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| Equivalent Polynomials

This problem is about polynomials with coefficients in GF(p) for some prime p € N. We say that
two such polynomials f and g are equivalent if f(x) = g(x) (mod p) for every x € GF(p).

(a) Show that f(x) = x*~! and g(x) = 1 are not equivalent polynomials under GF(p).

(b) Use Fermat’s Little Theorem to find a polynomial with degree strictly less than 5 that is equiv-
alent to f(x) = x> over GF(5); then find a polynomial with degree strictly less than 11 that is
equivalent to g(x) = 4x’% +9x!! 43 over GF(11).

(c) In GF(p), prove that whenever f(x) has degree > p, it is equivalent to some polynomial f(x)
with degree < p.

Solution:

(a) For f and g to be equivalent, they must satisfy f(x) = g(x) (mod p) for all values of x, includ-
ing zero. But f(0) =0 (mod p) and g(0) =1 (mod p), so they are not equivalent.

(b) Fermat’s Little Theorem says that for any nonzero integer ¢ and any prime number p, a?~ ! = 1
mod p. We're allowed to multiply through by a, so the theorem is equivalent to saying that
a’ = a mod p; note that this is true even when a = 0, since in that case we just have 07 =0
(mod p).

The problem asks for a polynomial f(x), different from f(x), with the property that f(a) = @’
mod 5 for any integer a. Directly using the theorem, f(x) = x will work. We can do some-
thing similar with g(x) = 4x7 +9x'! +3 modulo 11; since x'! =x (mod 11), we repeatedly
substitute x!'! with x, effectively reducing the exponent by 10. We can only do this as long as

the exponent remains greater than or equal to 11, so we end up with g(x) = 4x'® 4+ 9x + 3.

(c) One proof uses Fermat’s Little Theorem. As a warm-up, let d > p; we’ll find a polynomial
equivalent to x?. For any integer, we know

at =a®PaP
=a’"Pa (mod p)

=a? Pt (mod p).

In other words x? is equivalent to the polynomial == If d — (p—1) > g, we can show
in the same way that x¢ is equivalent to x4=2(r=1) " Since we subtract p — 1 every time, the
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sequence d,d — (p—1),d—2(p—1),... must eventually be smaller than p. Now if f(x) is any
polynomial with degree > p, we can apply this same trick to every x* that appears for which
k> p.

Another proof uses Lagrange interpolation. Let f(x) have degree > p. By Lagrange interpo-
lation, there is a unique polynomial f(x) of degree at most p — 1 passing through the points

(0,£(0)),(1,f(1)),(2,£(2)),....(p—1,f(p—1)), and we know it must be equivalent to f(x)
because f also passes through the same p points.

2 Secret Sharing

Suppose the Oral Exam questions are created by 2 TAs and 3 Readers. The answers are all en-
crypted, and we know that:

* Two TAs together should be able to access the answers

» Three Readers together should be able to access the answers

* One TA and one Reader together should also be able to access the answers

* One TA by themself or two Readers by themselves should not be able to access the answers.

Design a Secret Sharing scheme to make this work.

Solution:

Solution 1 We can use a degree 2 polynomial, which is uniquely determined by 3 points. Evaluate
the polynomial at 7 points, and distribute a point to each Reader and 2 points to each TA. Then, all
possible combinations will have at least 3 points to recover the answer key.

Basically, the point of this problem is to assign different weight to different class of people. If we
give one share to everyone, then 2 Readers can also recover the secret and the scheme is broken.

Solution 2 We construct three polynomials, one for each way of recovering the answer key:

* A degree 1 polynomial for recovering with two TAs, evaluated at 2 points. Distribute a point
to each TA.

* A degree 2 polynomial for recovering with three readers, evaluated at 3 points. Distribute a
point to each Reader.

* A degree 1 polynomial for recovering with one TA + one reader. Evaluate this polynomial at
2 points, and distribute one point to all TAs and one point to all readers.

All combinations can then use the corresponding polynomial to recover the answer key.
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3 One Point Interpolation

Note 8 Suppose we have a polynomial f(x) = Xk ck_lxk’1 4+ F x4 cpx+co.

(a) Can we determine f(x) with k points? If so, provide a set of inputs xo,xj,...,x;_ such
that knowing points (xo, f(x0)), (x1,f(x1)),--., (xk—1,f(xx_1)) allows us to uniquely deter-
mine f(x), and show how f(x) can be determined from such points. If not, provide a proof of
why this is not possible.

(b) Now, assume each coefficient is an integer satisfying 0 < ¢; < 100 Vi € [0,k — 1]. Can we de-
termine f(x) with one point? If so, provide an input x, such that knowing the point (x.., f(x.))
allows us to uniquely determine f(x), and show how f(x) can be determined from this point.
If not, provide a proof of why this is not possible.

Solution:

(a) Yes. Since the leading coefficient is 1, we only need to find the k remaining coefficients
€0,Cl,---,Ck—1 to determine f(x). This can be done with any k distinct points.

For example, suppose we know the points (0, f(0)),(1,f(1)),...,(k—1,f(k—1)). We can
then write the degree k — 1 polynomial

gxX) =X e ex oo = fx) — X

which can be determined via Lagrange interpolation on (0, £(0)), (1, £(1) — 1), (2, f(2) —2%),
o, (k=1,f(k—1) — (k—1)k), uniquely yielding our desired coefficients co,c1,...,cr_1.

(b) Yes. We can express each nonnegative two-digit integer ¢; = 10d; 1 + dp; for digits d; € [0,9].
Using x, = 100,

F(100) = 100% 4 ¢ 1005~ 4 -+ 4 ¢2100% + ¢1 100 + ¢
= 102 + (10doy_1 +dox2)10%72 - 4 (10ds +ds)10* + (10d3 + d2) 10* + (10d; 4 dp)
= 10 +10% dy 1 +10%* 2 dyy o + - - +10°ds 4 10*dy + 103d5 + 10%dy + 10d; + dy

Thus, the rightmost 2k — 1 digits of f(100), from right to left, are dy,d\, ... ,d;_1; we can then
determine our desired coefficients ¢; = 10d;41 + da;.

4 Error—Correcting Codes

Note 9 (a) Recall from class the error-correcting code for erasure errors, which protects against up to k
lost packets by sending a total of n+ k packets (where n is the number of packets in the original
message). Often the number of packets lost is not some fixed number k, but rather a fraction
of the number of packets sent. Suppose we wish to protect against a fraction ¢ of lost packets
(where 0 < o < 1). At least how many packets do we need to send (as a function of n and o¢)?
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(b)

Repeat part (a) for the case of general errors.

Solution:

(a)

(b)

(a)

(b)

()

Suppose we send a total of m packets (where m is to be determined). Since at most a fraction o
of these are lost, the number of packets received is at least (1 — o )m. But in order to reconstruct
the polynomial used in transmission, we need at least n packets. Hence it is sufficient to have
(1 — ot)m > n, which can be rearranged to give m > n/(1 — o).

Suppose we send a total of m = n + 2k packets, where k is the number of errors we can guard
against. The number of corrupted packets is at most am, so we need k > am. Hence m >
n+2am. Rearranging gives m > n/(1 —2a).

Note: Recovery in this case is impossible if o0 > 1/2.

Alice and Bob

Alice decides that instead of encoding her message as the values of a polynomial, she will
encode her message as the coefficients of a degree 2 polynomial P(x). For her message
[my,my,m3], she creates the polynomial P(x) = mx% + mox + m3 and sends the five pack-
ets (0,P(0)), (1,P(1)), (2,P(2)), (3,P(3)), and (4,P(4)) to Bob. However, one of the packet
y-values (one of the P(i) terms; the second attribute in the pair) is changed by Eve before it
reaches Bob. If Bob receives

(0,1),(1,3),(2,0),(3,1),(4,0)

and knows Alice’s encoding scheme and that Eve changed one of the packets, can he recover
the original message? If so, find it as well as the x-value of the packet that Eve changed. If
he can’t, explain why. Work in mod 7. Also, feel free to use a calculator or online systems of
equations solver, but make sure it can work under mod 7.

Bob gets tired of decoding degree 2 polynomials. He convinces Alice to encode her messages
on a degree 1 polynomial. Alice, just to be safe, continues to send 5 points on her polynomial
even though it is only degree 1. She makes sure to choose her message so that it can be
encoded on a degree 1 polynomial. However, Eve changes two of the packets. Bob receives
(0,5), (1,7), (2,x), (3,5), (4,0). If Alice sent (0,5), (1,7), (2,9), (3,—2), (4,0), for what
values of x will Bob not uniquely be able to determine Alice’s message? Assume that Bob
knows Eve changed two packets. Work in mod 13. Again, feel free to use a calculator or
graphing calculator software.

Alice wants to send a length n message to Bob. There are two communication channels avail-
able to her: Channel X and Channel Y. Only 6 packets can be sent through channel X. Simi-
larly, Channel Y will only deliver 6 packets, but it will also corrupt (change the value) of one
of the delivered packets. Using each of the two channels once, what is the largest message
length n such that Bob so that he can always reconstruct the message?
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Solution:

(a)

(b)

We can use Berlekamp and Welch. We have: Q(x) = P(x)E(x). E(x) has degree 1 since we
know we have at most 1 error. Q(x) is degree 3 since P(x) is degree 2. We can write a system of
linear equations and solve for the coefficients of Q(x) = ax® +bx? 4+ cx+d and E(x) = (x —e)
by writing the equation Q(i) = r;- E(i) for 0 < i < 4, where r; is the ith received point.

=1(0—e)
a+b+c+d=3(1—e)
8a+4b+2c+d=0(2—e)
27a4+9b+3c+d=1(3—¢)
64a+16b+4c+d=0(4—e)

Since we are working in mod 7, this is equivalent to:

d=—e
a+b+c+d=3-3e
a+4b+2c+d=0
6a+2b+3c+d=3—e
a+2b+4c+d=0

Solving yields:
O(x) =x> +5x2 +5x+4,E(x) =x—3

To find P(x) we divide Q(x) by E(x) and get P(x) = x> +x+ 1. So Alice’s message is m; =
1,my = 1,m3 = 1. The x-value of the packet Eve changed is 3.

Alternative solution: Since we have 5 points, we have to find a polynomial of degree 2 that
goes through 4 of those points. The point that the polynomial does not go through will be the
packet that Eve changed. Since 3 points uniquely determine a polynomial of degree 2, we can
pick 3 points and check if it goes through a 4th point. (It may be the case that we need to try
all sets of 3 points.)

We pick the points (1,3),(2,0),(4,0). Lagrange interpolation can be used to create the poly-
nomial but we can see that for the polynomial that goes through these 3 points, it has Os at x =2
and x = 4. Thus the polynomial is k(x —2)(x —4) = k(x> —6x+8) (mod 7) = k(x*> +x+1)
(mod 7). We find k = 1 by plugging in the point (1,3), so our polynomial is x*> +x+ 1. We
then check to see if this polynomial goes through one of the 2 points that we didn’t use. Plug-
ging in O for x, we get 1. The packet that Eve changed is the point that our polynomial does
not go through which has x-value 3. Alice’s original message was m; = 1,my = 1,m3 = 1.

Since Bob knows that Eve changed 2 of the points, the 3 remaining points will still be on
the degree 1 polynomial that Alice encoded her message on. Thus if Bob can find a degree
1 polynomial that passes through at least 3 of the points that he receives, he will be able to
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uniquely recover Eve’s message. The only time that Bob cannot uniquely determine Alice’s
message is if there are 2 polynomials with degree 1 that pass through 3 of the 5 points that
he receives. Since we are working with degree 1 polynomials, we can plot the points that
Bob receives and then see which values of x will cause 2 sets of 3 points to fall on a line.
(0,5),(1,7),(4,0) already fall on a line. If x =6, (1,7),(2,6),(3,5) also falls on a line. If
x=15,(0,5),(2,5),(3,5) also falls on a line. If x =9, (0,5),(2,9), (4,0) falls on the original
line, so here Bob can decode the message. If x = 10, (2,10),(3,5),(4,0) also falls on a line.
Soif x = 6,5, 10, Bob will not be able to uniquely determine Alice’s message.

(c) Channel X can send 6 packets, so the first 6 characters of the message can be send through
Channel X. Channel Y can send 6 packets, but 1 will be corrupted, thus only a message of
length 4 can be sent. Thus, a total of m = 6 +4 = 10 characters can effectively sent.
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