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Markov Chains Intro II
Note 22 Recall that a Markov chain is defined with the following: the state space X , the transition matrix

P, and the initial distribution π0. This implicitly defines a sequence of random variables Xn with
distribution πn, which denote the state of the Markov chain at timestep n. This sequence of random
variables also obey the Markov property: the transition probabilities only depend on the current
state, and not any prior states.

A before B: Suppose we want to compute the probability of reaching state A before reaching state
B. To compute this quantity, let α(i) = P[A before B | at i]. Then, we have:

α(A) = 1
α(B) = 0
α(i) = ∑

j
P(i, j)α( j)

Here, we use the law of total probability when computing α(i); we consider all possible transitions
out of state i. These are called the first step equations (FSE).

Hitting time: Suppose we want to compute the expected number of steps until you reach state A.
To compute this quantity, let β (i) = E[steps until A | at i]. Then, the first step equations become:

β (A) = 0
β (i) = 1+∑

j
P(i, j)β ( j)

Here, we use the law of total expectation when computing β (i); we consider all possible transitions
out of state i.

CS 70, Spring 2025, Discussion 14B 1

https://www.eecs70.org/assets/pdf/notes/n22.pdf


1 Skipping Stones
Note 22 We consider a simple Markov chain model for skipping stones on a river, but with a twist: instead

of trying to make the stone travel as far as possible, you want the stone to hit a target. Let the
set of states be X = {1,2,3,4,5}. State 3 represents the target, while states 4 and 5 indicate that
you have overshot your target. Assume that from states 1 and 2, the stone is equally likely to skip
forward one, two, or three steps forward. If the stone starts from state 1, compute the probability
of reaching our target before overshooting, i.e. the probability of {3} before {4,5}.

Solution: Here is the Markov Chain we are working with:
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Let α(i) denote the probability of reaching the target before overshooting, starting at state i. Then:

α(5) = 0
α(4) = 0
α(3) = 1
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Therefore, α(1) = 1/9+1/3 = 4/9.

2 Three Tails
Note 22 You flip a fair coin until you see three tails in a row. What is the average number of heads that

you’ll see until getting T T T ?

Hint: It can help to start by thinking about how to compute the number of coins flipped until getting
T T T , and then slightly modifying your equations to solve the original question.

Solution:

We can model this problem as a Markov chain with the following states:

• S: Start state, which we are only in before flipping any coins.
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• H: We see a head, which means no streak of tails currently exists.

• T : We’ve seen exactly one tail in a row so far.

• T T : We’ve seen exactly two tails in a row so far.

• T T T : We’ve accomplished our goal of seeing three tails in a row and stop flipping.

S T

H

TT TTT

0.5

0.5

0.5

0.50.5

0.5

0.5 1

0.5

We can write the first step equations and solve for β (S), only counting heads that we see since we
are not looking for the total number of flips. The equations are as follows:

β (S) = 0.5β (T )+0.5β (H) (1)
β (H) = 1+0.5β (H)+0.5β (T ) (2)
β (T ) = 0.5β (T T )+0.5β (H) (3)

β (T T ) = 0.5β (H)+0.5β (T T T ) (4)
β (T T T ) = 0 (5)

From (2), we see that
0.5β (H) = 1+0.5β (T )

and can substitute that into (3) to get

0.5β (T ) = 0.5β (T T )+1.

Substituting this into (4), we can deduce that β (T T ) = 4. This allows us to conclude that β (T ) = 6,
β (H) = 8, and β (S) = 7. On average, we expect to see 7 heads before flipping three tails in a row.

Alternate Solution: We don’t actually have to create a new starting state, but we will have to adjust
how we interpret our Markov Chain accordingly. Let us instead model it as:

• 0: Currently, we’ve seen 0 consecutive tails.

• 1: Currently, we’ve seen 1 consecutive tail.

• 2: Currently, we’ve seen 2 consecutive tails.

• 3: Currently, we’ve seen 3 consecutive tails. This concludes the game.

CS 70, Spring 2025, Discussion 14B 3



0 1 2 3

0.5

0.5

0.5
0.5

0.5

1

0.5

The equations will be set up a bit differently. Let us first describe the hitting time equations for the
number of timesteps, defining β (S) as the expected number of timesteps to reach state 3, given
that we’re currently at state S. Note that we definitively start at state 0.

β (0) = 1+0.5β (0)+0.5β (1) (6)
β (1) = 1+0.5β (0)+0.5β (2) (7)
β (2) = 1+0.5β (0)+0.5β (3) (8)
β (3) = 0 (9)

Solving yields β (0) = 14, β (1) = 12, β (2) = 8, and β (3) = 0.

Now, we can first step equations and solve for βH(S) defined as the expected number of heads we
see before we reach state 3, given that we’re currently at state S. We will provide some motivation
for how to set up the equations. In the previous equations, we had β (0) = 1+0.5β (0)+0.5β (1)
which represents that we take a timestep, and move into either state 0 or state 1 with equal prob-
ability by flipping a coin. We can think of the same equation in an alternate viewpoint: consider
instead flipping the coin to decide whether to move into state 0 or state 1, and in either case,
we took a timestep, so we add 1 to our counter. Thus, the same equation can be rewritten as
β (0) = 0.5(1+β (0))+0.5(1+β (1)).

Now consider how we may edit these equations to account for the number of heads, instead of
the number of timesteps. We can modify the same equation to be βH(0) = 0.5(1+ βH(0)) +
0.5(βH(1)) we only add 1 to our counter if we move into state 0, and we do not add anything to
our counter if we move into state 1. We can set up the whole system of equations as follows:

βH(0) = 0.5(1+βH(0))+0.5(βH(1)) (10)
βH(1) = 0.5(1+βH(0))+0.5(βH(2)) (11)
βH(2) = 0.5(1+βH(0))+0.5(βH(3)) (12)
βH(3) = 0 (13)

Solving these equations yields βH(0) = 7, βH(1) = 6, βH(2) = 4. This is the same answer we got
before, resulting in an expected number of 7 heads before we see three tails in a row.

Note on Symmetry: You may have noticed that the expected number of heads (7) we see before
we see three tails in a row is half the expected number of timesteps (14). We can’t directly say
that this follows as a consequence of heads and tails being symmetric, as not every coin flip in
our experiment ends up having the same distribution when conditioned on the fact that we end on
T T T . For example, if we end on T T T , we know that the last three flips must all be tails, and have
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no chance of being heads. However, symmetry still ends up being applicable. What if we were
to revisit the previous set of equations, but instead calculate the expected number of tails we see
before we see three tails in a row? We can set up the equations as follows:

βT (0) = 0.5(βT (0))+0.5(1+βT (1)) (14)
βT (1) = 0.5(βT (0))+0.5(1+βT (2)) (15)
βT (2) = 0.5(βT (0))+0.5(1+βT (3)) (16)
βT (3) = 0 (17)

The (+1) term ends up being applied to the latter term, as we are counting tails instead of heads.
Now, we notice that these two sets of equations are actually the exact same, when we distribute
out the 0.5∗1 term from every equation. Thus, the expected number of tails we see before we see
three tails in a row is the same as the expected number of heads we see before we see three tails in
a row, which is 7.
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