
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 02

1 Universal Preference
Note 4 Suppose that preferences in a stable matching instance are universal: all n jobs share the prefer-

ences C1 >C2 > · · ·>Cn and all candidates share the preferences J1 > J2 > · · ·> Jn.

(a) What pairing do we get from running the algorithm with jobs proposing? Prove that this
happens for all n.

(b) What pairing do we get from running the algorithm with candidates proposing? Justify your
answer.

(c) What does this tell us about the number of stable pairings? Justify your answer.

Solution:

(a) The pairing results in (Ci,Ji) for each i ∈ {1,2, ...,n}. This result can be proved by induction:

Our base case is when n = 1, so the only pairing is (C1,J1), and thus the base case is trivially
true.

Now assume this is true for some n ∈N. On the first day with n+1 jobs and n+1 candidates,
all n+ 1 jobs will propose to C1. C1 prefers J1 the most, and the rest of the jobs will be
rejected. This leaves a set of n unpaired jobs and n unpaired candidates who all have the
same preferences (after the pairing of (C1,J1)). By the process of induction, this means that
every ith preferred candidate will be paired with the ith preferred job.

(b) The pairings will again result in (Ji,Ci) for each i ∈ {1,2, ...,n}. This can be proved by
induction in the same as above, but replacing “job” with “candidate” and vice-versa.

(c) We know that job-proposing produces a candidate-pessimal stable pairing. We also know that
candidate-proposing produces a candidate-optimal stable pairing. We found that candidate-
optimal and candidate-pessimal pairings are the same. This means that there is only one
stable pairing, since both the best and worst pairings (for candidates) are the same pairings.

2 Pairing Up
Note 4 Prove that for every even n ≥ 2, there exists an instance of the stable matching problem with n jobs

and n candidates such that the instance has at least 2n/2 distinct stable matchings.

(Hint: It can help to start with some small examples; find an instance for n = 2, and think about
how you can use these preference lists to construct an instance for n = 4. After this, you should be
in a good position to generalize the construction for all even n.)

CS 70, Spring 2025, HW 02 1

https://www.eecs70.org/assets/pdf/notes/n4.pdf
https://www.eecs70.org/assets/pdf/notes/n4.pdf

Solution:

To prove that there exists such a stable matching instance for any even n ≥ 2, it suffices to construct
such an instance. But first, we look at the n = 2 case to generate some intuition. We can recognize
that for the following preferences:

J1 C1 >C2
J2 C2 >C1

C1 J2 > J1
C2 J1 > J2

both S = {(J1,C1),(J2,C2)} and T = {(C1,J2),(C2,J1)} are stable pairings.

The n/2 in the exponent motivates us to consider pairing the n jobs into n/2 groups of 2 and
likewise for the candidates. We pair up job 2k−1 and 2k into a pair and candidate 2k−1 and 2k
into a pair, for 1 ≤ k ≤ n/2.

From here, we recognize that for each pair (J2k−1,J2k) and (C2k−1,C2k), mirroring the preferences
above would yield 2 stable matchings from the perspective of just these pairs. If we can extend
this perspective to all n/2 pairs, this would be a total of 2n/2 stable matchings.

Our construction thus results in preference lists like follows:

J1 C1 >C2 > .. .

J2 C2 >C1 > .. .
...

...
J2k−1 C2k−1 >C2k > .. .

J2k C2k >C2k−1 > .. .
...

...
Jn−1 Cn−1 >Cn > .. .

Jn Cn >Cn−1 > .. .

C1 J2 > J1 > .. .

C2 J1 > J2 > .. .
...

...
C2k−1 J2k > J2k−1 > .. .

C2k J2k−1 > J2k > .. .
...

...
Cn−1 Jn > Jn−1 > .. .

Cn Jn−1 > Jn > .. .

Each match will have jobs in the kth pair paired to candidates in the kth pair for 1 ≤ k ≤ n/2.

A job j in pair k will never form a rogue couple with any candidate c in pair m ̸= k since it always
prefers the candidates in this pair over all candidates across other pairs. Since each job in pair k
can be stably matched to either candidate in pair k, and there are n/2 total pairs, the number of
stable matchings is 2n/2.

3 Upper Bound
Note 4 In the notes, we show that the stable matching algorithm terminates in at most n2 days. Prove

the following stronger result: the stable matching algorithm will always terminate in at most (n−
1)2 +1 = n2 −2n+2 days.

Solution: Recall that there is always a candidate who receives only one proposal (on the last day).
Other than that candidate, every other candidate can reject up to n−1 jobs. Thus, there’s a total of
(n−1)2 = n2 −2n+1 rejections. Conceptually, in the worst case scenario, there would be exactly

CS 70, Spring 2025, HW 02 2

https://www.eecs70.org/assets/pdf/notes/n4.pdf

one rejection per day; if we were to hand out none, then the algorithm would terminate. On the
final day, the candidate who is proposed to only once receives their offer. Thus, the process takes
at most (n−1)2 +1 = n2 −2n+2 days.

4 Short Tree Proofs
Note 5 Let G = (V,E) be an undirected graph with |V | ≥ 1.

(a) Prove that every connected component in an acyclic graph is a tree.

(b) Suppose G has k connected components. Prove that if G is acyclic, then |E|= |V |− k.

(c) Prove that a graph with |V | edges contains a cycle.

Solution:

(a) Every connected component is connected, and acyclic because the graph is acyclic; by defi-
nition, this is a tree.

(b) Because each connected component is a tree, each connected component has |Vi|−1 edges.
The total number of edges is thus ∑i(|Vi|−1) = |V |− k.

(c) An acyclic graph has |V |− k edges which cannot equal |V |, thus if a graph has |V | edges it
has a cycle.

5 Proofs in Graphs
Note 5 (a) Suppose California has n cities (n ≥ 2) such that for every pair of cities X and Y , either X has

a road to Y or Y has a road to X . Further, suppose that all roads are one-way streets.

Prove that regardless of the configuration of roads, there always exists a city which is reach-
able from every other city by traveling through at most 2 roads.

[Hint: Induction]

(b) Consider a connected graph G with n vertices which has exactly 2m vertices of odd degree,
where m > 0. Prove that there are m walks that together cover all the edges of G (i.e., each
edge of G occurs in exactly one of the m walks, and each of the walks should not contain any
particular edge more than once).

[Hint: In lecture, we have shown that a connected undirected graph has an Eulerian tour if
and only if every vertex has even degree. This fact may be useful in the proof.]

(c) Prove that any graph G is bipartite if and only if it has no tours of odd length.

[Hint: In one of the directions, consider the lengths of paths starting from a given vertex.]

Solution:

(a) We prove this by induction on the number of cities n.

CS 70, Spring 2025, HW 02 3

https://www.eecs70.org/assets/pdf/notes/n5.pdf
https://www.eecs70.org/assets/pdf/notes/n5.pdf

Base case: For n = 2, there’s always a road from one city to the other.

Inductive Hypothesis: When there are k cities, there exists a city c that is reachable from
every other city by traveling through at most 2 roads.

Inductive Step: Consider the case where there are k+1 cities. Remove one of the cities d and
all of the roads to and from d. Now there are k cities, and by our inductive hypothesis, there
exists some city c which is reachable from every other city by traveling through at most 2
roads. Let A be the set of cities with a road to c, and B be the set of cities two roads away from
c. The inductive hypothesis states that the set S of the k cities consists of S = {c}∪A∪B.

Now add back d and all roads to and from d.

Between d and every city in S, there must be a road from one to the other. If there is at least
one road from d to {c}∪A, c would still be reachable from d with at most 2 road traversals.
Otherwise, if all roads from {c}∪A point to d, d will be reachable from every city in B with
at most 2 road traversals, because every city in B can take one road to go to a city in A, then
take one more road to go to d. In either case there exists a city in the new set of k+1 cities
that is reachable from every other city by traveling at most 2 roads.

Alternate Solution :Alternatively, we can prove this using properties of directed graphs. Let
c be the city with the largest in-degree. Note that this graph is essentially a complete graph,
where each edge is a directed edge instead of an undirected edge. Therefore, the total in
degree sums to n(n−1)/2, and so does the total out degree. In addition, the in degree + out
degree of any vertex must add up to n−1.

Because the total in-degree of all vertices is n(n− 1)/2, The largest in-degree is d ≥ (n−
1)/2. Let S be the these d cities that can reach c by one edge.

For any other city x, it has to have at least (n−1)−d out-degree (because in-degree <= d).
Notice that there are n total vertices, two of which are x or c, and d vertices that connect to
c through one edge. Thus, there are n−2−d other vertices. Since x has out degree at least
n−1−d > n−2−d, it must therefore connect to at least one vertex in S by the pigeonhole
principle.

Thus, all vertices are either connected to c through 1 or 2 edges.

(b) We split the 2m odd-degree vertices into m pairs, and join each pair with an edge, adding m
more edges in total. (Here, we allow for the possibility of multi-edges, that is, pairs of vertices
with more than one edge between them.) Notice that now all vertices in this graph are of even
degree. Now by Euler’s theorem the resulting graph has an Eulerian tour. Removing the m
added edges breaks the tour into m walks covering all the edges in the original graph, with
each edge belonging to exactly one walk.

(c) To prove the claim, we need to prove two directions: if G is bipartite, it contains no tours of
odd length, and if G contains no tours of odd length, it must be bipartite.

Suppose G is bipartite, and let L and R be the two disjoint sets of vertices such that there does
not exist any edge between two vertices in L or two vertices in R. Further, suppose there is

CS 70, Spring 2025, HW 02 4

some tour in G, and we start traversing this tour at v0 ∈ L.

Since each edge in G connects a vertex in L to a vertex in R, the first edge in the tour connects
the start vertex v0 to a vertex v1 ∈ R. Similarly, the second edge connects v1 ∈ R to v2 ∈ L. In
general, it must be the case that the 2kth edge connects vertex v2k−1 ∈ R to v2k ∈ L, and the
2k+1th edge connects vertex v2k ∈ L to v2k+1 ∈ R.

Since only even numbered edges connect to vertices in L, and we started our tour in L, the
tour must end with an even number of edges.

For the opposite direction, suppose G contains no tours of odd length. Without loss of gener-
ality, let us consider one connected component of G; the following reasoning can be applied
to all of the connected components of G.

Let v be an arbitrary vertex in G; we can divide all of the vertices in G into two disjoint sets:

R = {u | the shortest path from u to v is even}
L = {u | the shortest path from u to v is odd}

We claim that no two vertices in L are adjacent. For contradiction, suppose there do exist
adjacent vertices u1,u2 ∈ L. Consider the tour consisting of:

• the shortest path from v to u1 (odd length)

• the edge (u1,u2) (length 1)

• the shortest path from u2 to v (odd length)

This tour has odd length, and contradicts our assumption that G has no tours of odd length.
This means that no two vertices in L are adjacent.

Similarly, we claim that no two vertices in R are adjacent. For contradiction, suppose there
do exist adjacent vertices u1,u2 ∈ R. Consider the tour consisting of:

• the shortest path from v to u1 (even length)

• the edge (u1,u2) (length 1)

• the shortest path from u2 to v (even length)

This tour has odd length, and contradicts our assumption that G has no tours of odd length.
This means that no two vertices in R are adjacent.

We’ve just shown that there are no edges between two vertices in L, and no edges between
two vertices in R. If there are multiple connected components in G, the same partition can be
applied to all of the components. Together, this means that G is bipartite.

CS 70, Spring 2025, HW 02 5

	Universal Preference
	Pairing Up
	Upper Bound
	Short Tree Proofs
	Proofs in Graphs

