
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 08

Due: Saturday, 3/22, 4:00 PM
Grace period until Saturday, 3/22, 6:00 PM

Sundry
Before you start writing your final homework submission, state briefly how you worked on it. Who
else did you work with? List names and email addresses. (In case of homework party, you can just
describe the group.)

1 Unprogrammable Programs
Note 12 Prove whether the programs described below can exist or not.

(a) A program P(F,x,y) that returns true if the program F outputs y when given x as input (i.e.
F(x) = y) and false otherwise.

(b) A program P that takes two programs F and G as arguments, and returns true if for all inputs
x, F halts on x iff G halts on x (and returns false if this equivalence is not always true).

Hint: Use P to solve the halting problem, and consider defining two subroutines to pass in to
P, where one of the subroutines always loops.

2 Kolmogorov Complexity
Note 12 Compressing a bit string x of length n can be interpreted as the task of creating a program of

fewer than n bits that returns x. The Kolmogorov complexity of a string K(x) is the length of an
optimally-compressed copy of x; that is, K(x) is the length of shortest program that returns x.

(a) Explain why the notion of the "smallest positive integer that cannot be defined in under 280
characters" is paradoxical.

(b) Prove that for any length n, there is at least one string of bits that cannot be compressed to
less than n bits, assuming that no two strings can be compressed to the same value.

(c) Say you have a program K that outputs the Kolmogorov complexity of any input string.
Under the assumption that you can use such a program K as a subroutine, design another
program P that takes an integer n as input, and outputs the length-n binary string with the
highest Kolmogorov complexity. If there is more than one string with the highest complexity,
output the one that comes first lexicographically.

CS 70, Spring 2025, HW 08 1

https://www.eecs70.org/assets/pdf/notes/n12.pdf
https://www.eecs70.org/assets/pdf/notes/n12.pdf

(d) Let’s say you compile the program P you just wrote and get an m bit executable, for some
m ∈ N (i.e. the program P can be represented in m bits). Prove that the program P (and
consequently the program K) cannot exist.

(Hint: Consider what happens when P is given a very large input n that is much greater than
m.)

3 Five Up
Note 13 Say you toss a coin five times, and record the outcomes. For the three questions below, you can

assume that order matters in the outcome, and that the probability of heads is some p in 0 < p < 1,
but not that the coin is fair (p = 0.5).

(a) What is the size of the sample space, |Ω|?

(b) How many elements of Ω have exactly three heads?

(c) How many elements of Ω have three or more heads?

For the next three questions, you can assume that the coin is fair (i.e. heads comes up with p = 0.5,
and tails otherwise).

(d) What is the probability that you will observe the sequence HHHTT? What about HHHHT?

(e) What is the probability of observing at least one head?

(f) What is the probability you will observe more heads than tails?

4 Aces
Note 13 Consider a standard 52-card deck of cards, which has 4 suits (hearts, diamonds, clubs, and spades)

with 13 cards in each suit. Each suit has one ace. Hearts and diamonds are red, while clubs and
spades are black.

(a) Find the probability of getting an ace or a red card, when drawing a single card.

(b) Find the probability of getting an ace or a spade, but not both, when drawing a single card.

(c) Find the probability of getting the ace of diamonds when drawing a 5 card hand.

(d) Find the probability of getting exactly 2 aces when drawing a 5 card hand.

(e) Find the probability of getting at least 1 ace when drawing a 5 card hand.

(f) Find the probability of getting at least 1 ace or at least 1 heart when drawing a 5 card hand.

5 Past Probabilified
Note 13 In this question we review some of the past CS70 topics, and look at them probabilistically.

For the following experiments, define an appropriate sample space Ω, and give the probability

CS 70, Spring 2025, HW 08 2

https://www.eecs70.org/assets/pdf/notes/n13.pdf
https://www.eecs70.org/assets/pdf/notes/n13.pdf
https://www.eecs70.org/assets/pdf/notes/n13.pdf

function P[ω] for each ω ∈ Ω. Then compute the probabilities of the events E1 and E2.

(a) Fix a prime p > 2, and uniformly sample twice with replacement from {0, . . . , p− 1} (as-
sume we have two {0, . . . , p−1}-sided fair dice and we roll them). Then multiply these two
numbers with each other in (mod p) space.

E1 = The resulting product is 0.
E2 = The product is (p−1)/2.

(b) Make a graph on n vertices by sampling uniformly at random from all possible edges, (as-
sume for each edge we flip a coin and if it is head we include the edge in the graph and
otherwise we exclude that edge from the graph).

E1 = The graph is complete.
E2 = vertex v1 has degree d.

(c) Create a random stable matching instance by having each person’s preference list be a random
permutation of the opposite entity’s list (make the preference list for each individual job and
each individual candidate a random permutation of the opposite entity’s list). Finally, create
a uniformly random pairing by matching jobs and candidates up uniformly at random (note
that in this pairing, (1) a candidate cannot be matched with two different jobs, and a job
cannot be matched with two different candidates (2) the pairing does not have to be stable).

E1 = All jobs have distinct favorite candidates.
E2 = The resulting pairing is the candidate optimal stable pairing.

CS 70, Spring 2025, HW 08 3

	Unprogrammable Programs
	Kolmogorov Complexity
	Five Up
	Aces
	Past Probabilified

