
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 11

1 Combined Head Count
Note 15Note 19 Suppose you flip a fair coin twice.

(a) What is the sample space Ω generated from these flips?

(b) Define a random variable X to be the number of heads. What is the distribution of X?

(c) Define a random variable Y to be 1 if you get a heads followed by a tails and 0 otherwise.
What is the distribution of Y ?

(d) Compute the conditional probabilities P[Y = i | X = j] for all i, j.

(e) Define a third random variable Z = X +Y . Use the conditional probabilities you computed
in part (d) to find the distribution of Z.

Solution:

(a) {(T,T ),(H,T ),(T,H),(H,H)}.

(b)

X =


0 w.p. .25
1 w.p. .5
2 w.p. .25

(c)

Y =

{
0 w.p. .75
1 w.p. .25

(d) • P[Y = 0 | X = 0]: Since X = 0, we have no heads; therefore, there is no chance that the
first coin is heads, so Y must be 0. So P[Y = 0 | X = 0] = 1.

• P[Y = 1 | X = 0] = 0 as P[Y = 1 | X = 0] = 1−P[Y = 0 | X = 0] = 1−1 = 0.

• P[Y = 0 | X = 1]: If we have one head, then we have one of two outcomes, (H,T ) or
(T,H), and since this is a fair coin, both outcomes happen with equal probability. Only
(T,H) makes Y = 0; thus P[Y = 0 | X = 1] = 1

2 .

• P[Y = 1 | X = 1] = 0 as P[Y = 1 | X = 1] = 1−P[Y = 0 | X = 1] = 1− 1
2 = 1

2 .

• P[Y = 0 | X = 2]: Since X = 0, we have no tails; therefore, there is no chance that the
second coin is tails, so Y must be 0. So P[Y = 0 | X = 2] = 1.
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• P[Y = 1 | X = 2] = 0 as P[Y = 1 | X = 2] = 1−P[Y = 0 | X = 2] = 1−1 = 0.

(e) Let’s determine the values Z can take and the corresponding probabilities:

• Z = 0: P(Z = 0) = P(X = 0∩Y = 0) = P(X = 0) ·P(Y = 0 | X = 0) = .25 ·1 = .25

• Z = 1:

P(Z = 1) = P(X = 0∩Y = 1)+P(X = 1∩Y = 0)
= P(X = 0) ·P(Y = 1 | X = 0)+P(X = 1) ·P(Y = 0 | X = 1)
= .25 ·0+ .5 · .5 = .25

• Z = 2:

P(Z = 2) = P(X = 1∩Y = 1)+P(X = 2∩Y = 0)
= P(X = 1) ·P(Y = 1 | X = 1)+P(X = 2) ·P(Y = 0 | X = 2)
= .5 ·5+ .25 ·1 = .5

• Z = 3: P(Z = 3) = P(X = 2∩Y = 1) = P(X = 2) ·P(Y = 1 | X = 2) = .25 ·0 = 0

Z =


0 w.p. .25
1 w.p. .25
2 w.p. .5

2 Testing Model Planes
Note 15 Amin is testing model airplanes. He starts with n model planes which each independently have

probability p of flying successfully each time they are flown, where 0 < p < 1. Each day, he flies
every single plane and keeps the ones that fly successfully (i.e. don’t crash), throwing away all
other models. He repeats this process for many days, where each "day" consists of Amin flying
all remaining model planes and throwing away any that crash. Let Xi be the random variable
representing how many model planes remain after i days. Note that X0 = n. Justify your answers
for each part.

(a) What is the distribution of X1? That is, what is P[X1 = k]?

(b) What is the distribution of X2? That is, what is P[X2 = k]? Recognize the distribution of X2
as one of the famous ones and provide its name and parameters.

(c) Repeat the previous part for Xt for arbitrary t ≥ 1.

(d) What is the probability that at least one model plane still remains (has not crashed yet) after
t days? Do not have any summations in your answer.

(e) Considering only the first day of flights, is the event A1 that the first and second model planes
crash independent from the event B1 that the second and third model planes crash? Recall
that two events A and B are independent if P[A∩B] = P[A]P[B]. Prove your answer using
this definition.

CS 70, Spring 2025, HW 11 2

https://www.eecs70.org/assets/pdf/notes/n15.pdf


(f) Considering only the first day of flights, let A2 be the event that the first model plane crashes
and exactly two model planes crash in total. Let B2 be the event that the second plane crashes
on the first day. What must n be equal to in terms of p such that A2 is independent from B2?
Prove your answer using the definition of independence stated in the previous part.

(g) Are the random variables Xi and X j, where i < j, independent? Recall that two random
variables X and Y are independent if P[X = k1∩Y = k2] = P[X = k1]P[Y = k2] for all k1 and
k2. Prove your answer using this definition.

Solution:

(a) Since Amin is performing n trials (flying a plane), each with an independent probability of
"success" (not crashing), we have X1 ∼ Binomial(n, p), or P[X = k] =

(n
k

)
pk(1− p)n−k, for

0 ≤ k ≤ n.

(b) Each model plane independently has probability p2 of surviving both days. Whether a model
plane survives both days is still independent from whether any other model plane survives
both days, so we can say X2 ∼ Binomial(n, p2), or P[X = k] =

(n
k

)
p2k(1− p2)n−k, for 0 ≤

k ≤ n.

(c) By extending the previous part, we see each model plane has probability pt of surviving t
days, so Xt ∼ Binomial(n, pt), or P[X = k] =

(n
k

)
(pt)k(1− pt)n−k, for 0 ≤ k ≤ n.

(d) We consider the complement, the probability that no model planes remain after t days. By
the previous part we know this to be

P[Xt = 0] =
(

n
0

)
(pt)0(1− pt)n−0 = (1− pt)n.

This means that the probability of at least model plane remaining after t days is 1−(1− pt)n.

(e) No. P[A1 ∩B1] is the probability that the first three model planes crash, which is (1− p)3.
But P[A1]P[B1] = (1− p)2(1− p)2 = (1− p)4. So P[A1 ∩B1] ̸= P[A1]P[B1] and A1 and B1
are not independent.

(f) P[A2 ∩B2] is the probability that only the first model plane and second model plane crash,
which is (1− p)2 pn−2. P[A2] is the probability that the first model plane crashes, and exactly
one of the remaining n−1 model planes crashes, so

P[A2] = (1− p) ·
(

n−1
1

)
(1− p)pn−1−1 = (n−1)(1− p)2 pn−2.
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We also have P[B2] = 1− p, so we want to solve for n in

P[A2 ∩B2] = P[A2]P[B2]

(1− p)2 pn−2 = (n−1)(1− p)2 pn−2︸ ︷︷ ︸
P[A2]

(1− p)︸ ︷︷ ︸
P[B2]

(1− p)2 pn−2 = (n−1)(1− p)3 pn−2

1 = (n−1)(1− p)

n = 1+
1

1− p

(g) No. Let k1 = 0 and k2 = 1. Then, P[Xi = k1 ∩X j = k2] = 0 because you can’t have 1 plane at
the end of day 2 if there are no planes left at the end of day 1. However, P[Xi = k1]> 0 and
P[X j = k2]> 0, so P[Xi = k1]P[X j = k2]> 0. Since P[Xi = k1]P[X j = k2] ̸= P[Xi = k1∩X j =
k2], they are not independent.

3 Fishy Computations
Note 19 Assume for each part that the random variable can be modelled by a Poisson distribution.

(a) Suppose that on average, a fisherman catches 20 salmon per week. What is the probability
that he will catch exactly 7 salmon this week?

(b) Suppose that on average, you go to Fisherman’s Wharf twice a year. What is the probability
that you will go at most once in 2024?

(c) Suppose that in March, on average, there are 5.7 boats that sail in Laguna Beach per day.
What is the probability there will be at least 3 boats sailing throughout the next two days in
Laguna?

(d) Denote X ∼ Pois(λ ). Prove that

E[X f (X)] = λ E[ f (X +1)]

for any function f .

Solution:

(a) Let X be the number of salmon the fisherman catches per week. X ∼Poisson(20 salmon/week),
so

P[X = 7 salmon/week] =
207

7!
e−20 ≈ 5.23 ·10−4.

(b) Similarly X ∼ Poisson(2), so

P[X ≤ 1] =
20

0!
e−2 +

21

1!
e−2 ≈ 0.41.
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(c) Let X1 be the number of sailing boats on the next day, and X2 be the number of sailing boats
on the day after next. Now, we can model sailing boats on day i as a Poisson distribution
Xi ∼ Poisson(λ = 5.7). Let Y be the number of boats that sail in the next two days. We
are interested in Y = X1 +X2. We know that the sum of two independent Poisson random
variables is Poisson. Thus, we have Y ∼ Poisson(λ = 5.7+5.7 = 11.4).

P[Y ≥ 3] = 1−P[Y < 3]
= 1−P[Y = 0∪Y = 1∪Y = 2]
= 1− (P[Y = 0]+P[Y = 1]+P[Y = 2])

= 1−
(

11.40

0!
e−11.4 +

11.41

1!
e−11.4 +

11.42

2!
e−11.4

)
≈ 0.999.

(d) We apply the Law of the Unconscious Statistician,

E[X f (X)] =
∞

∑
x=0

x f (x)P[X = x]

=
∞

∑
x=0

x f (x)
e−λ λ x

x!

=
∞

∑
x=1

x f (x)
e−λ λ x

x!

= λ

∞

∑
x=1

f (x)
e−λ λ x−1

(x−1)!

= λ

∞

∑
x=0

f (x+1)
e−λ λ x

x!

= λ E[ f (X +1)]

as desired.

4 Such High Expectations
Note 19 Suppose X and Y are independently drawn from a Geometric distribution with parameter p. For

each of the below subparts, your answer must be simplified (i.e. NOT left in terms of a summation).

(a) Compute E[min(X ,Y )].

(b) Compute E[max(X ,Y )].

(c) Compute P[X +Y ≥ t]

Solution:

(a) By independence,

P[min(X ,Y )≥ t] = P[X ≥ t]P[Y ≥ t] = (1− p)2(t−1).
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By Tail Sum,

E[min(X ,Y )] =
∞

∑
t=1

P[min(X ,Y )≥ t] =
∞

∑
t=1

(1− p)2(t−1) =
1

1− (1− p)2 .

Alternate Solution: We can see that min(X ,Y ) is a geometric distribution by looking at the
tail probability from earlier. In particular, we have that min(X ,Y ) ∼ Geom(1− (1− p)2).
This means that

E[min(X ,Y )] =
1

1− (1− p)2 ,

from the expectation of a geometric distribution.

(b) We see that

P[max(X ,Y )≥ t] = 1−P[max(X ,Y )< t] = 1−P[X < t]P[Y < t]

= 1− (1−P[X ≥ t])(1−P[Y ≥ t])

= 1−
(
1− (1− p)t−1)(1− (1− p)t−1)

= 1−
(

1−2(1− p)t−1 +(1− p)2(t−1)
)

= 2(1− p)t−1 − (1− p)2(t−1).

Using the result from part (a),

E[max(X ,Y )] =
∞

∑
t=1

P[max(X ,Y )≥ t]

=
∞

∑
t=1

2(1− p)t−1 − (1− p)2(t−1)

=
∞

∑
t=1

2(1− p)t−1 −
∞

∑
t=1

(1− p)2(t−1)

=
2
p
− 1

1− (1− p)2 .

Alternate Solution: An extremely elegant one-liner with linearity:

E[max(X ,Y )] = E[X +Y −min(X ,Y )] = E[X ]+E[Y ]−E[min(X ,Y )] =
2
p
− 1

1− (1− p)2 .

(c) Note that if X ≥ t, then regardless of the value of Y , X +Y ≥ t will be satisfied since Y > 0.
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Hence,

P[X +Y ≥ t] =
∞

∑
x=1

P[X = x]P[Y ≥ t − x]

=
t−1

∑
x=1

P[X = x]P[Y ≥ t − x]+
∞

∑
x=t

P[X = x]P[Y ≥ t − x]

=
t−1

∑
x=1

(1− p)x−1 p(1− p)t−x−1 +
∞

∑
x=t

P[X = x]

=
t−1

∑
x=1

(1− p)t−2 p+P[X ≥ t]

= (t −1)(1− p)t−2 p+(1− p)t−1

5 Swaps and Cycles
Note 15 A permutation of n objects is a bijection from (1, . . . ,n) to itself. For example, the permutation

π = (2,1,4,3) of 4 objects is the mapping π(1) = 2, π(2) = 1, π(3) = 4, and π(4) = 3. We’ll
say that a permutation π = (π(1), . . . ,π(n)) contains a swap if there exist i, j ∈ {1, . . . ,n} so that
π(i) = j and π( j) = i, where i ̸= j. The example above contains two swaps: (1,2) and (3,4).

(a) In terms of n, what is the expected number of swaps in a random permutation?

(b) In the same spirit as above, we’ll say that π contains a k-cycle if there exist i1, . . . , ik ∈
{1, . . . ,n} with π(i1) = i2,π(i2) = i3, . . . ,π(ik) = i1. Compute the expectation of the number
of k-cycles.

Solution:

(a) As a warm-up, let’s compute the probability that 1 and 2 are swapped. There are n! possible
permutations, and (n−2)! of them have π(1) = 2 and π(2) = 1. This means

P[(1,2) are a swap] =
(n−2)!

n!
=

1
n(n−1)

.

There was nothing special about 1 and 2 in this calculation, so for any {i, j} ⊂ {1, ...,n}, the
probability that i and j are swapped is the same as above. Let’s write Ii, j for the indicator that
i and j are swapped, and N for the total number of swaps, so that

E[N] = E

[
∑

{i, j}⊂{1,...,n}
Ii, j

]
= ∑

{i, j}⊂{1,...n}
P[(i, j) are swapped] =

1
n(n−1)

(
n
2

)
=

1
2
.

(b) The idea here is quite similar to the above, so we’ll be a little less verbose in the exposition.
However, as a first aside we need the notion of a cyclic ordering of k elements from a set
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{1, ...n}. We mean by this a labelling of the k beads of a necklace with elements of the set,
where we say that labellings of the beads are the same if we can move them along the string to
turn one into the other. For example, (1,2,3,4) and (1,2,4,3) are different cyclic orderings,
but (1,2,3,4) and (2,3,4,1) are the same. There are(

n
k

)
k!
k
=

n!
(n− k)!

1
k

possible cyclic orderings of length k from a set with n elements, since if we first count all
subsets of size k, and then all permutations of each of those subsets, we have overcounted by
a factor of k.

Now, let N be a random variable counting the number of k-cycles, and for each cyclic order-
ing (i1, ..., ik) of k elements of {1, ...,n}, let I(i1,...,ik) be the indicator that π(i1) = i2,π(i2) =
i3, ...,π(ik) = i1. There are (n− k)! permutations in which (i1, ..., ik) form an k-cycle (since
we are free to do whatever we want to the remaining (n− k) elements of {1, ...,n}), so the
probability that (i1, ..., ik) are such a cycle is (n−k)!

n! , and

E[N] = E

[
∑

(i1, ..., ik) cyclic ordering
I(i1,...,ik)

]
=

n!
(n− k)!

1
k
(n− k)!

n!
=

1
k
.
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