Note 6

CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 04

| Cele]orate and Remember Textiles

You’ve decided to knit a 70-themed baby blanket as a gift for your cousin and want to incorporate
rows from three different stitch patterns with the following requirements on the row lengths of each
of the stitch patterns:

 Alternating Link: Multiple of 7, plus 4
* Double Broken Rib: Multiple of 4, plus 2
e Swag: Multiple of 5, plus 2

You want to be able to switch between knitting these different patterns without changing the num-
ber of stitches on the needle, so you must use a number of stitches that simultaneously meets the
requirements of all three patterns.

Find the smallest number of stitches you need to cast on in order to incorporate all three patterns
in your baby blanket.

Solution: Let x be the number of stitches we need to cast on. Using the Chinese Remainder
Theorem, we can write the following system of congruences:

x=4 (mod7)
x=2 (mod 4)
x=2 (mod>5).

WehaveM:7-4-5:140, ri :4,m1 :7,[?1 :M/m1 :4-5:20, 1’2:3,1’1’Lz:4,b2 :M/MQ:
7-5=35andr3s =2, m3 =25, b3 =M/m3 =7-4 =28. We need to solve for the multiplicative
inverse of b; modulo m; fori € {1,2,3}:
biaj=1 (mod m)
20a; =1 (mod 7)
6a; =1 (mod 7)
— ay :6,

bra =1 (mod my)
35 =1 (mod 4)

3a =1 (mod 4)
— ay = 3,
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and
bzaz =1 (mod m3)
28a3=1 (mod 5)
3a3=1 (mod 5)
— a3 = 2.

Therefore,

X=6-20-4+2-35-34+2-28-2 (mod 140)
=102 (mod 140),

so the smallest x that satisfies all three congruences is 102. Therefore we should cast on 102
stitches in order to be able to knit all three patterns into the blanket.

2 Fuler's Totient Function

Note 6 Euler’s totient function is defined as follows:
¢(n) =[{i:1<i<n,ged(n,i)=1}

In other words, ¢(n) is the total number of positive integers less than or equal to n which are
relatively prime to it. We develop a general formula to compute ¢ (n).

(a) Let p be a prime number. What is ¢ (p)?
(b) Let p be a prime number and k be some positive integer. What is ¢ (p*)?

(c) We want to show that if gcd(a,b) = 1, then ¢(ab) = ¢(a)d(b). Let us proceed by direct
proof, and assume that gcd(a,b) = 1 for the subparts of this problem.

(i) Show that for z=x (mod a), if ged(x,a) = 1, then ged(z,a) = 1.

(ii) Let X be the set of positive integers 1 < i < a such that gcd(i,a) = 1 (i.e. all numbers
in mod a that are coprime to a), and let Y,Z be defined analogously for mod b,ab
respectively. Use the Chinese Remainder Theorem to show that there is a bijection
between X X Y and Z.

(iii) Use the above parts to show that ¢ (ab) = ¢(a)@(b).

€1 ,,€2

(d) Show that if the prime factorization of n = p|'p,* - -- p,e(", then

_ kpi—1
¢(”)_”,~I:]1 s

Solution:
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(a) Since p is prime, all the numbers from 1 to p — 1 are relatively prime to p.

SO’ ¢(p) =P 1.
(b) The only positive integers less than p* which are not relatively prime to p* are multiples of
D.

Why is this true? This is so because the only possible prime factor which can be shared with
pFis p. Hence, if any number is not relatively prime to pX, it has to have a prime factor of p
which means that it is a multiple of p.

k

The multiples of p which are < pXare 1-p,2-p,...,p*" ' p. There are p*~! of these.

The total number of positive integers less than or equal to p* is p.
So¢(pf) =p*=p=p 1 (p-1).

(¢) (1) z=x+ka for some integer k. Then, x = z — ka. By contraposition, if z and a both have
a nonzero common divisor d, then z — ka is also divisible by d, and therefore so is x.

(ii) We will construct a bijective function f : X x Y — Z. Given (x,y), a tuple from X,Y
respectively, we will construct an instance of CRT using the equations

z=x (mod a)
z=y (mod b)

Since ged(a,b) = 1, we know that there exists a unique solution z (mod ab) to these
equations by CRT. As the name suggests, we want to show now that z € Z. Using the
previous part, we can conclude that ged(z,a) = 1 and ged(z,b) = 1. Since ged(a,b) =1,
we can conclude that ged(z,ab) = 1, which indeed shows that z € Z. Since the CRT is
bijective, we have therefore established a bijection between X X Y and Z.

(iii) Since |X| = ¢(a), |Y| = ¢(b), then ¢(ab) = |Z| = |X x Y| = ¢(a)¢(b) by the bijection
established in the previous part.

(d) Applying part (c) inductively, we conclude that

¢(n) = o(pi' Py - p)
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3 FEuler's Totient Theorem

Euler’s Totient Theorem states that, if n and a are coprime,

a®™ =1 (mod n)

where ¢(n) (known as Euler’s Totient Function) is the number of positive integers less than or
equal to n which are coprime to n (including 1). Note that this theorem generalizes Fermat’s Little
Theorem, since if n is prime, then ¢ (n) =n— 1.

(a) Let the numbers less than n which are coprime to n be § = {m,mo,... ,m¢(n)}. Show that

the set
§'={am; (mod n),amy (mod n),...,amy,) (mod n)}

is a permutation of S. (Hint: Recall the FLT proof.)

(b) Prove Euler’s Totient Theorem. (Hint: Continue to recall the FLT proof.)

(c) Note 7 gave two proofs for Theorem 7.1:

x4 =x (mod N)

Use Euler’s Totient Theorem to give a third proof of this theorem, for the case that gcd(x,N) =
1.

Solution:

(a) This problem mirrors the proof of Fermat’s Little Theorem, except now we work with the set

S={mi,my, - ;my(}.

First, we show that if m; and a are both coprime to n, so is a-m;. Suppose a - m; shared a
common factor with n, and WLOG, assume that it is a prime p. Then, either p|a or p|m;. In
either case, p is a common factor between n and one of a or m;, contradiction.

Now, we show that each a - m; are distinct from each other. Assuming for the sake of contra-
diction that a-m; = a-m; (mod n), we can multiply both sides by the multiplicative inverse
of a to get m; = m; (mod n), contradiction.

Therefore, S’ has ¢ (n) elements, each of which is a distinct element of S, thus S’ must contain
each element of S exactly once. Therefore, S is a permutation of S.

Alternate Solution I: We can also prove this using set theory. Showing that each a - m;
(mod n) is coprime to n tells us that each element of ' is contained in S, thus &' C S. Addi-
tionally, consider an arbitrary element n; in S. We know that a~! - m; (mod 7) is a number
coprime to 7, so it must be in S. Then, a- (a~' -m;) (mod n) = m; isin §', so S C §'. Thus,
§=49.

Alternate Solution 1I: We can also prove this by showing that

f . {ml,mz,...,m(p(n)} — {ml,mz,...,m¢(n)}
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Note 6

is a bijection, where f(x) := ax (mod n). We first note that since m; and a are both coprime
to n, so is a - m;. We now prove that f is injective. Suppose we have f(x) = f(y), so ax = ay
(mod n). Since a has a multiplicative inverse (mod n), we see x =y (mod n), thus showing
that f is injective.

We continue to show that f is surjective. Take any y that is relatively prime to n. Then, we see
that f(a~'y) =y (mod n), so therefore, there is an x such that f(x) = y. Furthermore, a~ 'y
(mod n) is relatively prime to n, since we are multiplying two numbers that are relatively
prime to n.

(b) Since both sets have the same elements, just in different orders, multiplying them together
gives
ML MY - M) = @MY -GN - NG () (mod n)

and factoring out the a terms,
ML MY Mg () = a®™ (m1 Mo ... -mq)(n)) (mod n).

Since my -my ... -mg,) 1s relatively prime to n, we can multiply both sides by its inverse to
get
a®™ =1 (mod n)

(c) Since N = pq for primes p, g, we know that

Thus, we can express x°? as follows:
wed — JKON)+1 _ o kO(N)
By Euler’s theorem, since x?V) = 1 (mod N), we have

¥4 =x1

x (mod N)

4 Sparsity of Primes

A prime power is a number that can be written as p’ for some prime p and some positive integer i.
So, 9 = 3? is a prime power, and so is 8 = 23. 42 =2-3.7 is not a prime power.

Prove that for any positive integer k, there exists k consecutive positive integers such that none of
them are prime powers.

Hint: This is a Chinese Remainder Theorem problem. We want to find n such that (n+ 1), (n+2),
..., and (n+k) are all not powers of primes. We can enforce this by saying that n+ 1 through
n—+k each must have two distinct prime divisors. In your proof, you can choose these prime divisors
arbitrarily.
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Solution:

We want to find n such that n+ 1,n+2,n+3,...,n+ k are all not powers of primes. We can
enforce this by saying that n + 1 through n 4 k each must have two distinct prime divisors. So,
select 2k primes, p1, pa2, ..., P2k, and enforce the constraints

n+1=0 (mod pip;)
n+2=0 (mod p3ps)

n+i=0 (mod py_1p)

n+k=0 (mod py—1pax).
By Chinese Remainder Theorem, we can calculate the value of n, so this n must exist, and thus,
n+ 1 through n 4+ k are not prime powers.

What’s even more interesting here is that we could select any 2k primes we want!

5 RSA Practice

Note 7 Consider the following RSA scheme and answer the specified questions.

(a) Assume for an RSA scheme we pick 2 primes p =5 and ¢ = 11 with encryption key e =9,
what is the decryption key d? Calculate the exact value.

(b) If the receiver gets 4, what was the original message?

(c) Encrypt your answer from part (b) to check its correctness.

Solution:

(a) The private key d is defined as the inverse of e (mod (p —1)(¢ —1)). Thus we need to
compute 9~ mod (5—1)(11 —1) = 97! mod 40. Compute egcd(40,9):

egcd(40,9) = eged(9,4) [4 =40 mod 9 =40—4(9)]
=eged(4,1) [1 =9 mod4=9-2(4)].
1=9-2(4).

1=9-2(40-4(9))
=9—2(40) +8(9) = 9(9) — 2(40).

We get —2(40)+9(9) = 1. So the inverse of 9is 9. Sod = 9.

(b) 4is the encrypted message. We can decrypt this with D(m) = m? =4° = 14 (mod 55). Thus
the original message was 14.
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(c) The answer from the second part was 14. To encrypt the number x we must compute x° mod
N. Thus, 14° = 14- (14%)* = 14- (31%)> = 14- (26°) = 14- 16 =4 (mod 55). This verifies
the second part since the encrypted message was supposed to be 4.

6 Tweaking RSA

Note 7 You are trying to send a message to your friend, and as usual, Eve is trying to decipher what the
message is. However, you get lazy, so you use N = p, and p is prime. Similar to the original
method, for any message x € {0,1,...,N — 1}, E(x) = x° (mod N), and D(y) = y? (mod N).

(a) Show how you choose e,d > 1 in the encryption and decryption function, respectively. Prove
the correctness property: the message x is recovered after it goes through your new encryption
and decryption functions, E(x) and D(y).

(b) Can Eve now compute d in the decryption function? If so, by what algorithm?

(¢) Now you wonder if you can modify the RSA encryption method to work with three primes
(N = pgr where p,q,r are all prime). Explain the modifications made to encryption and
decryption and include a proof of correctness showing that D(E(x)) = x.

Solution:

(a) Choose e such that it is coprime with p — 1, and choose d = ¢! (mod p — 1).
We want to show x is recovered by E(x) and D(y), such that D(E(x)) = x.
In other words, x*/ = x (mod p) forall x € {0,1,...,N —1}.
Proof: By construction of d, we know that ed = 1 (mod p — 1). This means we can write
ed = k(p — 1) + 1, for some integer k, and x*¢ = Kh(p=1)+1,

* x is a multiple of p: Then this means x = 0, and indeed, x** =0 (mod p).
* x is not a multiple of p: Then
xed = =D+ (nod p)
=xP=Dx  (mod p)
= 1% (mod p)
=x (mod p),
by using FLT.
And for both cases, we have shown that x is recovered by D(E(x)).

(b) Since Eve knows N = p, and d = ¢~! (mod p — 1), now she can compute d using EGCD.

(c) Let e be co-prime with (p —1)(¢—1)(r—1). Give the public key: (N,e) and calculate
d=e"' (mod (p—1)(qg—1)(r—1)). People who wish to send me a secret, x, send y = x°
(mod N). We decrypt an incoming message, y, by calculating y? (mod N).

CS 70, Spring 2025, HW 04 7


https://www.eecs70.org/assets/pdf/notes/n7.pdf

Does this work? We prove that x*/ —x =0 (mod N), and thus x*/ = x (mod N).
To prove that x*) —x =0 (mod N), we factor out the x to get
x- (x4 = 1) = x- (M= Dla=Dr=D+1=1_ 1) pecause ed = 1 (mod (p—1)(g—1)(r—1)).

We now show that x - (xk(P—l)(q—l)(r_l) — 1) is divisible by p, ¢, and r. Thus, it is divisible by
N,and x* —x =0 (mod N).
To prove that it is divisible by p:

* if x is divisible by p, then the entire thing is divisible by p.

e if x is not divisible by p, then that means we can use FLT on the inside to show that
(xp~ K== _1=1-1=0 (mod p). Thus it is divisible by p.

To prove that it is divisible by g:
* if x is divisible by ¢, then the entire thing is divisible by q.

* if x is not divisible by ¢, then that means we can use FLT on the inside to show that
(xa~HYHp=1=1) _1=1-1=0 (mod g). Thus it is divisible by .

To prove that it is divisible by r:
* if x is divisible by r, then the entire thing is divisible by r.

¢ if x is not divisible by r, then that means we can use FLT on the inside to show that
(x~Hkp=1@=1) _1=1—-1=0 (mod r). Thus it is divisible by r.
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