
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 07

1 Counting on Graphs + Symmetry
Note 10 (a) How many ways are there to color the faces of a cube using exactly 6 colors, such that each

face has a different color? Note: two colorings are considered the same if one can be obtained
from the other by rotating the cube in any way.

(b) How many ways are there to color a bracelet with n beads using n colors, such that each bead
has a different color? Note: two colorings are considered the same if one of them can be
obtained by rotating the other.

(c) How many distinct undirected graphs are there with n labeled vertices? Assume that there
can be at most one edge between any two vertices, and there are no edges from a vertex to
itself. The graphs do not have to be connected.

(d) How many distinct cycles are there in a complete graph Kn with n vertices? Assume that
cycles cannot have duplicated edges. Two cycles are considered the same if they are rotations
or inversions of each other (e.g. (v1,v2,v3,v1), (v2,v3,v1,v2) and (v1,v3,v2,v1) all count as
the same cycle).

Solution:

(a) Without considering symmetries there are 6! ways to color the faces of the cube. The number
of equivalent colorings, for any given coloring, is 24= 6×4: 6 comes from the fact that every
given face can be rotated to face any of the six directions. 4 comes from the fact that after we
decide the direction of a certain face, we can rotate the cube around this axis in 4 different
ways (including no further rotations). Hence there are 6!/24 = 30 distinct colorings.

(b) Without considering symmetries there are n! ways to color the beads on the bracelet. Due to
rotations, there are n equivalent colorings for any given coloring. Hence taking into account
symmetries, there are (n− 1)! distinct colorings. Note: if in addition to rotations, we also
consider flips/mirror images, then the answer would be (n−1)!/2.

(c) There are
(n

2

)
= n(n− 1)/2 possible edges, and each edge is either present or not. So the

answer is 2n(n−1)/2. (Recall that 2m = ∑
m
k=0

(m
k

)
, where m = n(n−1)/2 in this case.)

(d) The number k of vertices in a cycle is at least 3 and at most n. Without accounting for
duplicates, the number of cycles of length k can be counted by choosing any ordered sequence
of k vertices from the graph. Hence, there are n!/(n− k)! k-length cycles. We count cycles
inverted (abc = cba) and rotated (abc = bca = cab) to be non-distinct cycles. Since every
k-length cycle can be inverted in one way and rotated in k-1 ways, we divide n!/(n− k)!
by 2 to account for inversions, and by k to account for rotations. Hence the total number of

CS 70, Spring 2025, HW 07 1

https://www.eecs70.org/assets/pdf/notes/n10.pdf

distinct cycles is
n

∑
k=3

n!
(n− k)! ·2k

.

2 Proofs of the Combinatorial Variety
Note 10 Prove each of the following identities using a combinatorial proof.

(a) For every positive integer n > 1,

n

∑
k=0

k ·
(

n
k

)
= n ·

n−1

∑
k=0

(
n−1

k

)
.

(b) For each positive integer m and each positive integer n > m,

∑
a+b+c=m

(
n
a

)
·
(

n
b

)
·
(

n
c

)
=

(
3n
m

)
.

(Notation: the sum on the left is taken over all triples of nonnegative integers (a,b,c) such
that a+b+ c = m.)

Solution:

(a) Suppose we have n people and want to pick some of them to form a special committee.
Moreover, suppose we want to pick a leader from among the committee members - how
many ways can we do this?

We can do so by first picking the committee members, and then choosing the leader from
among the chosen members. We can pick a committee of size k in

(n
k

)
ways, and once we

have picked the committee, we have k choices for which member becomes the leader. In
order to account for all possible committee sizes, we need to sum over all valid values of k,
hence we get the expression

n

∑
k=0

k ·
(

n
k

)
,

which is exactly the left hand side of the identity we want to prove.

Now, we can also count this set by first picking the leader for the committee, then choosing
the rest of committee. We have n choices for the leader, and then among the remaining n−1
people, we can pick any subset to form the rest of the committee. Picking a subset of size k
can be done in

(n−1
k

)
ways, hence summing over k, we get the expression

n ·
n−1

∑
k=0

(
n−1

k

)
,

which is exactly the right hand side of the identity we want to prove.

CS 70, Spring 2025, HW 07 2

https://www.eecs70.org/assets/pdf/notes/n10.pdf

(b) Suppose we have n distinguishable red pencils, n distinguishable blue pencils, and n distin-
guishable green pencils (3n pencils total), and want to choose m of these pencils to bring to
class. How many ways can be do this?

We can do so by just picking the m pencils without considering color, as they are all dis-
tinguishable. There are

(3n
m

)
ways of doing this, which is exactly the right hand side of the

identity we want to prove.

We can also count this set by picking some red pencils, the picking some blue pencils, and
then finally picking some green pencils. We can pick a red pencils, b blue pencils, and c
green pencils (with the tacit assumption that a+b+ c = m) in

(n
a

)
·
(n

b

)
·
(n

c

)
ways. Finally, in

order to account for all possible distributions of pencils, we need to sum over all valid triples
(a,b,c), which gives us the expression

∑
a+b+c=m

(
n
a

)
·
(

n
b

)
·
(

n
c

)
,

which is exactly the left hand side of the identity we want to prove.

3 Strings
Note 10 Show your work/justification for all parts of this problem.

(a) How many different strings of length 5 can be constructed using the characters A,B,C?

(b) How many different strings of length 5 can be constructed using the characters A,B,C that
contain at least one of each character?

Solution:

(a) The number of different strings of length 5 is 35 since each position have 3 different choices.

(b) Let EA be the set of strings that the character A is not used in the string. We define EB,EC
similarly. Then the total number of "bad" strings is |EA∪EB∪EC|.

By the Principle of Inclusion and Exclusion,

|EA∪EB∪EC|= |EA|+|EB|+|EC|−|EA∩EB|−|EA∩EC|−|EB∩EC|+|EA∩EB∩EC|= 3 ·25−3 ·1= 93

where |EA∩EB|= |EB∩EC|= |EC∩EA|= 1, and |EA∩EB∩EC|= 0. Thus, the total number
of valid string is 35−93 = 150

4 Unions and Intersections
Note 11 Given:

• X is a countable, non-empty set. For all i ∈ X , Ai is an uncountable set.

• Y is an uncountable set. For all i ∈ Y , Bi is a countable set.

CS 70, Spring 2025, HW 07 3

https://www.eecs70.org/assets/pdf/notes/n10.pdf
https://www.eecs70.org/assets/pdf/notes/n11.pdf

For each of the following, decide if the expression is "Always countable", "Always uncountable",
"Sometimes countable, Sometimes uncountable".

For the "Always" cases, prove your claim. For the "Sometimes" case, provide two examples – one
where the expression is countable, and one where the expression is uncountable.

(a) X ∩Y

(b) X ∪Y

(c)
⋃

i∈X Ai

(d)
⋂

i∈X Ai

(e)
⋃

i∈Y Bi

(f)
⋂

i∈Y Bi

Solution:

(a) Always countable. X ∩Y is a subset of X , which is countable.

(b) Always uncountable. X ∪Y is a superset of Y , which is uncountable.

(c) Always uncountable. Let x be any element of X . Ax is uncountable. Thus,
⋃

i∈X Ai, a superset
of Ax, is uncountable.

(d) Sometimes countable, sometimes uncountable.

Countable: When the Ai are disjoint, the intersection is empty, and thus countable. For
example, let X = N, let Ai = {i}×R= {(i,x) | x ∈ R}. Then,

⋂
i∈X Ai =∅.

Uncountable: When the Ai are identical, the intersection is uncountable. Let X = N, let
Ai = R for all i.

⋂
i∈X Ai = R is uncountable.

(e) Sometimes countable, sometimes uncountable.

Countable: Make all the Bi identical. For example, let Y =R, and Bi =N. Then,
⋃

i∈Y Bi =N
is countable.

Uncountable: Let Y = R. Let Bi = {i}. Then,
⋃

i∈Y Bi = R is uncountable.

(f) Always countable. Let y be any element of Y . By is countable. Thus,
⋂

i∈Y Bi, a subset of By,
is also countable.

5 Count It!
Note 11 For each of the following collections, determine and briefly explain whether it is finite, countably

infinite (like the natural numbers), or uncountably infinite (like the reals):

(a) The integers which divide 8.

(b) The integers which 8 divides.

CS 70, Spring 2025, HW 07 4

https://www.eecs70.org/assets/pdf/notes/n11.pdf

(c) The functions from N to N.

(d) The set of strings over the English alphabet. (Note that the strings may be arbitrarily long,
but each string has finite length. Also the strings need not be real English words.)

(e) The set of finite-length strings drawn from a countably infinite alphabet, C .

(f) The set of infinite-length strings over the English alphabet.

Solution:

(a) Finite. They are {−8,−4,−2,−1,1,2,4,8}.

(b) Countably infinite. We know that there exists a bijective function f : N→ Z. Then the
function g(n) = 8 f (n) is a bijective mapping from N to integers which 8 divides.

(c) Uncountably infinite. We use Cantor’s Diagonalization Proof:

Let F be the set of all functions from N to N. We can represent a function f ∈ F as
an infinite sequence (f (0), f (1), · · ·), where the i-th element is f (i). Suppose towards a
contradiction that there is a bijection from N to F :

0←→(f0(0), f0(1), f0(2), f0(3), . . .)
1←→(f1(0), f1(1), f1(2), f1(3), . . .)
2←→(f2(0), f2(1), f2(2), f2(3), . . .)
3←→(f3(0), f3(1), f3(2), f3(3), . . .)

...

Consider the function g : N→ N where g(i) = fi(i) + 1 for all i ∈ N. We claim that the
function g is not in our finite list of functions. Suppose for contradiction that it were, and
that it was the n-th function fn(·) in the list, i.e., g(·) = fn(·). However, fn(·) and g(·)
differ in the n-th argument, i.e. fn(n) ̸= g(n), because by our construction g(n) = fn(n)+1.
Contradiction!

(d) Countably infinite. The English language has a finite alphabet (52 characters if you count
only lower-case and upper-case letters, or more if you count special symbols – either way,
the alphabet is finite).

We will now enumerate the strings in such a way that each string appears exactly once in
the list. We will use the same trick as used in Lecture note 10 to enumerate the elements of
{0,1}∗ We get our bijection by setting f (n) to be the n-th string in the list. List all strings
of length 1 in lexicographic order, and then all strings of length 2 in lexicographic order, and
then strings of length 3 in lexicographic order, and so forth. Since at each step, there are only
finitely many strings of a particular length ℓ, any string of finite length appears in the list. It
is also clear that each string appears exactly once in this list.

CS 70, Spring 2025, HW 07 5

(e) Countably infinite. Let C = {a1,a2, . . .} denote the alphabet. (We are making use of the fact
that the alphabet is countably infinite when we assume there is such an enumeration.) We
will provide two solutions:

Alternative 1: We will enumerate all the strings similar to that in part (b), although the
enumeration requires a little more finesse. Notice that if we tried to list all strings of length
1, we would be stuck forever, since the alphabet is infinite! On the other hand, if we try to
restrict our alphabet and only print out strings containing the first character a ∈ C , we would
also have a similar problem: the list

a,aa,aaa, . . .

also does not end.

The idea is to restrict both the length of the string and the characters we are allowed to use:

1. List all strings containing only a1 which are of length at most 1.

2. List all strings containing only characters in {a1,a2} which are of length at most 2 and
have not been listed before.

3. List all strings containing only characters in {a1,a2,a3} which are of length at most 3
and have not been listed before.

4. Proceed onwards.

At each step, we have restricted ourselves to a finite alphabet with a finite length, so each step
is guaranteed to terminate. To show that the enumeration is complete, consider any string s
of length ℓ; since the length is finite, it can contain at most ℓ distinct ai from the alphabet.
Let k denote the largest index of any ai which appears in s. Then, s will be listed in step
max(k, ℓ), so it appears in the enumeration. Further, since we are listing only those strings
that have not appeared before, each string appears exactly once in the listing.

Alternative 2: We will encode the strings into ternary strings. Recall that we used a
similar trick in Lecture note 10 to show that the set of all polynomials with natural coef-
ficients is countable. Suppose, for example, we have a string: S = a5a2a7a4a6. Corre-
sponding to each of the characters in this string, we can write its index as a binary string:
(101,10,111,100,110). Now, we can construct a ternary string where "2" is inserted as
a separator between each binary string. Thus we map the string S to a ternary string:
101210211121002110. It is clear that this mapping is injective, since the original string S can
be uniquely recovered from this ternary string. Thus we have an injective map to {0,1,2}∗.
From note 11, we know that the set {0,1,2}∗ is countable, and hence the set of all strings
with finite length over C is countable.

(f) Uncountably infinite. We can use a diagonalization argument. First, for a string s, define s[i]
as the i-th character in the string (where the first character is position 0), where i∈N because
the strings are infinite. Now suppose for contradiction that we have an enumeration of strings
si for all i∈N: then define the string s′ as s′[i] = (the next character in the alphabet after si[i]),
where the character after z loops around back to a. Then s′ differs at position i from si for all

CS 70, Spring 2025, HW 07 6

i ∈ N, so it is not accounted for in the enumeration, which is a contradiction. Thus, the set is
uncountable.

Alternative 1: The set of all infinite strings containing only as and bs is a subset of the set
we’re counting. We can show a bijection from this subset to the real interval R[0,1], which
proves the uncountability of the subset and therefore entire set as well: given a string in
{a,b}∗, replace the as with 0s and bs with 1s and prepend ′0.′ to the string, which produces
a unique binary number in R[0,1] corresponding to the string.

CS 70, Spring 2025, HW 07 7

	Counting on Graphs + Symmetry
	Proofs of the Combinatorial Variety
	Strings
	Unions and Intersections
	Count It!

