
CS 70 Discrete Mathematics and Probability Theory
Spring 2025 Rao HW 13

1 Predictable Gaussians
Note 21 Let Y be the result of a fair coin flip, and X be a normally distributed random variable with param-

eters dependent on Y . That is, if Y = 1, then X ∼ N(µ1,σ
2
1 ), and if Y = 0, then X ∼ N(µ0,σ

2
0 ).

(a) Sketch the two distributions of X overlaid on the same graph for the following cases:

(i) σ2
0 = σ2

1 ,µ0 ̸= µ1

(ii) σ2
0 ̸= σ2

1 ,µ0 = µ1

(b) Bayes’ rule for mixed distributions can be formulated as P[Y = 1 | X = x] =
P[Y=1] fX |Y=1(x)

fX (x)
where Y is a discrete distribution and X is a continuous distribution. Compute P[Y = 1 | X =
x], and show that this can be expressed in the form of 1

1+eγ for some expression γ . (Hint: any
value z can be equivalently expressed as eln(z))

(c) In the special case where σ2
0 = σ2

1 find a simple expression for the value of x where P[Y =
1 | X = x] = P[Y = 0 | X = x] = 1/2, and interpret what the expression represents. (Hint: the
identity (a+b)(a−b) = a2 −b2 may be useful)

Solution:

(a) (i) In this case, there are two bell curves with the same spread/width due to the variances
being equal, but being centered at different means.

X

Probability Density

µ0

N(µ0,σ
2)

µ1

N(µ1,σ
2)

(ii) In this case, there will be two bell curves centered at the same mean, but the one with
lower variance will be skinnier and taller, due to more of the probability density being
centered closer to the mean.
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X

Probability Density

µ

N(µ,σ2
1 )

N(µ,σ2
0 )

(b)
P[Y = 1 | X = x]

=
P[Y = 1] fX |Y=1(x)

P[Y = 1] fX |Y=1(x)+P[Y = 0] fX |Y=0(x)

=

1√
2πσ2

1
exp
(
− (x−µ1)

2

2σ2
1

)
1√

2πσ2
1

exp
(
− (x−µ1)2

2σ2
1

)
+ 1√

2πσ2
0

exp
(
− (x−µ0)2

2σ2
0

)
=

1

1+ σ1
σ0

exp
(
(x−µ1)2

2σ2
1

− (x−µ0)2

2σ2
0

)
=

1

1+ exp
(

ln
(

σ1
σ0

)
+ (x−µ1)2

2σ2
1

− (x−µ0)2

2σ2
0

) .
Which is of the desired form, with γ = ln

(
σ1
σ0

)
+
(
(x−µ1)

2

2σ2
1

− (x−µ0)
2

2σ2
0

)
(c) Note that P[Y = 1 | X = x] = 1

2 implies that exp(γ) = 1, which means that γ = 0. Thus,

ln
(

σ1
σ0

)
+
(
(x−µ1)

2

2σ2
1

− (x−µ0)
2

2σ2
0

)
= 0. Using the conditions from the problem statement, we can

simplify this expression.

ln
(

σ1

σ0

)
+

(
(x−µ1)

2

2σ2 − (x−µ0)
2

2σ2

)
= 0

0+
(
(x−µ1)

2

2σ2 − (x−µ0)
2

2σ2

)
= 0

(x−µ1)
2 = (x−µ2)

2

x2 −2µ1x+µ
2
1 = x2 −2µ2x+µ

2
2

2(µ2 −µ1)x = µ
2
2 −µ

2
1

x =
µ2

2 −µ2
1

2(µ2 −µ1)
=

µ2 +µ1

2

Notice that x becomes the average, or center, of the two means.
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2 Moments of the Gaussian
Note 21 For a random variable X , the quantity E[Xk] for k ∈ N is called the kth moment of the distribution.

In this problem, we will calculate the moments of a standard normal distribution.

(a) Prove the identity

1√
2π

∫
∞

−∞

exp
(
−tx2

2

)
dx = t−1/2

for t > 0.

Hint: Consider a normal distribution with variance 1
t and mean 0.

(b) For the rest of the problem, X is a standard normal distribution (with mean 0 and variance 1).
Use part (a) to compute E[X2k] for k ∈ N.

Hint: Try differentiating both sides with respect to t, k times. You may use the fact that we
can differentiate under the integral without proof.

(c) Compute E[X2k+1] for k ∈ N.

Solution:

(a) Note that a normal distribution with mean 0 and variance t−1 has the density function

f (x) =
√

t√
2π

exp
(
−tx2

2

)
,

and since the density must integrate to 1, we see that

1√
2π

∫
∞

−∞

exp
(
−tx2

2

)
dx = t−1/2.

(b) Differentiating the identity from (a) k times with respect to t, we obtain a LHS of

dk

dtk

[
1√
2π

∫
∞

−∞

exp
(
−tx2

2

)
dx
]
=

1√
2π

∫
∞

−∞

dk

dtk

[
exp
(
−tx2

2

)]
dx

=
1√
2π

∫
∞

−∞

(−1)k x2k

2k exp
(
−tx2

2

)
dx

=
1√
2π

(−1)k

2k

∫
∞

−∞

x2k exp
(
−tx2

2

)
dx

Here, we use the fact that everything involving x is a constant with respect to t.

Looking at the RHS, we have

dk

dtk

[
t−1/2

]
= (−1)k 1 ·3 · · ·(2k−3) · (2k−1)

2k t−(2k+1)/2
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Together, this means that

1√
2π

��
��(−1)k

��2k

∫
∞

−∞

x2k exp
(
−tx2

2

)
dx =�

���
(−1)k 1 ·3 · · ·(2k−3) · (2k−1)

��2k
t−(2k+1)/2

1√
2π

∫
∞

−∞

x2k exp
(
−tx2

2

)
dx = (1 ·3 · · ·(2k−3) · (2k−1))t−(2k+1)/2

If we set t = 1, we get

E[X2k] =
∫

∞

−∞

x2k · 1√
2π

exp
(
−x2

2

)
dx =

k

∏
i=1

(2i−1).

This is sometimes denoted (2k−1)!!. Note that we can also write the result as

E[X2k] = (2k−1)!! =
(2k)!

2 ·4 · · ·(2k−2) · (2k)
=

(2k)!
2kk!

.

(c) E[X2k+1] = 0, since the density function is symmetric around 0.

3 Chebyshev’s Inequality vs. Central Limit Theorem
Note 17
Note 21

Let n be a positive integer. Let X1,X2, . . . ,Xn be i.i.d. random variables with the following distri-
bution:

P[Xi =−1] =
1

12
; P[Xi = 1] =

9
12

; P[Xi = 2] =
2

12
.

(a) Calculate the expectations and variances of X1, ∑
n
i=1 Xi, ∑

n
i=1(Xi −E[Xi]), and

Zn =
∑

n
i=1(Xi −E[Xi])√

n/2
.

(b) Use Chebyshev’s Inequality to find an upper bound b for P[|Zn| ≥ 2].

(c) Use b from the previous part to bound P[Zn ≥ 2] and P[Zn ≤−2].

(d) As n → ∞, what is the distribution of Zn?

(e) We know that if Z ∼N (0,1), then P[|Z| ≤ 2] =Φ(2)−Φ(−2)≈ 0.9545. As n→∞, provide
approximations for P[Zn ≥ 2] and P[Zn ≤−2].

Solution:

(a) Firstly, let us calculate E[X1] and Var(X1); we have

E[X1] =− 1
12

+
9

12
+

4
12

= 1

Var(X1) =
1
12

·22 +
9

12
·02 +

2
12

·12 =
1
2
.
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Using linearity of expectation and variance (since X1, . . . ,Xn are independent), we find that

E

[
n

∑
i=1

Xi

]
=

n

∑
i=1

E[Xi] = n

Var

(
n

∑
i=1

Xi

)
=

n

∑
i=1

Var(Xi) =
n
2

Again, by linearity of expectation,

E

[
n

∑
i=1

(Xi −E[Xi])

]
= E

[
n

∑
i=1

Xi −n

]
= n−n = 0.

Subtracting a constant does not change the variance, so

Var

(
n

∑
i=1

(Xi −E[Xi])

)
= Var

(
n

∑
i=1

Xi −n

)
=

n
2
,

as before.

Using the scaling properties of the expectation and variance, we finally have

E[Zn] = E

[
∑

n
i=1(Xi −E[Xi])√

n/2

]
=

1√
n/2

E

[
n

∑
i=1

(Xi −E[Xi])

]
=

0√
n/2

= 0

Var(Zn) = Var

(
∑

n
i=1(Xi −E[Xi])√

n/2

)
=

1
n/2

Var

(
n

∑
i=1

(Xi −E[Xi])

)
=

n/2
n/2

= 1

(b) Using Chebyshev’s, we have

P[|Zn| ≥ 2]≤ Var(Zn)

22 =
1
4

since E[Zn] = 0 and Var(Zn) = 1 as we computed in the previous part.

(c) 1
4 for both, since we have

P[Zn ≥ 2]≤ P[|Zn| ≥ 2]
P[Zn ≤−2]≤ P[|Zn| ≥ 2]

(d) By the Central Limit Theorem, we know that Zn →N (0,1), the standard normal distribution.

(e) Since Zn → N (0,1), we can approximate P[|Zn| ≥ 2] ≈ 1−0.9545 = 0.0455. By the sym-
metry of the normal distribution, P[Zn ≥ 2] = P[Zn ≤−2]≈ 0.0455/2 = 0.02275.

It is interesting to note that the CLT provides a much smaller answer than Chebyshev. This
is due to the fact that the CLT is applied to a particular kind of random variable, namely the
(scaled) sum of a bunch of random variables. Chebyshev’s inequality, however, holds for any
random variable, and is therefore weaker.
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4 Analyze a Markov Chain
Note 22 Consider a Markov chain with the state diagram shown below where a,b ∈ (0,1).

0 1 21−a

a b

11−b

Here, we let X(n) denote the state at time n.

(a) Is this Markov chain irreducible? Is this Markov chain aperiodic? Justify your answers.

(b) Calculate P[X(1) = 1,X(2) = 0,X(3) = 0,X(4) = 1 | X(0) = 0].

(c) Calculate the invariant distribution. Do all initial distributions converge to this invariant
distribution? Justify your answer.

Solution:

(a) The Markov chain is irreducible because a,b ∈ (0,1). Also, P(0,0)> 0, so that

gcd{n > 0 | Pn(0,0)> 0}= gcd{1,2,3, . . .}= 1,

which shows that the Markov chain is aperiodic.

We can also notice from the definition of aperiodicity that if a Markov chain has a self loop
with nonzero probability, it is aperiodic. In particular, a self loop implies that the smallest
number of steps we need to take to get from a state back to itself is 1. In this case, since
P(0,0) > 0, we have a self loop with nonzero probability, which makes the Markov chain
aperiodic.

(b) As a result of the Markov property, we know our state at timestep n depends only on timestep
n−1. Looking at the transition probabilities, we see that the final expression is

P(0,1)×P(1,0)×P(0,0)×P(0,1) = a(1−b)(1−a)a.

(c) The balance equations are{
π(0) = (1−a)π(0)+(1−b)π(1)
π(1) = aπ(0)+π(2)

=⇒

{
aπ(0) = (1−b)π(1)
π(1) = aπ(0)+π(2)

=⇒

{
aπ(0) = (1−b)π(1)
π(1) = a

(1−b
a π(1)

)
+π(2)

=⇒

{
aπ(0) = (1−b)π(1)
bπ(1) = π(2)

As a side note, these last equations express the equality of the probability of a jump from i to
i+1 and from i+1 to i, for i = 0 and i = 1, respectively. These relations are also called the
“detailed balance equations”.
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From these equations we find successively that

π(1) =
a

1−b
π(0) π(2) = bπ(1) =

ab
1−b

π(0).

The normalization equation is

1 = π(0)+π(1)+π(2) = π(0)
(

1+
a

1−b
+

ab
1−b

)
1 = π(0)

(
1−b+a+ab

1−b

)
so that

π(0) =
1−b

1−b+a+ab
.

Thus,

π(0) =
1−b

1−b+a+ab
π(1) =

a
1−b+a+ab

π(2) =
ab

1−b+a+ab

Or in vector form,

π =
1

1−b+a+ab

[
1−b a ab

]
.

Since the Markov chain is irreducible and aperiodic, all initial distributions converge to this
invariant distribution by the fundamental theorem of Markov chains.

5 A Bit of Everything
Note 22 Suppose that X0,X1, . . . is a Markov chain with finite state space S = {1,2, . . . ,n}, where n > 2,

and transition matrix P. Suppose further that

P(1, i) =
1
n

for all states i and

P( j, j−1) = 1 for all states j ̸= 1,

with P(i, j) = 0 everywhere else.

(a) Prove that this Markov chain is irreducible and aperiodic.

(b) Suppose you start at state 1. What is the distribution of T, where T is the number of transi-
tions until you leave state 1 for the first time?

(c) Again starting from state 1, what is the expected number of transitions until you reach state
n for the first time?

(d) Again starting from state 1, what is the probability you reach state n before you reach state
2?

(e) Compute the stationary distribution of this Markov chain.
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Solution:

(a) For any two states i and j, we can consider the path (i, i− 1, . . . ,2,1, j), which has nonzero
probability of occurring. Thus, this chain is irreducible. To see that it is aperiodic, observe
that d(1) = 1, as we have self-loop from state 1 to itself.

(b) At any given transition, we leave state 1 with probability with probability n−1
n , independently

of any previous transition. Thus, the distribution is Geometric, with parameter n−1
n .

(c) Suppose that β (i) is the expected number of transitions necessary to reach state n for the first
time, starting from state i. We have the following first step equations:

β (1) = 1+
n

∑
j=1

1
n

β ( j),

β (i) = 1+β (i−1) for 1 < i < n, and
β (n) = 0.

We can simplify the second recurrence to

β (i) = i−1+β (1) for 1 < i < n.

Substituting this simplified recurrence into the first equation, we get that

β (1)= 1+
1
n

n−1

∑
i=1

(i−1+β (1))= 1+
1
n

n−1

∑
i=1

(i−1)+
1
n

n−1

∑
i=1

β (1)= 1+
(n−2)(n−1)

2n
+

n−1
n

β (1),

which we can solve to get that

β (1) = n+
1
2
(n−1)(n−2) .

(d) Suppose that α(i) is the probability that we reach state n before we reach state 2, starting from
state i. One immediate observation we can make is that from any state i in {2, . . . ,n−1}, we
are guaranteed to see state 2 before state n, as we can only take the path (i, i− 1, . . . ,2,1).
Hence, α(i) = 0 if i ∈ {2, . . . ,n−1}. Moreover, α(n) = 1, so

α(1) =
n

∑
i=1

1
n

α(i) =
1
n

α(1)+
1
n
,

hence α(1) =
1

n−1
.

(e) We have the balance equations

π(i) =
1
n

π(1)+π(i+1) if i ̸= n, and

π(n) =
1
n

π(1).
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We can collapse the first recurrence to

π(i) =
n− i

n
π(1)+π(n) =

n− i+1
n

π(1),

so we can express each stationary probability in terms of the stationary probability of state 1.
We can finish by using the normalization equation:

π(1)+π(2)+ · · ·+π(n) = 1 =⇒ 1
n

π(1)
n

∑
i=1

n− i+1 = 1.

The last sum can be rearranged to be the sum of the integers from 1 up to n, so we get that

π(1) =
2

n+1
=⇒ π =

2
n(n+1)

[
n n−1 · · · 1

]
.

6 Playing Blackjack
Note 22 Suppose you start with $1, and at each turn, you win $1 with probability p, or lose $1 with proba-

bility 1− p. You will continually play games of Blackjack until you either lose all your money, or
you have a total of n dollars.

(a) Formulate this problem as a Markov chain.

(b) Let α(i) denote the probability that you end the game with n dollars, given that you started
with i dollars.

Notice that for 0 < i < n, we can write α(i+1)−α(i) = k(α(i)−α(i−1)). Find k.

(c) Using part (b), find α(i), where 0 ≤ i ≤ n. (You will need to split into two cases: p = 1
2 or

p ̸= 1
2 .)

Hint: Try to apply part (b) iteratively, and look at a telescoping sum to write α(i) in terms of
α(1). The formula for the sum of a finite geometric series may be helpful when looking at
the case where p ̸= 1

2 :
m

∑
k=0

ak =
1−am+1

1−a
.

Lastly, it may help to use the value of α(n) to find α(1) for the last few steps of the calcula-
tion.

(d) As n → ∞, what happens to the probability of ending the game with n dollars, given that you
start with i dollars, with the following values of p?

(i) p > 1
2

(ii) p = 1
2

(iii) p < 1
2
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Solution:

(a) We have the following state transition diagram:

0 1 2 · · · n−2 n−1 n1 1

p p p p p

1− p1− p1− p1− p1− p

In particular, we have n+1 states, {0,1,2, . . . ,n}, where the transition probability from i to
i+ 1 is p, and the transition probability from i to i− 1 is 1− p. The transition probabilities
for i = 0 and i = n are edge cases, where we stay in place with probability 1.

(b) If we start with i dollars, this means that we start at state i. The next transition can either be
to state i+1 with probability p, or to state i−1 with probability 1− p. This means that we
have

α(i) = pα(i+1)+(1− p)α(i−1).

Here, a trick is to expand α(i) = pα(i)+(1− p)α(i). Substituting this in, we can rewrite

pα(i)+(1− p)α(i) = pα(i+1)+(1− p)α(i−1)
(1− p)(α(i)−α(i−1)) = p(α(i+1)−α(i))

α(i+1)−α(i) =
1− p

p
(α(i)−α(i−1))

(c) Now that we have a relationship between α(i+1)−α(i) and α(i)−α(i−1), notice that we
can iteratively apply the recurrence to get

α(i+1)−α(i) =
1− p

p
(α(i)−α(i−1))

=

(
1− p

p

)2

(α(i−1)−α(i−2))

...

=

(
1− p

p

)i

(α(1)−α(0))

=

(
1− p

p

)i

α(1)

since α(0) = 0 (once we lose all our money, we stop and can never reach n).

Further, notice that we have the telescoping sum

[α(i)−α(i−1)]+ [α(i−1)−α(i−2)]+ · · ·+[α(1)−α(0)] = α(i)−α(0) = α(i).
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This means that we have the summation

α(i) =
i−1

∑
k=0

(α(k+1)−α(k))

=
i−1

∑
k=0

(
1− p

p

)k

α(1)

= α(1)
i−1

∑
k=0

(
1− p

p

)k

= α(1) ·
1−
(

1−p
p

)i

1− 1−p
p

[Note that if p = 1
2 , the last step is not valid; in fact, since 1−p

p = 1, this means that α(i) =
iα(1). We’ll come back to this case later.]

The previous formula applies for all 0 < i ≤ n, so we can let i = n and simplify to find α(1):

1 = α(n) = α(1) ·
1−
(

1−p
p

)n

1− 1−p
p

1− 1−p
p

1−
(

1−p
p

)n = α(1)

Plugging this back in for α(i), we have

α(i) =
1− 1−p

p

1−
(

1−p
p

)n ·
1−
(

1−p
p

)i

1− 1−p
p

=
1−
(

1−p
p

)i

1−
(

1−p
p

)n .

Going back to the case where p = 1
2 , we saw that the summation simplifies to α(i) = iα(1).

Since α(n) = 1, this means that 1 = nα(1), or α(1) = 1
n . This means that we have

α(i) = iα(1) =
i
n
.

Together, we have the following formula for any 0 ≤ i ≤ n:

α(i) =


1−
(

1−p
p

)i

1−
(

1−p
p

)n p ̸= 1
2

i
n p = 1

2

.

(d) (i) If p > 1
2 , then 1−p

p < 1, and as n → ∞, the
(

1−p
p

)n
term in the denominator vanishes.

This means that all we’re left with is the numerator, and as such

lim
n→∞

α(i) = 1−
(

1− p
p

)i

.

CS 70, Spring 2025, HW 13 11



(ii) If p = 1
2 , then we know that α(i) = i

n . As n → ∞, this fraction goes to 0, and we have

lim
n→∞

α(i) = 0.

(iii) If p < 1
2 , then 1−p

p > 1, and as n → ∞, the
(

1−p
p

)n
term in the denominator blows up.

This means that the denominator tends to −∞, while the numerator remains bounded
for any fixed i. This means that the entire fraction tends to 0, i.e,

lim
n→∞

α(i) = 0.

Note that this problem shows that, even in the case of a fair game (i.e., p = 1
2 ), the probability that

a gambler wins $n before going broke tends to zero as n → ∞. This is one version of the so-called
“Gambler’s Ruin” problem. Only in the case where p > 1

2 , i.e., when the game is strictly in the
gambler’s favor, does the gambler come out on top with positive probability.
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