Today.

Polynomials.
Secret Sharing.
Correcting for loss or even corruption.

Secret Sharing.
Share secret among \(n \) people.
Secrecy: Any \(k - 1 \) knows nothing.
Robustness: Any \(k \) knows secret.
Efficient: minimize storage.
The idea of the day.
Two points make a line.
Lots of lines go through one point.

Polynomials

A polynomial

\[P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0 \]

is specified by coefficients \(a_0, \ldots, a_d \).

\(P(x) \) contains point \((a, b) \) if \(b = P(a) \).

Polynomials over reals: \(a_1, \ldots, a_d \in \mathbb{R} \), use \(x \in \mathbb{R} \).

Polynomials \(P(x) \) with arithmetic modulo \(p \): \(a_i \in \{0, \ldots, p-1\} \) and

\[P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0 \pmod{p}, \]

for \(x \in \{0, \ldots, p-1\} \).

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^2\)

Two points make a line.

Finding an intersection.
\[x + 2 = 3x + 1 \pmod{5} \]
\[\Rightarrow 2x \equiv 1 \pmod{5} \quad \Rightarrow x \equiv 3 \pmod{5} \] 3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!

\(^1\)A field is a set of elements with addition and multiplication operations, with inverses. \(\mathbb{GF}(p) = (\{0, \ldots, p-1\}, + (\pmod{p}), \cdot (\pmod{p})) \).

\(^2\)Points with different \(x \) values.
Two points determine a line.
What facts below tell you this?
Say points are \((x_1, y_1), (x_2, y_2)\).
(A) Line is \(y = mx + b\).
(B) Plug in a point gives an equation: \(y_1 = mx_1 + b\)
(C) The unknowns are \(m\) and \(b\).
(D) If equations have unique solution, done.
All true.

3 points determine a parabola.
Fact: Exactly 1 degree \(\leq d\) polynomial contains \(d + 1\) points.

Points with different \(x\) values.

2 points not enough.

There is \(P(x)\) contains blue points and any \((0, y)\)!

3 points determine a parabola.

Polynomial: \(a_nx^n + \cdots + a_0\).

Consider line: \(mx + b\)
(A) \(a_1 = m\)
(B) \(a_1 = b\)
(C) \(a_0 = m\)
(D) \(a_0 = b\).
(A) and (D)

Modular Arithmetic Fact and Secrets
Modular Arithmetic Fact: Exactly 1 degree \(\leq d\) polynomial with arithmetic modulo prime \(p\) contains \(d + 1\) pts.

Shamir’s \(k\) out of \(n\) Scheme:
Secret \(s \in \{0, \ldots, p-1\}\)
1. Choose \(a_0 = s\), and random \(a_1, \ldots, a_{k-1}\).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0\) with \(a_0 = s\).
3. Share \(i\) is point \((i, P(i) \mod p)\).

Robustness: Any \(k\) shares gives secret.
Knowing \(k\) pts \(\iff\) only one \(P(x)\) \(\iff\) evaluate \(P(0)\).
Secrecy: Any \(k-1\) shares give nothing.
Knowing \(\leq k-1\) pts \(\iff\) any \(P(0)\) is possible.
From $d + 1$ points to degree d polynomial?

For a line, $a_1x + a_0 = mx + b$ contains points $(1,3)$ and $(2,4)$.

$P(x)$ works. Solve...

Subtract first from second...

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

$x + 2 \pmod{5}$.

Another Construction: Interpolation!

For a quadratic, $a_2x^2 + a_1x + a_0$ hits $(1,2);(2,4);(3,0)$.

Find $\Delta_2(x)$ polynomial contains $(1,1);(2,0);(3,0)$.

Try $(x-2)/(x-3) \pmod{5}$.

$\Delta_2(x) = (x-2)(x-3) \pmod{5}$ contains $(1,1);(2,0);(3,0)$.

But wanted to hit $(1,2);(2,4);(3,0)$!

$P(x) = 2\Delta_2(x) + 4\Delta_3(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \pmod{5}$.

The same as before!

Quadratic

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits $(1,2);(2,4);(3,0)$.

Plug in points to find equations.

Subtracting 2nd from 3rd yields: $a_0 = 1$.

$P(x) = 2\Delta_2(x) + 4\Delta_3(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4 \pmod{5}$.

The same as before!

In general...

Given points: $(x_1,y_1);(x_2,y_2);\cdots;(x_k,y_k)$.

Set and two commutative operations: addition and multiplication with additive/multiplicative identities and inverses expect for additive identity has no multiplicative inverse.

E.g., Reals, rationals, complex numbers.

Not E.g., the integers and matrices.

We will work with polynomials with arithmetic modulo p.

Addition is cool. Inherited from integers and integer division (remainders).

Multiplicative inverses due to $gcd(x,p) = 1$, for all $x \in \{1,\ldots,p-1\}$.

Flowers, and grass, oh so nice.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d+1$ pts.
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

\[
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i \\
0, & \text{if } x = x_j \text{ for } j \neq i \\
? & \text{otherwise}
\end{cases}
\]

(1)

Given $d + 1$ points, use Δ_i functions to go through points?

$x_1, x_2, \ldots, (x_{d+1}, y_{d+1})$.

Will $y_i \Delta_i(x)$ contain (x_i, y_i)?

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)?

See the idea? Function that contains all points?

$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x)$.

Example.

$\Delta_i(x) = \prod_{j \neq i} (x - x_j)$.

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_i(x)$ contains $(1, 1)$ and $(3, 0)$.

$\Delta_1(x) \equiv \frac{x - 3}{2} \equiv \frac{x - 3}{-2} \equiv (x - 3)(-2)^{-1}$

$\Delta_2(x) \equiv \frac{x - 3}{1 - 3} \equiv (x - 3)(-2)^{-1}$

$= 2(x - 3) = 2x - 6 = 2x + 4 \pmod{5}$.

For a quadratic, $a_2x^2 + a_1x + a_0$ hits $(1,3),(2,4),(3,0)$.

Work modulo 5.

Find $\Delta_i(x)$ polynomial contains $(1, 1); (2, 0); (3, 0)$.

$\Delta_1(x) \equiv \frac{(2x - 3)(3x - 3)}{(x - 3)(x - 3)} \equiv \frac{6x - 6}{2} - (2x)(2) - 3(x - 2)(x - 3) - 3x^2 + 3 \pmod{5}$

Put the delta functions together.

Poll

Mark what’s true.

(A) $\Delta_1(x_1) = y_1$

(B) $\Delta_1(x_1) = 1$

(C) $\Delta_1(x_2) = 0$

(D) $\Delta_1(x_3) = 1$

(E) $\Delta_2(x_2) = 1$

(F) $\Delta_2(x_1) = 0$

(B), (C), and (E)

Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits $d + 1$ points.

Roots fact: Any nontrivial degree d polynomial has at most d roots.

Non-zero line (degree 1 polynomial) can intersect $y = 0$ at only one x.

A parabola (degree 2), can intersect $y = 0$ at only two x’s.

Proof:

Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.

$R(x) = Q(x) - P(x)$ has $d + 1$ roots and is degree d.

Contradiction.

Must prove Roots fact.

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree d polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Proof of at least one polynomial:

Given points: $(x_1,y_1);(x_2,y_2)\cdots(x_{d+1},y_{d+1})$.

\[
\Delta_i(x) = \prod_{j \neq i} (x - x_j) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}
\]

Numerator is 0 at $x_j \neq x_i$.

“Denominator” makes it 1 at x_i.

And...

$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x)$.

hits points $(x_1,y_1);(x_2,y_2)\cdots(x_{d+1},y_{d+1})$.

Degree d polynomial!

Construction proves the existence of a polynomial!

In general.

Given points: $(x_1,y_1);(x_2,y_2)\cdots(x_k,y_k)$.

\[
\Delta_i(x) = \prod_{j \neq i} (x - x_j) = \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}
\]

Numerator is 0 at $x_j \neq x_i$.

Denominator makes it 1 at x_i.

And...

$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x)$.

hits points $(x_1,y_1);(x_2,y_2)\cdots(x_k,y_k)$.

Degree d polynomial!

Construction proves the existence of the polynomial!
Polynomial Division.

Divide $4x^2 - 3x + 2$ by $(x - 3)$ modulo 5.

$$
\begin{array}{r|rrr}
& 4x & + & 4 & \equiv 4 \\
\hline
x - 3 & 4x^2 & - & 3x & + 2 \\
& 4x^2 & - & 2x & \\
\hline
4x & + & 2 \\
4x & - & 2 \\
\hline
0
\end{array}
$$

$4x^2 - 3x + 2 = (x - 3)(4x + 4) + 4$ (mod 5)

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r.

That is, $P(x) = (x - a)Q(x) + r$

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $GF(p)$, $P(x)$, that hits $d + 1$ values.

Shamir's k out of n Scheme:
- Secret $s \in \{0, \ldots, p - 1\}$
- Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}
- Let $P(x) = a_0 + a_1x + \cdots + a_{k-1}x^{k-1}$
- Share i is point $(i, P(i))$ mod p

Routbiness: Any k knows secret.

Secrecy: Any $k - 1$ knows nothing.

Knowing k pts, only one $P(x)$, evaluate $P(0)$.

Only d roots.

Lemma 1: $P(x)$ has root iff $P(x)/(x - a)$ has remainder 0:

$P(x)/(x - a)Q(x)$

Proof: $P(x) = (x - a)Q(x) + r$.

Plugin a: $P(a) = r$.

It is a root if and only if $r = 0$.

Lemma 2: $P(x)$ has d roots, r_1, \ldots, r_d then

$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.

$d + 1$ roots implies degree is at least $d + 1$.

Roots fact: Any degree d polynomial has at most d roots.

Finite Fields

Proof works for reals, rationals, and complex numbers.

...but not for integers, since no multiplicative inverses.

Arithmetic modulo a prime p has multiplicative inverses.

...and has only a finite number of elements.

Good for computer science.

Arithmetic modulo a prime m is a **finite field** denoted by F_m or $GF(m)$.

Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Minimality.

Need $p > n$ to hand out n shares: $P(1) \ldots P(n)$.

For b-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and $2n$.

Chebyshev said it.

And I say it again.

There is always a prime

Between n and $2n$.

Working over numbers within 1 bit of secret size. **Minimality**.

With k shares, reconstruct polynomial, $P(x)$.

With $k - 1$ shares, any of p values possible for $P(0)$!

(Again) any b-bit string possible!

(Again) the same as what is missing: one $P(i)$.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k - 1$ polynomial n times using $\log p$-bit numbers.

2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.
A bit more counting.

What is the number of degree d polynomials over $GF(m)$?

- m^{d+1}: $d + 1$ coefficients from $\{0, \ldots, m-1\}$.
- m^{d+1}: $d + 1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!

Summary

Two points make a line.
Compute solution: m, b.
Unique:
Assume two solutions, show they are the same.

Today: $d + 1$ points make a unique degree d polynomial.

Cuz:
Solution: lagrange interpolation.
Unique:
Roots fact: Factoring sez $(x - r)$ is root.
Induction, says only d roots.
Apply: $P(x), Q(x)$ degree d.
$P(x) = Q(x)$ is degree d \implies d roots.
$P(x) = Q(x)$ on $d + 1$ points $\implies P(x) = Q(x)$.

Secret Sharing:
k points on degree $k - 1$ polynomial is great!
Can hand out n points on polynomial as shares.