
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 05

1 Equivalent Polynomials
Note 7
Note 8

This problem is about polynomials with coefficients in GF(p) for some prime p ∈ N. We say that
two such polynomials f and g are equivalent if f (x)≡ g(x) (mod p) for every x ∈ GF(p).

(a) Show that f (x) = xp−1 and g(x) = 1 are not equivalent polynomials under GF(p).

(b) Use Fermat’s Little Theorem to find a polynomial with degree strictly less than 5 that is
equivalent to f (x) = x5 over GF(5); then find a polynomial with degree strictly less than 11
that is equivalent to g(x) = 4x70 +9x11 +3 over GF(11).

(c) In GF(p), prove that whenever f (x) has degree ≥ p, it is equivalent to some polynomial f̃ (x)
with degree < p.

Solution:

(a) For f and g to be equivalent, they must satisfy f (x) ≡ g(x) (mod p) for all values of x,
including zero. But f (0)≡ 0 (mod p) and g(0)≡ 1 (mod p), so they are not equivalent.

(b) Fermat’s Little Theorem says that for any nonzero integer a and any prime number p, ap−1 ≡
1 mod p. We’re allowed to multiply through by a, so the theorem is equivalent to saying that
ap ≡ a mod p; note that this is true even when a = 0, since in that case we just have 0p ≡ 0
(mod p).

The problem asks for a polynomial f̃ (x), different from f (x), with the property that f̃ (a)≡ a5

mod 5 for any integer a. Directly using the theorem, f̃ (x) = x will work. We can do some-
thing similar with g(x) = 4x70+9x11+3 modulo 11; since x11 ≡ x (mod 11), we repeatedly
substitute x11 with x, effectively reducing the exponent by 10. We can only do this as long as
the exponent remains greater than or equal to 11, so we end up with g̃(x) = 4x10 +9x+3.

(c) One proof uses Fermat’s Little Theorem. As a warm-up, let d ≥ p; we’ll find a polynomial
equivalent to xd . For any integer, we know

ad = ad−pap

≡ ad−pa (mod p)

≡ ad−p+1 (mod p).

In other words xd is equivalent to the polynomial xd−(p−1). If d − (p−1)≥ q, we can show
in the same way that xd is equivalent to xd−2(p−1). Since we subtract p− 1 every time, the
sequence d,d − (p− 1),d − 2(p− 1), . . . must eventually be smaller than p. Now if f (x) is
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any polynomial with degree ≥ p, we can apply this same trick to every xk that appears for
which k ≥ p.

Another proof uses Lagrange interpolation. Let f (x) have degree ≥ p. By Lagrange interpo-
lation, there is a unique polynomial f̃ (x) of degree at most p−1 passing through the points
(0, f (0)),(1, f (1)),(2, f (2)), ...,(p−1, f (p−1)), and we know it must be equivalent to f (x)
because f also passes through the same p points.

2 Secret Sharing
Note 8 Suppose the Oral Exam questions are created by 2 TAs and 3 Readers. The answers are all en-

crypted, and we know that:

• Two TAs together should be able to access the answers

• Three Readers together should be able to access the answers

• One TA and one Reader together should also be able to access the answers

• One TA by themself or two Readers by themselves should not be able to access the answers.

Design a Secret Sharing scheme to make this work.

Solution:

Solution 1 We can use a degree 2 polynomial, which is uniquely determined by 3 points. Evaluate
the polynomial at 7 points, and distribute a point to each Reader and 2 points to each TA. Then, all
possible combinations will have at least 3 points to recover the answer key.

Basically, the point of this problem is to assign different weight to different class of people. If we
give one share to everyone, then 2 Readers can also recover the secret and the scheme is broken.

Solution 2 We construct three polynomials, one for each way of recovering the answer key:

• A degree 1 polynomial for recovering with two TAs, evaluated at 2 points. Distribute a point
to each TA.

• A degree 2 polynomial for recovering with three readers, evaluated at 3 points. Distribute a
point to each Reader.

• A degree 1 polynomial for recovering with one TA + one reader. Evaluate this polynomial at
2 points, and distribute one point to all TAs and one point to all readers.

All combinations can then use the corresponding polynomial to recover the answer key.

3 To The Moon!
Note 8 A secret number s is required to launch a rocket, and Alice distributed the values

(1, p(1)),(2, p(2)), . . . ,(n+1, p(n+1)) of a degree n polynomial p(x) to a group of $GME holders
Bob1, . . . ,Bobn+1. As usual, she chose p(x) such that p(0) = s. Bob1 through Bobn+1 now gather
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to jointly discover the secret. However, Bob1 is secretly a partner at Melvin Capital and already
knows s, and wants to sabotage Bob2, . . . ,Bobn+1, making them believe that the secret is in fact
some fixed s′ ̸= s. How could he achieve this? In other words, what value should he report (in
terms variables known in the problem, such as s′,s or p(1)) in order to make the others believe that
the secret is s′?

Solution:

We know that in order to discover s, the Bobs would compute

s = y1∆1(0)+
n+1

∑
k=2

yk∆k(0), (1)

where yi = p(i). Bob1 now wants to change his value y1 to some y′1, so that

s′ = y′1∆1(0)+
n+1

∑
k=2

yk∆k(0). (2)

Subtracting Equation 1 from 2 and solving for y′1, we see that

y′1 = (∆1(0))
−1(s′− s

)
+ y1,

where (∆1(0))
−1 exists, because deg∆1(x) = n with its n roots at 2, . . . ,n+1 (so ∆1(0) ̸= 0).

4 Lagrange? More like Lamegrange.
Note 8 In this problem, we walk you through an alternative to Lagrange interpolation.

(a) Let’s say we wanted to interpolate a polynomial through a single point, (x0,y0). What would
be the polynomial that we would get? (This is not a trick question. A degree 0 polynomial is
fine.)

(b) Call the polynomial from the previous part f0(x). Now say we wanted to define the polyno-
mial f1(x) that passes through the points (x0,y0) and (x1,y1). If we write f1(x) = f0(x)+
a1(x− x0), what value of a1 causes f1(x) to pass through the desired points?

(c) Now say we want a polynomial f2(x) that passes through (x0,y0), (x1,y1), and (x2,y2). If we
write f2(x) = f1(x)+a2(x− x0)(x− x1), what value of a2 gives us the desired polynomial?

(d) Suppose we have a polynomial fi(x) that passes through the points (x0,y0), ..., (xi,yi) and we
want to find a polynomial fi+1(x) that passes through all those points and also (xi+1,yi+1). If
we define fi+1(x) = fi(x)+ai+1 ∏

i
j=0(x− x j), what value must ai+1 take on?

Solution:

(a) We want a degree zero polynomial, which is just a constant function. The only constant
function that passes through (x0,y0) is f0(x) = y0.
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(b) By defining f1(x) = f0(x)+a1(x− x0), we get that

f1(x0) = f0(x0)+a1(x0 − x0) = y0 +0 = y0.

So now we just need to make sure that f1(x1) = y1. This means that we need to choose a1
such that

f1(x1) = f0(x1)+a1(x1 − x0) = y1.

Solving this for a1, we get that

a1 =
y1 − f0(x1)

x1 − x0
.

(c) We apply similar logic to the previous part. From our definition, we know that

f2(x0) = f1(x0)+a2(x0 − x0)(x0 − x1) = y0 +0 = y0.

and that
f2(x1) = f1(x1)+a2(x1 − x0)(x1 − x1) = y1 +0 = y1.

Thus, we just need to choose a2 such that f2(x2) = y2. Putting in our formula for f2(x), we
get that we need a2 such that

f1(x2)+a2(x2 − x0)(x2 − x1) = y2.

Solving for a2, we get that

a2 =
y2 − f1(x2)

(x2 − x0)(x2 − x1)
.

(d) If we try to calculate fi+1(xk) for 0 ≤ k ≤ i, we know one of the (x− x j) terms (specifically
the kth one) will be zero. Thus, we get that

fi+1(xk) = fi(xk)+ai+1(0) = yk +0 = yk.

So now we just need to pick ai such that fi+1(xi+1) = yi+1. This means that we need to
choose ai+1 such that

fi(xi+1)+ai+1

i

∏
j=0

(xi+1 − x j) = yi+1.

Solving for ai+1, we get that

ai+1 =
yi+1 − fi(xi+1)

∏
i
j=0(xi+1 − x j)

.

The method you derived in this question is known as Newtonian interpolation. (The formal defi-
nition of Newtonian interpolation uses divided differences, which we don’t cover in this class, but
it’s in effect doing the same thing.) This method has an advantage over Lagrange interpolation in
that it is very easy to add in extra points that your polynomial has to go through (as we showed
in part (c), whereas Lagrange interpolation would require you to throw out all your previous work
and restart. However, if you want to keep the same x values but change the y values, Newtonian
interpolation requires you to throw out all your previous work and restart. In contrast, this is fairly
easy to do with Lagrange interpolation–since changing the y values doesn’t affect the δis, you don’t
have to recalculate those, so you can skip most of the work.

CS 70, Spring 2025, HW 05 4



5 Error-Correcting Codes
Note 9 (a) Recall from class the error-correcting code for erasure errors, which protects against up to

k lost packets by sending a total of n+ k packets (where n is the number of packets in the
original message). Often the number of packets lost is not some fixed number k, but rather
a fraction of the number of packets sent. Suppose we wish to protect against a fraction α of
lost packets (where 0 < α < 1). At least how many packets do we need to send (as a function
of n and α)?

(b) Repeat part (a) for the case of general errors.

Solution:

(a) Suppose we send a total of m packets (where m is to be determined). Since at most a fraction
α of these are lost, the number of packets received is at least (1−α)m. But in order to
reconstruct the polynomial used in transmission, we need at least n packets. Hence it is
sufficient to have (1−α)m ≥ n, which can be rearranged to give m ≥ n/(1−α).

(b) Suppose we send a total of m = n+ 2k packets, where k is the number of errors we can
guard against. The number of corrupted packets is at most αm, so we need k ≥ αm. Hence
m ≥ n+2αm. Rearranging gives m ≥ n/(1−2α).

Note: Recovery in this case is impossible if α ≥ 1/2.

6 Alice and Bob
Note 8
Note 9

(a) Alice decides that instead of encoding her message as the values of a polynomial, she will
encode her message as the coefficients of a degree 2 polynomial P(x). For her message
[m1,m2,m3], she creates the polynomial P(x) = m1x2 +m2x+m3 and sends the five packets
(0,P(0)), (1,P(1)), (2,P(2)), (3,P(3)), and (4,P(4)) to Bob. However, one of the packet
y-values (one of the P(i) terms; the second attribute in the pair) is changed by Eve before it
reaches Bob. If Bob receives

(0,1),(1,3),(2,0),(3,1),(4,0)

and knows Alice’s encoding scheme and that Eve changed one of the packets, can he recover
the original message? If so, find it as well as the x-value of the packet that Eve changed. If
he can’t, explain why. Work in mod 7. Also, feel free to use a calculator or online systems
of equations solver, but make sure it can work under mod 7.

(b) Bob gets tired of decoding degree 2 polynomials. He convinces Alice to encode her messages
on a degree 1 polynomial. Alice, just to be safe, continues to send 5 points on her polynomial
even though it is only degree 1. She makes sure to choose her message so that it can be
encoded on a degree 1 polynomial. However, Eve changes two of the packets. Bob receives
(0,5), (1,7), (2,x), (3,5), (4,0). If Alice sent (0,5), (1,7), (2,9), (3,−2), (4,0), for what
values of x will Bob not uniquely be able to determine Alice’s message? Assume that Bob
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knows Eve changed two packets. Work in mod 13. Again, feel free to use a calculator or
graphing calculator software.

Hint: Observe that since Bob knows that Eve changed two packets, he’s looking for a poly-
nomial that passes through at least 3 of the given points. Think about what must happen in
order for Bob to be unable to uniquely identify the original polynomial.

(c) Alice wants to send a length n message to Bob. There are two communication channels
available to her: Channel X and Channel Y. Only 6 packets can be sent through channel X.
Similarly, Channel Y will only deliver 6 packets, but it will also corrupt (change the value)
of one of the delivered packets. Using each of the two channels once, what is the largest
message length n such that Bob so that he can always reconstruct the message?

Solution:

(a) We can use Berlekamp and Welch. We have: Q(x) = P(x)E(x). E(x) has degree 1 since
we know we have at most 1 error. Q(x) is degree 3 since P(x) is degree 2. We can write
a system of linear equations and solve for the coefficients of Q(x) = ax3 +bx2 + cx+d and
E(x)= (x−e) by writing the equation Q(i)= ri ·E(i) for 0≤ i≤ 4, where ri is the ith received
point.

d = 1(0− e)

a+b+ c+d = 3(1− e)

8a+4b+2c+d = 0(2− e)

27a+9b+3c+d = 1(3− e)

64a+16b+4c+d = 0(4− e)

Since we are working in mod 7, this is equivalent to:

d =−e

a+b+ c+d = 3−3e

a+4b+2c+d = 0
6a+2b+3c+d = 3− e

a+2b+4c+d = 0

Solving yields:
Q(x) = x3 +5x2 +5x+4,E(x) = x−3

To find P(x) we divide Q(x) by E(x) and get P(x) = x2 + x + 1. So Alice’s message is
m1 = 1,m2 = 1,m3 = 1. The x-value of the packet Eve changed is 3.

Alternative solution: Since we have 5 points, we have to find a polynomial of degree 2 that
goes through 4 of those points. The point that the polynomial does not go through will be the
packet that Eve changed. Since 3 points uniquely determine a polynomial of degree 2, we
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can pick 3 points and check if it goes through a 4th point. (It may be the case that we need to
try all sets of 3 points.)

We pick the points (1,3),(2,0),(4,0). Lagrange interpolation can be used to create the poly-
nomial but we can see that for the polynomial that goes through these 3 points, it has 0s at x=
2 and x = 4. Thus the polynomial is k(x−2)(x−4) = k(x2−6x+8) (mod 7)≡ k(x2+x+1)
(mod 7). We find k ≡ 1 by plugging in the point (1,3), so our polynomial is x2 + x+1. We
then check to see if this polynomial goes through one of the 2 points that we didn’t use. Plug-
ging in 0 for x, we get 1. The packet that Eve changed is the point that our polynomial does
not go through which has x-value 3. Alice’s original message was m1 = 1,m2 = 1,m3 = 1.

(b) Since Bob knows that Eve changed 2 of the points, the 3 remaining points will still be on
the degree 1 polynomial that Alice encoded her message on. Thus if Bob can find a degree
1 polynomial that passes through at least 3 of the points that he receives, he will be able to
uniquely recover Eve’s message. The only time that Bob cannot uniquely determine Alice’s
message is if there are 2 polynomials with degree 1 that pass through 3 of the 5 points that
he receives. Since we are working with degree 1 polynomials, we can plot the points that
Bob receives and then see which values of x will cause 2 sets of 3 points to fall on a line.
(0,5),(1,7),(4,0) already fall on a line. If x = 6, (1,7),(2,6),(3,5) also falls on a line. If
x = 5, (0,5),(2,5),(3,5) also falls on a line. If x = 9, (0,5),(2,9),(4,0) falls on the original
line, so here Bob can decode the message. If x = 10, (2,10),(3,5),(4,0) also falls on a line.
So if x = 6,5,10, Bob will not be able to uniquely determine Alice’s message.

(c) Channel X can send 6 packets, so the first 6 characters of the message can be send through
Channel X. Channel Y can send 6 packets, but 1 will be corrupted, thus only a message of
length 4 can be sent. Thus, a total of m = 6+4 = 10 characters can effectively sent.
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