1 Error-Correcting Codes

(a) Recall from class the error-correcting code for erasure errors, which protects against up to \(k \) lost packets by sending a total of \(n+k \) packets (where \(n \) is the number of packets in the original message). Often the number of packets lost is not some fixed number \(k \), but rather a fraction of the number of packets sent. Suppose we wish to protect against a fraction \(\alpha \) of lost packets (where \(0 < \alpha < 1 \)). At least how many packets do we need to send (as a function of \(n \) and \(\alpha \))?

(b) Repeat part (a) for the case of general errors.

Solution:

(a) Suppose we send a total of \(m \) packets (where \(m \) is to be determined). Since at most a fraction \(\alpha \) of these are lost, the number of packets received is at least \((1-\alpha)m\). But in order to reconstruct the polynomial used in transmission, we need at least \(n \) packets. Hence it is sufficient to have \((1-\alpha)m \geq n\), which can be rearranged to give \(m \geq n/(1-\alpha) \).

(b) Suppose we send a total of \(m = n+2k \) packets, where \(k \) is the number of errors we can guard against. The number of corrupted packets is at most \(\alpha m \), so we need \(k \geq \alpha m \). Hence \(m \geq n+2\alpha m \). Rearranging gives \(m \geq n/(1-2\alpha) \).

Note: Recovery in this case is impossible if \(\alpha \geq 1/2 \).

2 Alice and Bob

(a) Alice decides that instead of encoding her message as the values of a polynomial, she will encode her message as the coefficients of a degree 2 polynomial \(P(x) \). For her message \([m_1, m_2, m_3]\), she creates the polynomial \(P(x) = m_1x^2 + m_2x + m_3 \) and sends the five packets \((0, P(0)), (1, P(1)), (2, P(2)), (3, P(3)), \) and \((4, P(4))\) to Bob. However, one of the packet y-values (one of the P(i) terms; the second attribute in the pair) is changed by Eve before it reaches Bob. If Bob receives

\[
(0, 1), (1, 3), (2, 0), (3, 1), (4, 0)
\]

and knows Alice’s encoding scheme and that Eve changed one of the packets, can he recover the original message? If so, find it as well as the x-value of the packet that Eve changed. If he can’t, explain why. Work in mod 7. Also, feel free to use a calculator or online systems of equations solver.
(b) Bob gets tired of decoding degree 2 polynomials. He convinces Alice to encode her messages on a degree 1 polynomial. Alice, just to be safe, continues to send 5 points on her polynomial even though it is only degree 1. She makes sure to choose her message so that it can be encoded on a degree 1 polynomial. However, Eve changes two of the packets. Bob receives \((0,5), (1,7), (2,x), (3,5), (4,0)\). If Alice sent \((0,5), (1,7), (2,9), (3,-2), (4,0)\), for what values of \(x\) will Bob not uniquely be able to determine Alice’s message? Assume that Bob knows Eve changed two packets. Work in mod 13. Again, feel free to use a calculator or graphing calculator software.

(c) Alice wants to send a length \(n\) message to Bob. There are two communication channels available to her: Channel X and Channel Y. Only 6 packets can be sent through channel X. Similarly, Channel Y will only deliver 6 packets, but it will also corrupt (change the value) of one of the delivered packets. Using each of the two channels once, what is the largest message length \(n\) such that Bob so that he can always reconstruct the message?

Solution:

(a) We can use Berlekamp and Welch. We have: \(Q(x) = P(x)E(x)\). \(E(x)\) has degree 1 since we know we have at most 1 error. \(Q(x)\) is degree 3 since \(P(x)\) is degree 2. We can write a system of linear equations and solve for the coefficients of \(Q(x) = ax^3 + bx^2 + cx + d\) and \(E(x) = (x - e)\) by writing the equation \(Q(i) = r_i \cdot E(i)\) for \(0 \leq i \leq 4\), where \(r_i\) is the \(i\)th received point.

\[d = 1(0 - e)\]
\[a + b + c + d = 3(1 - e)\]
\[8a + 4b + 2c + d = 0(2 - e)\]
\[27a + 9b + 3c + d = 1(3 - e)\]
\[64a + 16b + 4c + d = 0(4 - e)\]

Since we are working in mod 7, this is equivalent to:

\[d = -e\]
\[a + b + c + d = 3 - 3e\]
\[a + 4b + 2c + d = 0\]
\[6a + 2b + 3c + d = 3 - e\]
\[a + 2b + 4c + d = 0\]

Solving yields:

\[Q(x) = x^3 + 5x^2 + 5x + 4, E(x) = x - 3\]

To find \(P(x)\) we divide \(Q(x)\) by \(E(x)\) and get \(P(x) = x^2 + x + 1\). So Alice’s message is \(m_1 = 1, m_2 = 1, m_3 = 1\). The \(x\)-value of the packet Eve changed is 3.

Alternative solution: Since we have 5 points, we have to find a polynomial of degree 2 that goes through 4 of those points. The point that the polynomial does not go through will be the
packet that Eve changed. Since 3 points uniquely determine a polynomial of degree 2, we can pick 3 points and check if a 4th point goes through it. (It may be the case that we need to try all sets of 3 points.)

We pick the points \((1,3), (2,0), (4,0)\). Lagrange interpolation can be used to create the polynomial but we can see that for the polynomial that goes through these 3 points, it has 0s at \(x = 2\) and \(x = 4\). Thus the polynomial is \(k(x - 2)(x - 4) = k(x^2 - 6x + 8) \equiv k(x^2 + x + 1) \pmod{7}\). We find \(k \equiv 1\) by plugging in the point \((1,3)\), so our polynomial is \(x^2 + x + 1\). We then check to see if the this polynomial goes through one of the 2 points that we didn’t use. Plugging in 0 for \(x\), we get 1. The packet that Eve changed is the point that our polynomial does not go through which has \(x\)-value 3. Alice’s original message was \(m_1 = 1, m_2 = 1, m_3 = 1\).

(b) Since Bob knows that Eve changed 2 of the points, the 3 remaining points will still be on the degree 1 polynomial that Alice encoded her message on. Thus if Bob can find a degree 1 polynomial that passes through at least 3 of the points that he receives, he will be able to uniquely recover Eve’s message. The only time that Bob cannot uniquely determine Alice’s message is if there are 2 polynomials with degree 1 that pass through 3 of the 5 points that he receives. Since we are working with degree 1 polynomials, we can plot the points that Bob receives and then see which values of \(x\) will cause 2 sets of 3 points to fall on a line. \((0,5), (1,7), (4,0)\) already fall on a line. If \(x = 6\), \((1,7), (2,6), (3,5)\) also falls on a line. If \(x = 5\), \((0,5), (2,5), (3,5)\) also falls on a line. If \(x = 9\), \((0,5), (2,9), (4,0)\) falls on the original line, so here Bob can decode the message. If \(x = 10\), \((2,10), (3,5), (4,0)\) also falls on a line. So if \(x = 6, 5, 10\), Bob will not be able to uniquely determine Alice’s message.

(c) Channel X can send 6 packets, so the first 6 characters of the message can be send through Channel X. Channel Y can send 6 packets, but 1 will be corrupted, thus only a message of length 4 can be sent. Thus, a total of \(m = 6 + 4 = 10\) characters can effectively sent.

3 Secret Sharing with Spies

An officer stored an important letter in her safe. In case she becomes unreachable in battle, she decides to share the password (which is a number) with her troops. However, everyone knows that there are 3 spies among the troops, but no one knows who they are except for the three spies themselves. The 3 spies can coordinate with each other and they will either lie and make people not able to open the safe, or will open the safe themselves if they can. Therefore, the officer would like a scheme to share the password that satisfies the following conditions:

- When \(N\) of them get together, they are guaranteed to be able to open the safe even if they have spies among them.

- The 3 spies must not be able to open the safe all by themselves.

Using \(N = 10\), please help the officer to design a scheme to share her password. (The troops only have one chance to open the safe; if they fail the safe will self-destruct.)
Solution:
The key insight is to realize that both polynomial-based secret-sharing and polynomial-based error correction work on the basis of evaluating an underlying polynomial at many points and then trying to recover that polynomial. Hence they can be easily combined.

Suppose the password is \(s \). The officer can construct a polynomial \(P(x) \) such that \(s = P(0) \) and share \((i, P(i))\) to the \(i \)th person in her troops. Then the problem is: what should the degree of \(P(x) \) be and what is the smallest \(N \)?

First, the degree of polynomial \(d \) should not be less than 3. It is because when \(d < 3 \), the 3 spies can decide the polynomial \(P(x) \) uniquely. Thus, \(n \) will be at least 4 symbols.

Let’s choose a polynomial \(P(x) \) of degree 3 such that \(s = P(0) \). We now view the 3 spies as 3 general errors. Then the smallest \(N = 10 \) since \(n \) is at least 4 symbols and we have \(k = 3 \) general errors, leading us to a “codeword” of \(4 + 2 \cdot 3 = 10 \) symbols (or people in our case). Even though the 3 spies are among the 10 people and try to lie on their numbers, the 10 people can still be able to correct the \(k = 3 \) general errors by the Berlekamp-Welch algorithm and find the correct \(P(x) \).

Alternative solution:
Another valid approach is making \(P(x) \) of degree \(N - 1 \) and adding 6 public points to deal with 3 general errors from the spies. In other words, in addition to their own point \((i, P(i))\), everyone also knows the values of 6 more points, \((t + 1, P(t + 1)), (t + 2, P(t + 2)), \ldots, (t + 6, P(t + 6)), \) where \(t \) is the number of the troops. The spies have access to total of \(3 + 6 = 9 \) points so the degree \(N - 1 \) must be at least 9 to prevent the spies from opening the safe by themselves. Therefore, \(N = 10 \) works.

4 Counting, Counting, and More Counting

The only way to learn counting is to practice, practice, practice, so here is your chance to do so. Although there are many subparts, each subpart is fairly short, so this problem should not take any longer than a normal CS70 homework problem. You do not need to show work, and Leave your answers as an expression (rather than trying to evaluate it to get a specific number).

(a) How many ways are there to arrange \(n \) 1s and \(k \) 0s into a sequence?

(b) How many 19-digit ternary (0,1,2) bitstrings are there such that no two adjacent digits are equal?

(c) A bridge hand is obtained by selecting 13 cards from a standard 52-card deck. The order of the cards in a bridge hand is irrelevant.

 i. How many different 13-card bridge hands are there?
 ii. How many different 13-card bridge hands are there that contain no aces?
 iii. How many different 13-card bridge hands are there that contain all four aces?
 iv. How many different 13-card bridge hands are there that contain exactly 4 spades?
(d) Two identical decks of 52 cards are mixed together, yielding a stack of 104 cards. How many different ways are there to order this stack of 104 cards?

(e) How many 99-bit strings are there that contain more ones than zeros?

(f) An anagram of ALABAMA is any re-ordering of the letters of ALABAMA, i.e., any string made up of the letters A, L, A, B, A, M, and A, in any order. The anagram does not have to be an English word.

 i. How many different anagrams of ALABAMA are there?
 ii. How many different anagrams of MONTANA are there?

(g) How many different anagrams of ABCDEF are there if:

 i. C is the left neighbor of E
 ii. C is on the left of E (and not necessarily E’s neighbor)

(h) We have 8 balls, numbered 1 through 8, and 25 bins. How many different ways are there to distribute these 8 balls among the 25 bins? Assume the bins are distinguishable (e.g., numbered 1 through 25).

(i) How many different ways are there to throw 8 identical balls into 25 bins? Assume the bins are distinguishable (e.g., numbered 1 through 25).

(j) We throw 8 identical balls into 6 bins. How many different ways are there to distribute these 8 balls among the 6 bins such that no bin is empty? Assume the bins are distinguishable (e.g., numbered 1 through 6).

(k) There are exactly 20 students currently enrolled in a class. How many different ways are there to pair up the 20 students, so that each student is paired with one other student? Solve this in at least 2 different ways. Your final answer must consist of two different expressions.

(l) How many solutions does $x_0 + x_1 + \cdots + x_k = n$ have, if each x must be a non-negative integer?

(m) How many solutions does $x_0 + x_1 = n$ have, if each x must be a strictly positive integer?

(n) How many solutions does $x_0 + x_1 + \cdots + x_k = n$ have, if each x must be a strictly positive integer?

Solution:

(a) $\binom{n+k}{k}$

(b) There are 3 options for the first digit. For each of the next digits, they only have 2 options because they cannot be equal to the previous digit. Thus, $3 \cdot 2^{18}$

(c) i. We have to choose 13 cards out of 52 cards, so this is just $\binom{52}{13}$.

 ii. We now have to choose 13 cards out of 48 non-ace cards. So this is $\binom{48}{13}$.
iii. We now require the four aces to be present. So we have to choose the remaining 9 cards in our hand from the 48 non-ace cards, and this is \(\binom{48}{9} \).

iv. We need our hand to contain 4 out of the 13 spade cards, and 9 out of the 39 non-spade cards, and these choices can be made separately. Hence, there are \(\binom{13}{4} \binom{39}{9} \) ways to make up the hand.

(d) If we consider the 104! rearrangements of 2 identical decks, since each card appears twice, we would have overcounted each distinct rearrangement. Consider any distinct rearrangement of the 2 identical decks of 52 cards and see how many times this appears among the rearrangement of 104 cards where each card is treated as different. For each identical pair (such as the two Ace of spades), there are two ways they could be permuted among each other (since \(2! = 2 \)). This holds for each of the 52 pairs of identical cards. So the number 104! overcounts the actual number of rearrangements of 2 identical decks by a factor of \(2^{52} \). Hence, the actual number of rearrangements of 2 identical decks is \(\frac{104!}{2^{52}} \).

(e) **Answer 1:** There are \(\binom{99}{k} \) 99-bit strings with \(k \) ones and \(99 - k \) zeros. We need \(k > 99 - k \), i.e. \(k \geq 50 \). So the total number of such strings is \(\sum_{k=50}^{99} \binom{99}{k} \).

This expression can however be simplified. Since \(\binom{99}{k} = \binom{99}{99-k} \), we have

\[
\sum_{k=50}^{99} \binom{99}{k} = \sum_{k=50}^{99} \binom{99}{99-k} = \sum_{l=0}^{49} \binom{99}{l}
\]

by substituting \(l = 99 - k \).

Now \(\sum_{k=50}^{99} \binom{99}{k} + \sum_{l=0}^{49} \binom{99}{l} = \sum_{m=0}^{99} \binom{99}{m} = 2^{99} \). Hence, \(\sum_{k=50}^{99} \binom{99}{k} = \frac{1}{2} \cdot 2^{99} = 2^{98} \).

Answer 2 (Symmetry): Since the answer from above looked so simple, there must have been a more elegant way to arrive at it. Since 99 is odd, no 99-bit string can have the same number of zeros and ones. Let \(A \) be the set of 99-bit strings with more ones than zeros, and \(B \) be the set of 99-bit strings with more zeros than ones. Now take any 99-bit string \(x \) with more ones than zeros i.e. \(x \in A \). If all the bits of \(x \) are flipped, then you get a string \(y \) with more zeros than ones, and so \(y \in B \). This operation of bit flips creates a one-to-one and onto function (called a bijection) between \(A \) and \(B \). Hence, it must be that \(|A| = |B| \). Every 99-bit string is either in \(A \) or in \(B \), and since there are \(2^{99} \) 99-bit strings, we get \(|A| = |B| = \frac{1}{2} \cdot 2^{99} \). The answer we sought was \(|A| = 2^{98} \).

(f) **ALABAMA:** The number of ways of rearranging 7 distinct letters and is 7!. In this 7 letter word, the letter A is repeated 4 times while the other letters appear once. Hence, the number 7! overcounts the number of different anagrams by a factor of 4! (which is the number of ways of permuting the 4 A’s among themselves). Aka, we only want \(1/4! \) out of the total rearrangements. Hence, there are \(\frac{7!}{4!} \) anagrams.

MONTANA: In this 7 letter word, the letter A and N are each repeated 2 times while the other letters appear once. Hence, the number 7! overcounts the number of different anagrams by a factor of \(2! \times 2! \) (one factor of 2! for the number of ways of permuting the 2 A’s among themselves and another factor of 2! for the number of ways of permuting the 2 N’s among themselves). Hence, there are \(\frac{7!}{2!^2} \) different anagrams.
i. Suppose we consider CE to be a new letter X; with this replacement, the question is just to count the number of rearrangements of 5 distinct letters, which is 5!.

ii. Symmetry: Let A be the set of all the rearranging of ABCDEF with C on the left side of E, and B be the set of all the rearranging of ABCDEF with C on the right side of E. $|A \cup B| = 6!$, $|A \cap B| = 0$. There is a bijection between A and B by construct a operation of exchange the position of C and E. Thus $|A| = |B| = \frac{6!}{2}$.

(h) Each ball has a choice of which bin it should go to. So each ball has 25 choices and the 8 balls can make their choices separately. Hence, there are 25^8 ways.

(i) Since there is no restriction on how many balls a bin needs to have, this is just the problem of throwing k identical balls into n distinguishable bins, which can be done in $\binom{n+k-1}{k}$ ways. Here $k = 8$ and $n = 25$, so there are $\binom{32}{8}$ ways.

(j) **Answer 1:** Since each bin is required to be non-empty, let’s throw one ball into each bin at the outset. Now we have 2 identical balls left which we want to throw into 6 distinguishable bins. There are 2 cases to consider:

Case 1: The 2 balls land in the same bin. This gives 6 ways.

Case 2: The 2 balls land in different bins. This gives $\binom{6}{2}$ ways of choosing 2 out of the 6 bins for the balls to land in. Note that it is *not* 6×5 since the balls are identical and so there is no order on them.

Summing up the number of ways from both cases, we get $6 + \binom{6}{2}$ ways.

Answer 2: Since each bin is required to be non-empty, let’s throw one ball into each bin at the outset. Now we have 2 identical balls left which we want to throw into 6 distinguishable bins. From class (see note 10), we already saw that the number of ways to put k identical balls into n distinguishable bins is $\binom{n+k-1}{k}$. Taking $k = 2$ and $n = 6$, we get $\binom{7}{2}$ ways to do this.

Exercise: Can you give an expression for the number of ways to put k identical balls into n distinguishable bins such that no bin is empty?

(k) **Answer 1:** Let’s number the students from 1 to 20. Student 1 has 19 choices for her partner. Let i be the smallest index among students who have not yet been assigned partners. Then no matter what the value of i is (in particular, i could be 2 or 3), student i has 17 choices for her partner. The next smallest indexed student who doesn’t have a partner now has 15 choices for her partner. Continuing in this way, the number of pairings is $19 \times 17 \times 15 \times \cdots \times 1 = \prod_{i=1}^{10} (2i-1)$.

Answer 2: Arrange the students numbered 1 to 20 in a line. There are 20! such arrangements. We pair up the students at positions $2i-1$ and $2i$ for i ranging from 1 to 10. You should be able to see that the 20! permutations of the students doesn’t miss any possible pairing. However, it counts every different pairing multiple times. Fix any particular pairing of students. In this pairing, the first pair had freedom of 10 positions in any permutation that generated it, the second pair had a freedom of 9 positions in any permutation that generated it, and so on. There is also the freedom for the elements within each pair i.e. in any student pair (x,y), student x could have appeared in position $2i-1$ and student y could have appeared in position $2i$ and...
also vice versa. This gives 2 ways for each of the 10 pairs. Thus, in total, these freedoms cause $10! \times 2^{10}$ of the 20! permutations to give rise to this particular pairing. This holds for each of the different pairings. Hence, 20! overcounts the number of different pairings by a factor of $10! \times 2^{10}$. Hence, there are $\frac{20!}{10! \cdot 2^{10}}$ pairings.

Answer 3: In the first step, pick a pair of students from the 20 students. There are $\binom{20}{2}$ ways to do this. In the second step, pick a pair of students from the remaining 18 students. There are $\binom{18}{2}$ ways to do this. Keep picking pairs like this, until in the tenth step, you pick a pair of students from the remaining 2 students. There are $\binom{2}{2}$ ways to do this. Multiplying all these, we get $\binom{20}{2} \binom{18}{2} \cdots \binom{2}{2}$. However, in any particular pairing of 20 students, this pairing could have been generated in 10! ways using the above procedure depending on which pairs in the pairing got picked in the first step, second step, ..., tenth step. Hence, we have to divide the above number by 10! to get the number of different pairings. Thus there are $\frac{\binom{20}{2} \binom{18}{2} \cdots \binom{2}{2}}{10!}$ different pairings of 20 students.

You may want to check for yourself that all three methods are producing the same integer, even though they are expressed very differently.

(l) $\binom{n+k}{k}$. This is just n indistinguishable balls into $k+1$ distinguishable bins (stars and bars). There is a bijection between a sequence of n ones and k plusses and a solution to the equation: x_0 is the number of ones before the first plus, x_1 is the number of ones between the first and second plus, etc. A key idea is that if a bijection exists between two sets they must be the same size, so counting the elements of one tells us how many the other has. Note that this is the exact same answer as part (a) — make sure you understand why!

(m) $n - 1$. It’s easiest just to enumerate the solutions here. x_0 can take values 1, 2, ..., $n - 1$ and this uniquely fixes the value of x_1. So, we have $n - 1$ ways to do this. But, this is just an example of the more general question below.

(n) $\binom{n-(k+1)+k}{k} = \binom{n-1}{k}$. This is just $n - (k + 1)$ indistinguishable balls into distinguishable $k+1$ bins. By subtracting 1 from all $k+1$ variables, and $k+1$ from the total required, we reduce it to problem with the same form as the previous problem. Once we have a solution to that we reverse the process, and adding 1 to all the non-negative variables gives us positive variables.

5 Fermat’s Wristband

Let p be a prime number and let n be a positive integer. We have beads of n different colors, where any two beads of the same color are indistinguishable.

(a) We place p beads onto a string. How many different ways are there to construct such a sequence of p beads with up to n different colors?

(b) How many sequences of p beads on the string are there that use at least two colors?

(c) Now we tie the two ends of the string together, forming a wristband. Two wristbands are equivalent if the sequence of colors on one can be obtained by rotating the beads on the other.
(For instance, if we have \(n = 3 \) colors, red (R), green (G), and blue (B), then the length \(p = 5 \) necklaces RGGBG, GGBGR, GBGRG, BGRGG, and GRGGB are all equivalent, because these are all rotated versions of each other.)

How many non-equivalent wristbands are there now? Again, the \(p \) beads must not all have the same color. (Your answer should be a simple function of \(n \) and \(p \).)

[Hint: Think about the fact that rotating all the beads on the wristband to another position produces an identical wristband.]

(d) Use your answer to part (c) to prove Fermat’s little theorem.

Solution:

(a) \(n^p \). For each of the \(p \) beads, there are \(n \) possibilities for its colors. Therefore, by the first counting principle, there are \(n^p \) different sequences.

(b) \(n^p - n \). You can have \(n \) sequences of a beads with only one color.

(c) Since \(p \) is prime, rotating any sequence by less than \(p \) spots will produce a new sequence. As in, there is no number \(x \) smaller than \(p \) such that rotating the beads by \(x \) would cause the pattern to look the same. This is because every other rotation of \(x < p \) would only have the sequence and its rotated sequence being equivalent if the sequence was monochromatic (the sequence was just a repetition of one number). If we have a sequence \(a_0, a_1, ..., a_{p-1} \) and rotate it by \(x \) to get \(a_x, a_{x+1}, ..., a_{x-1} \), the two sequences would only be equal if \(a_0 = a_x = a_{2x} = ... \), and thus each element would have to be the same. For example, if we had the sequence \(a_1, a_2, a_3, a_4, a_5 \), and rotated it by 2 to get \(a_3, a_4, a_5, a_1, a_2 \), we can analyze each position of the string. Looking at this first position, this implies that \(a_1 = a_3 \). Then, looking at the third position, this implies that \(a_3 = a_5 \), and then \(a_5 = a_2 \), and \(a_2 = a_4 \), thus they all have to be equal. This cannot happen in our count, because we are only considering wristbands for which there are at least 2 different colors.

So, every pattern which has more than one color of beads can be rotated to form \(p - 1 \) other patterns. So the total number of patterns equivalent with some bead sequence is \(p \). Thus, the total number of non-equivalent patterns are \((n^p - n) / p \).

(d) \((n^p - n) / p \) must be an integer, because from the previous part, it is the number of ways to count something. Hence, \(n^p - n \) has to be divisible by \(p \), i.e., \(n^p \equiv n \mod p \), which is Fermat’s Little Theorem.

6 Counting on Graphs + Symmetry

(a) How many ways are there to color the faces of a cube using exactly 6 colors, such that each face has a different color? Note: two colorings are considered the same if one can be obtained from the other by rotating the cube in any way.
(b) How many ways are there to color a bracelet with \(n \) beads using \(n \) colors, such that each bead has a different color? Note: two colorings are considered the same if one of them can be obtained by rotating the other.

(c) How many distinct undirected graphs are there with \(n \) labeled vertices? Assume that there can be at most one edge between any two vertices, and there are no edges from a vertex to itself. The graphs do not have to be connected.

(d) How many distinct cycles are there in a complete graph \(K_n \) with \(n \) vertices? Assume that cycles cannot have duplicated edges. Two cycles are considered the same if they are rotations or inversions of each other (e.g. \((v_1, v_2, v_3, v_1), (v_2, v_3, v_1, v_2)\) and \((v_1, v_3, v_2, v_1)\) all count as the same cycle).

Solution:

(a) Without considering symmetries there are \(6! \) ways to color the faces of the cube. The number of equivalent colorings, for any given coloring, is \(24 = 6 \times 4 \): 6 comes from the fact that every given face can be rotated to face any of the six directions. 4 comes from the fact that after we decide the direction of a certain face, we can rotate the cube around this axis in 4 different ways (including no further rotations). Hence there are \(6!/24 = 30 \) distinct colorings.

(b) Without considering symmetries there are \(n! \) ways to color the beads on the bracelet. Due to rotations, there are \(n \) equivalent colorings for any given coloring. Hence taking into account symmetries, there are \((n-1)! \) distinct colorings. Note: if in addition to rotations, we also consider flips/mirror images, then the answer would be \((n-1)!/2 \).

(c) There are \(\binom{n}{2} = \frac{n(n-1)}{2} \) possible edges, and each edge is either present or not. So the answer is \(2^{n(n-1)/2} \). (Recall that \(2^m = \sum_{k=0}^{m} \binom{m}{k} \), where \(m = n(n-1)/2 \) in this case.)

(d) The number \(k \) of vertices in a cycle is at least 3 and at most \(n \). Without accounting for duplicates, the number of cycles of length \(k \) can be counted by choosing any ordered sequence of \(k \) vertices from the graph. Hence, there are \(n!/(n-k)! \) \(k \)-length cycles. We count cycles inverted (\(abc = cba \)) and rotated (\(abc = bca = cab \)) to be non-distinct cycles. Since every \(k \)-length cycle can be inverted in one way and rotated in \(k-1 \) ways, we divide \(n!/(n-k)! \) by 2 to account for inversions, and by \(k \) to account for rotations. Hence the total number of distinct cycles is

\[
\sum_{k=3}^{n} \frac{n!}{(n-k)! \cdot 2k}
\]