to his home. Suppose that Allen has two umbrellas in his possession, but he sometimes leaves
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his umbrellas behind. Specifically, before leaving from his home or Soda, he checks the weather.
If it is raining outside, he will bring exactly one umbrella (that is, if there is an umbrella where
he currently is). If it is not raining outside, he will forget to bring his umbrella. Assume that the
probability of rain is p.

(a) Model this as a Markov chain. What is X ? Write down the transition matrix. (Hint: You
should have 3 states. Keep in mind that our goal is to construct a Markov chain to solve
part (c).)

(b) Determine if the distribution of Xn converges to the invariant distribution, and compute the
invariant distribution.

(c) In the long term, what is the probability that Allen walks through rain with no umbrella?

Solution:

(a) Let state i represent the situation that Allen has i umbrellas at his current location, for i = 0,
1, or 2.

Suppose Allen is in state 0. Then, Allen has no umbrellas to bring, so with probability 1
Allen arrives at a location with 2 umbrellas. That is,

P[Xn+1 = 2 | Xn = 0] = 1.

Suppose Allen is in state 1. With probability p, it rains and Allen brings the umbrella, arriving
at state 2. With probability 1− p, Allen forgets the umbrella, so Allen arrives at state 1.

P[Xn+1 = 2 | Xn = 1] = p, P[Xn+1 = 1 | Xn = 1] = 1− p

Suppose Allen is in state 2. With probability p, it rains and Allen brings the umbrella, arriving
at state 1. With probability 1− p, Allen forgets the umbrella, so Allen arrives at state 0.

P[Xn+1 = 1 | Xn = 2] = p, P[Xn+1 = 0 | Xn = 2] = 1− p

0

2 1

11− p
p

p

1− p

We summarize this with the transition matrix

P =

 0 0 1
0 1− p p

1− p p 0

.
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(b) Observe that the transition matrix has non-zero element in its diagonal, which means the
minimum number of steps to transit to state 1 from itself is one. Thus this transition matrix
is irreducible and aperiodic, so it converges to its invariant distribution.

To solve for the invariant distribution, we set πP= π , or π(P−I) = 0. This yields the balance
equations [

π(0) π(1) π(2)
] −1 0 1

0 −p p
1− p p −1

=
[
0 0 0

]
.

As usual, one of the equations is redundant. We replace the last column by the normalization
condition π(0)+π(1)+π(2) = 1.

[
π(0) π(1) π(2)

] −1 0 1
0 −p 1

1− p p 1

=
[
0 0 1

]
Now solve for the distribution:[

π(0) π(1) π(2)
]
=

1
3− p

[
1− p 1 1

]
(c) Allen walks through rain with no umbrella if and only if it is raining when we take the

transition from state 0 to 2 (i.e. Allen had no umbrellas, and moved to a location with 2
umbrellas). Note that given that we are in state 0, we must always take this transition with
probability 1, so it suffices to compute the probability that it rains and we are in state 0.

Since the invariant distribution has π(0)= 1−p
3−p , and it rains with probability p, the probability

of walking through rain with no umbrella in the long term is

P[rain∧no umbrella] = p · 1− p
3− p

=
p(1− p)

3− p
.
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