1 Modular Practice

Solve the following modular arithmetic equations for x and y.

(a) $9x + 5 \equiv 7 \pmod{11}$.
(b) Show that $3x + 15 \equiv 4 \pmod{21}$ does not have a solution.
(c) The system of simultaneous equations $3x + 2y \equiv 0 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.
(d) $13^{2019} \equiv x \pmod{12}$.
(e) $7^{21} \equiv x \pmod{11}$.

Solution:

(a) Subtract 5 from both sides to get:

$$9x \equiv 2 \pmod{11}.$$

Now since $\gcd(9, 11) = 1$, 9 has a (unique) inverse mod 11, and since $9 \times 5 = 45 \equiv 1 \pmod{11}$ the inverse is 5. So multiply both sides by $9^{-1} \equiv 5 \pmod{11}$ to get:

$$x \equiv 10 \pmod{11}.$$

(b) Notice that any number $y \equiv 4 \pmod{21}$ can be written as $y = 4 + 21k$ (for some integer k). Evaluating $y \pmod{3}$, we get $y \equiv 1 \pmod{3}$. Since the right side of the equation is 1 (mod 3), the left side must be as well. However, $3x + 15$ will never be 1 (mod 3) for any value of x. Thus, there is no possible solution.

(c) First, subtract the first equation from double the second equation to get:

$$2(2x + y) - (3x + 2y) \equiv x \equiv 1 \pmod{7}.$$

Now plug into the second equation.

$$2 + y \equiv 4 \pmod{7},$$

so the system has the solution $x \equiv 1 \pmod{7}$, $y \equiv 2 \pmod{7}$.

(d) We use the fact that
\[13 \equiv 1 \pmod{12} \]
Thus, we can rewrite the equation as
\[x \equiv 13^{2019} \equiv 1^{2019} \equiv 1 \pmod{12}. \]

(e) One way to solve exponentiation problems is to test values until one identifies a pattern.

\[
\begin{align*}
7^1 &\equiv 7 \pmod{11} \\
7^2 &\equiv 49 \equiv 5 \pmod{11} \\
7^3 &= 7 \cdot 7^2 \equiv 7 \cdot 5 \equiv 2 \pmod{11} \\
7^4 &= 7 \cdot 7^3 \equiv 7 \cdot 2 \equiv 3 \pmod{11} \\
7^5 &= 7 \cdot 7^4 \equiv 7 \cdot 3 \equiv 10 \equiv -1 \pmod{11}.
\end{align*}
\]

We theoretically could continue this until we the sequence starts repeating. However, notice that if \(7^5 \equiv -1 \implies 7^{10} = (7^5)^2 \equiv (-1)^2 \equiv 1 \pmod{11} \).

Similarly, \(7^{20} = (7^{10})^2 \equiv 1^2 \equiv 1 \pmod{11} \). As a final step, we have \(7^{21} = 7 \cdot 7^{20} \equiv 7 \cdot 1 = 7 \pmod{11} \).

2 Nontrivial Modular Solutions

(a) What are all the possible perfect cubes modulo 7?

(b) Show that any solution to \(a^3 + 2b^3 \equiv 0 \pmod{7} \) must satisfy \(a \equiv b \equiv 0 \pmod{7} \).

(c) Using part (b), prove that \(a^3 + 2b^3 = 7a^2b \) has no non-trivial solutions \((a, b)\) in the integers. In other words, there are no integers \(a\) and \(b\), that satisfy this equation, except the trivial solution \(a = b = 0\).

[\text{Hint: Consider some nontrivial solution } (a, b) \text{ with the smallest value for } |a| \text{ (why are we allowed to consider this?)}. \text{ Then arrive at a contradiction by finding another solution } (a', b') \text{ with } |a'| < |a|.]\]

Solution:

(a) Checking by hand, the only perfect cubes modulo 7 are 0, 1, and 6 \(\equiv -1 \):
\[
\begin{align*}
0^3 &\equiv 0 \pmod{7} & 4^3 &\equiv 1 \pmod{7} \\
1^3 &\equiv 1 \pmod{7} & 5^3 &\equiv -1 \pmod{7} \\
2^3 &\equiv 1 \pmod{7} & 6^3 &\equiv -1 \pmod{7} \\
3^3 &\equiv -1 \pmod{7} &
\end{align*}
\]

(b) Considering the equation \(a^3 + 2b^3 \equiv 0 \pmod{7} \) and considering all cases for \(a^3 \) and \(b^3 \), the only way that \(a^3 + 2b^3 \equiv 0 \pmod{7} \) is if \(a^3 \equiv b^3 \equiv 0 \pmod{7} \). Thus \(a \equiv b \equiv 0 \pmod{7} \).
(c) We first show that if \((a, b)\) is a solution to \(a^3 + 2b^3 = 7a^2b\), then \(a = 0\) implies that \(b = 0\). In other words, if \(a = 0\), then the solution must be trivial. To see why this is the case, suppose that \(a = 0\). Then \(b^3 = 0\), and so \(b = 0\). Thus, any nontrivial solution must have \(a \neq 0\), or equivalently, \(|a| > 0\).

If \((a, b)\) is a solution to the original equation, then this is also a solution to
\[
a^3 + 2b^3 \equiv 0 \pmod{7}.
\]

From Part (b), we know that \(a, b\) are all divisible by 7, which in turn means that \(a^3, b^3\) are divisible by \(7^3\). Thus, we can divide the entire original equation by \(7^3\), to see that
\[
\left(\frac{a}{7}\right)^3 + 2\left(\frac{b}{7}\right)^3 = 7\left(\frac{a}{7}\right)^2 \left(\frac{b}{7}\right).
\]

Indeed, \((a/7, b/7)\) is another solution where all the values are integers, and \(|a/7| < |a|\) (as \(|a| > 0\)). We’ve reached a contradiction to our initial assumption, which was that \((a, b)\) was the solution with the least value of \(|a|\). (This is a valid assumption since the \(|a|\) are positive integers, and a non-empty set of positive integers has a minimum.) Thus, there does not exist a nontrivial solution to \(a^3 + 2b^3 = 7a^2b\).

3 Wilson’s Theorem

Wilson’s Theorem states the following is true if and only if \(p\) is prime:
\[
(p - 1)! \equiv -1 \pmod{p}.
\]

Prove both directions (it holds if AND only if \(p\) is prime).

Hint for the if direction: Consider rearranging the terms in \((p - 1)! = 1 \cdot 2 \cdot \ldots \cdot (p - 1)\) to pair up terms with their inverses, when possible. What terms are left unpaired?

Hint for the only if direction: If \(p\) is composite, then it has some prime factor \(q\). What can we say about \((p - 1)! \pmod{q}\)?

Solution:

Direction 1: If \(p\) is prime, then the statement holds.

For the integers \(1, \ldots, p - 1\), every number has an inverse. However, it is not possible to pair a number off with its inverse when it is its own inverse. This happens when \(x^2 \equiv 1 \pmod{p}\), or when \(p \mid x^2 - 1 = (x - 1)(x + 1)\). Thus, \(p \mid x - 1\) or \(p \mid x + 1\), so \(x \equiv 1 \pmod{p}\) or \(x \equiv -1 \pmod{p}\). Thus, the only integers from 1 to \(p - 1\) inclusive whose inverse is the same as itself are 1 and \(p - 1\).

We reconsider the product \((p - 1)! = 1 \cdot 2 \cdots p - 1\). The product consists of 1, \(p - 1\), and pairs of numbers with their inverse, of which there are \(p - 1 - 2 = \frac{p - 3}{2}\). The product of the pairs is 1 (since the product of a number with its inverse is 1), so the product \((p - 1)! \equiv 1 \cdot (p - 1) \cdot 1 \equiv -1 \pmod{p}\), as desired.
Direction 2: The expression holds only if \(p \) is prime (contrapositive: if \(p \) isn’t prime, then it doesn’t hold).

We will prove by contradiction that if some number \(p \) is composite, then \((p - 1)! \not\equiv -1 \pmod{p} \); Hypothetically assume that \((p - 1)! \equiv -1 \pmod{p} \). Note that this means we can write \((p - 1)! \) as \(p \cdot k - 1 \) for some integer \(k \).

Since \(p \) isn’t prime, it has some prime factor \(q \) where \(2 \leq q \leq n - 2 \), and we can write \(p = q \cdot r \).

Plug this into the expression for \((p - 1)! \) above, yielding us \((p - 1)! = (q \cdot r)k - 1 = q(rk) - 1 \implies (p - 1)! \equiv -1 \pmod{q} \). However, we know \(q \) is a term in \((p - 1)! \), so \((p - 1)! \equiv 0 \pmod{q} \). Since \(0 \not\equiv 1 \pmod{q} \), we have reached our contradiction.

4 Ferma’t’s Little Theorem

Without using induction, prove that \(\forall n \in \mathbb{N}, n^7 - n \) is divisible by 42.

Solution:

Let \(n \in \mathbb{N} \). We begin by breaking down 42 into prime factors: 42 = 7 \times 3 \times 2. Since 7, 3, and 2 are prime, we can apply Ferma’t’s Little Theorem, which says that \(a^p \equiv a \pmod{p} \), to get the congruences

\[
\begin{align*}
n^7 &\equiv n \pmod{7}, \\
n^3 &\equiv n \pmod{3}, \quad \text{and} \\
n^2 &\equiv n \pmod{2}.
\end{align*}
\]

Now, let’s take (3) and multiply it by \(n^3 \cdot n \). This gives us

\[
n^7 \equiv n^3 \cdot n \equiv n \cdot n \cdot n \equiv n^3 \pmod{3},
\]

and since by (3), \(n^3 \equiv n \pmod{3} \), this gives

\[
n^7 \equiv n \pmod{3}.
\]

Similarly, we take (4) and multiply by \(n^2 \cdot n^2 \cdot n \) to get

\[
n^7 \equiv n^2 \cdot n^2 \cdot n \equiv n^4 \pmod{2}.
\]

Notice that \(n^4 \equiv n^2 \cdot n^2 \equiv n \cdot n \equiv n^2 \pmod{2} \), and by (4) \(n^2 \equiv n \pmod{2} \), so we have

\[
n^7 \equiv n \pmod{2}.
\]

Thus,

\[
\begin{align*}
n^7 &\equiv n \pmod{7}, \\
n^7 &\equiv n \pmod{3}, \quad \text{and} \\
n^7 &\equiv n \pmod{2}.
\end{align*}
\]
Let \(x = n^7 - n \). By the Chinese Remainder Theorem, the system of congruences

\[
\begin{align*}
 x &\equiv 0 \pmod{7} \\
 x &\equiv 0 \pmod{3} \\
 x &\equiv 0 \pmod{2}
\end{align*}
\]

has a unique solution modulo \(2 \cdot 3 \cdot 7 = 42 \), and this unique solution is \(x \equiv 0 \pmod{42} \). So, we have that \(n^7 - n \equiv 0 \pmod{42} \), which means \(n^7 - n \) is divisible by 42.

5. **Euler’s Totient Function**

Euler’s totient function is defined as follows:

\[
\phi(n) = |\{i : 1 \leq i \leq n, \gcd(n, i) = 1\}|
\]

In other words, \(\phi(n) \) is the total number of positive integers less than or equal to \(n \) which are relatively prime to it. We develop a general formula to compute \(\phi(n) \).

(a) Let \(p \) be a prime number. What is \(\phi(p) \)?

(b) Let \(p \) be a prime number and \(k \) be some positive integer. What is \(\phi(p^k) \)?

(c) Show that if \(\gcd(m, n) = 1 \), then \(\phi(mn) = \phi(m)\phi(n) \). (Hint: Use the Chinese Remainder Theorem.)

(d) Argue that if the prime factorization of \(n = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k} \), then

\[
\phi(n) = n \prod_{i=1}^{k} \frac{p_i - 1}{p_i}.
\]

Solution:

(a) Since \(p \) is prime, all the numbers from 1 to \(p - 1 \) are relatively prime to \(p \).

So, \(\phi(p) = p - 1 \).

(b) The only positive integers less than \(p^k \) which are not relatively prime to \(p^k \) are multiples of \(p \).

Why is this true? This is so because the only possible prime factor which can be shared with \(p^k \) is \(p \). Hence, if any number is not relatively prime to \(p^k \), it has to have a prime factor of \(p \) which means that it is a multiple of \(p \).

The multiples of \(p \) which are \(\leq p^k \) are \(1 \cdot p, 2 \cdot p, \ldots, p^{k-1} \cdot p \). There are \(p^{k-1} \) of these.

The total number of positive integers less than or equal to \(p^k \) is \(p^k \).

So \(\phi(p^k) = p^k - p^{k-1} = p^{k-1} \cdot (p - 1) \).
(c) Let M be the set of positive integers $1 \leq i \leq m$ such that $\gcd(i, m) = 1$, and let N be the set of positive integers $1 \leq j \leq m$ such that $\gcd(j, n) = 1$. Since $\gcd(m, n) = 1$, the Chinese Remainder Theorem gives that every choice $(i, j) \in M \times N$ corresponds bijectively with an integer $1 \leq k \leq mn$, where $k \equiv i \pmod{m}$ and $k \equiv j \pmod{n}$. Thus, $\gcd(k, mn) = 1$, so the Chinese Remainder Theorem associates each (i, j) to a unique $1 \leq k \leq mn$ relatively prime to mn.

Moreover, note that each $1 \leq k \leq mn$ relative prime to mn can be associated with an $(i, j) \in M \times N$ such that $k \equiv i \pmod{m}$ and $k \equiv j \pmod{n}$. Thus, we have a bijection between $M \times N$ and the set of positive integers $1 \leq k \leq mn$ relatively prime to mn.

Since $|M| = \phi(m)$, $|N| = \phi(n)$, and the set of positive integers $1 \leq k \leq mn$ relatively prime to mn has cardinality $\phi(mn)$ (by definition), we conclude that $\phi(m)\phi(n) = \phi(mn)$.

(d) Applying part (c) inductively, we conclude that

$$
\phi(n) = \phi(p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}) = \frac{n \prod_{i=1}^{k} p_i - 1}{p_i}
$$

6 Euler’s Totient Theorem

Euler’s Totient Theorem states that, if n and a are coprime,

$$
a^{\phi(n)} \equiv 1 \pmod{n}
$$

where $\phi(n)$ (known as Euler’s Totient Function) is the number of positive integers less than or equal to n which are coprime to n (including 1).

(a) Let the numbers less than n which are coprime to n be $m_1, m_2, \ldots, m_{\phi(n)}$. Argue that the set

$$\{am_1, am_2, \ldots, am_{\phi(n)}\}
$$

is a permutation of the set

$$\{m_1, m_2, \ldots, m_{\phi(n)}\}.
$$

In other words, prove that

$$f : \{m_1, m_2, \ldots, m_{\phi(n)}\} \to \{m_1, m_2, \ldots, m_{\phi(n)}\},
$$

is a bijection, where $f(x) := ax \pmod{n}$.

CS 70, Fall 2022, HW 04
(b) Prove Euler’s Theorem. (Hint: Recall the FLT proof.)

Solution:

(a) This problem mirrors the proof of Fermat’s Little Theorem, except now we work with the set \(\{m_1, m_2, \ldots, m_{\phi(n)}\} \).

Since \(m_i \) and \(a \) are both coprime to \(n \), so is \(a \cdot m_i \). Suppose \(a \cdot m_i \) shared a common factor with \(n \), and WLOG, assume that it is a prime \(p \). Then, either \(p \mid a \) or \(p \mid m_i \). In either case, \(p \) is a common factor between \(n \) and one of \(a \) or \(m_i \), contradiction.

We now prove that \(f \) is injective. Suppose we have \(f(x) = f(y) \), so \(ax \equiv ay \pmod{n} \). Since \(a \) has a multiplicative inverse \(\pmod{n} \), we see \(x \equiv y \pmod{n} \), thus showing that \(f \) is injective.

We continue to show that \(f \) is surjective. Take any \(y \) that is relatively prime to \(n \). Then, we see that \(f(a^{-1}y) \equiv y \pmod{n} \), so therefore, there is an \(x \) such that \(f(x) = y \). Furthermore, \(a^{-1}y \pmod{n} \) is relatively prime to \(n \), since we are multiplying two numbers that are relatively prime to \(n \).

(b) Since both sets have the same elements, just in different orders, multiplying them together gives

\[
m_1 \cdot m_2 \cdot \ldots \cdot m_{\phi(n)} \equiv a m_1 \cdot a m_2 \cdot \ldots \cdot a m_{\phi(n)} \pmod{n}
\]

and factoring out the \(a \) terms,

\[
m_1 \cdot m_2 \cdot \ldots \cdot m_{\phi(n)} \equiv a^{\phi(n)} (m_1 \cdot m_2 \cdot \ldots \cdot m_{\phi(n)}) \pmod{n}.
\]

Thus we have \(a^{\phi(n)} \equiv 1 \pmod{n} \).

7 Sparsity of Primes

A prime power is a number that can be written as \(p^i \) for some prime \(p \) and some positive integer \(i \). So, \(9 = 3^2 \) is a prime power, and so is \(8 = 2^3 \). \(42 = 2 \cdot 3 \cdot 7 \) is not a prime power.

Prove that for any positive integer \(k \), there exists \(k \) consecutive positive integers such that none of them are prime powers.

Hint: This is a Chinese Remainder Theorem problem. We want to find \(x \) such that \(x + 1, x + 2, \ldots, x + k \) are all not powers of primes. We can enforce this by saying that \(x + 1 \) through \(x + k \) each must have two distinct prime divisors.

Solution:

We want to find \(x \) such that \(x + 1, x + 2, x + 3, \ldots, x + k \) are all not powers of primes. We can enforce this by saying that \(x + 1 \) through \(x + k \) each must have two distinct prime divisors. So, select \(2k \).
primes, \(p_1, p_2, \ldots, p_{2k} \), and enforce the constraints

\[
\begin{align*}
x + 1 & \equiv 0 \pmod{p_1 p_2} \\
x + 2 & \equiv 0 \pmod{p_3 p_4} \\
& \quad \vdots \\
x + i & \equiv 0 \pmod{p_{2i-1} p_{2i}} \\
& \quad \vdots \\
x + k & \equiv 0 \pmod{p_{2k-1} p_{2k}}.
\end{align*}
\]

By Chinese Remainder Theorem, we can calculate the value of \(x \), so this \(x \) must exist, and thus, \(x + 1 \) through \(x + k \) are not prime powers.

What’s even more interesting here is that we could select any 2\(k \) primes we want!