Today.

Last time:
Shared (and sort of kept) secrets.
Today: Errors
Tolerate Loss: erasure codes.
Tolerate corruption!

Finite Fields

Proof works for reals, rationals, and complex numbers.
...but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
...and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a finite field denoted by F_m or $GF(m)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.
In the rationals, the precision blows up, where in modular arithmetic, it does not.

In general..

Given points: $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$.
Solve...

$$a_{k-1}x^{k-1} + \cdots + a_0 = y_1 \pmod{p}$$

$$a_{k-1}x^{k-1} + \cdots + a_0 = y_2 \pmod{p}$$

$$\vdots$$

$$a_{k-1}x^{k-1} + \cdots + a_0 = y_n \pmod{p}$$

Will this always work?
As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p contains $d + 1$ pts.

Proof sketches.

Property 2 A polynomial: $P(x) = a_dx^d + \cdots + a_0$ has $d + 1$ coefficients.
Any set of $d + 1$ points uniquely determines the polynomial.

Existence: Lagrange Interpolation.
Degree d, $\Delta_d(x)$ polynomials.
Factors of $(x - x_j)$ to zero out at $x_j \neq x_i$.
Multiply by zero. My love is won.
Combine.
Uniqueness:

Property 1 A non-zero degree d polynomial has at most d roots.
Factoring: $P(x)$ with roots r_1, \ldots, r_d.

$$P(x) = c(x - r_1)(x - r_i)\cdots(x - r_d)$$.

Love me some contradiction!
Two polynomials: $P(x), Q(x)$, $P(x) - Q(x)$ has too many roots.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $GF(p)$, $P(x)$, that hits $d + 1$ points.
Shamir's k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_0x^k + \cdots + a_{k-2}x^2 + a_{k-1}$ with $a_0 = s$.
3. Share i is point $(i, P(i) \pmod{p})$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.
Secrecy: Any $k - 1$ knows nothing.
Knowing $\leq k - 1$ pts, any $P(0)$ is possible.
Two points make a line: the value of one point allows any y-intercept.
3 kids hand out 3 points. Any two know the line.

Secret Sharing.

n people, k is enough.

(A) The modulus needs to be at least $n + 1$.
(B) The modulus needs to be at least k.
(C) Use degree k polynomial, hand out n points.
(D) Use degree n polynomial, hand out k points.
(E) Use degree $k - 1$ polynomial, hand out n points.
(F) The modulus needs to be at least 2^s, where s is value of secret.
(G) The modulus needs to be at least 2^s, where s is size of secret.
(A), (B), (E), (F)
Erasure Codes.

Solution Idea.

The Scheme

Problem: Want to send a message with \(n \) packets.
Channel: Lossy channel; loses \(k \) packets.
Question: Can you send \(n + k \) packets and recover message?
A degree \(n - 1 \) polynomial determined by any \(n \) points!
1. Choose prime \(p \approx 2^b \) for packet size \(b \).
2. \(P(x) = m_{n-1}x^{n-1} + \ldots + m_0 \pmod{p} \).
3. Send \(P(1), \ldots, P(n + k) \).
Any \(n \) of the \(n + k \) packets gives polynomial ... and message!

Information Theory.

Send message of 1, 4, and 4.
Make polynomial with \(P(1) = 1, P(2) = 4, P(3) = 4 \).
How?
Lagrange Interpolation.
Linear System.
Work modulo 5.
\(P(x) = x^2 \pmod{5} \)
\(P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5} \)
Send \((0, P(0)) \ldots (5, P(5)) \).
6 points. Better work modulo 7 at least!
Why? \((0, P(0)) = (5, P(5)) \pmod{5} \)
The Scheme.

Problem: Communicate \(n \) packets \(m_1, \ldots, m_n \) on noisy channel that corrupts \(k \) packets.

Reed-Solomon Code:
1. Make a polynomial, \(P(x) \) of degree \(n - 1 \), that encodes message.
 - \(P(1) = m_1, \ldots, P(n) = m_n \).
 - Comment: could encode with packets as coefficients.
2. Send \(P(1), \ldots, P(n + 2k) \).

After noisy channel: Receive values \(R(1), \ldots, R(n + 2k) \).

Properties:
1. \(P(i) = R(i) \) for at least \(n + k \) points \(i \).
2. \(P(x) \) is unique degree \(n - 1 \) polynomial that contains \(\geq n + k \) received points.

Questions for Review

You want to encode a secret consisting of 1,4,4.
How big should modulus be?
Larger than 144 and prime!
Remember the secret, \(s = 144 \), must be one of the possible values.
You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.
How big should modulus be?
Larger than 8 and prime!
The other constraint: arithmetic system can represent 0,1,2,3,4.
Send \(n \) packets \(b \)-bit packets, with \(k \) errors.
Modulus should be larger than \(n + k \) and also larger than \(2^b \).

Error Correction

Satellite

3 packet message. Send 5.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

Corrupts 1 packets.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B'</td>
</tr>
</tbody>
</table>

GPS device

The Scheme.

Example

Make polynomial with \(P(1) = 1, P(2) = 4, P(3) = 4 \).
Modulo 7 to accommodate at least 6 packets.

Linear equations:
\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 &= 1 \pmod{7} \\
P(2) &= 4a_2 + 2a_1 + a_0 &= 4 \pmod{7} \\
P(3) &= 2a_2 + 3a_1 + a_0 &= 4 \pmod{7} \\
6a_1 + 3a_0 &= 2 \pmod{7}, \; 5a_1 + 4a_0 &= 0 \pmod{7} \\
a_1 &= 2a_0, \; a_0 &= 2 \pmod{7} \; a_1 &= 4 \pmod{7} \; a_2 &= 2 \pmod{7} \\
P(x) &= 2x^2 + 4x + 2 \\
P(1) &= 1, P(2) &= 4, \text{ and } P(3) &= 4 \\
\end{align*}
\]

Send
Packet: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)
Notice that packets contain “x-values”.

Bad reception!

Send: (1,1), (2,4), (3,4), (4,7), (5,2), (6,0)
Recieve: (1,1) (2,4), (6,0)
Reconstruct?

Format: \(i, R(i) \).
Lagrange or linear equations.
\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 &= 1 \pmod{7} \\
P(2) &= 4a_2 + 2a_1 + a_0 &= 4 \pmod{7} \\
P(6) &= 2a_2 + 3a_1 + a_0 &= 0 \pmod{7} \\
\end{align*}
\]

Channeling Sahai ...
\[P(x) = 2x^2 + 4x + 2 \]
Message? \(P(1) = 1, P(2) = 4, P(3) = 4 \).

Questions for Review

You want to encode a secret consisting of 1,4,4.
How big should modulus be?
Larger than 144 and prime!
Remember the secret, \(s = 144 \), must be one of the possible values.
You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.
How big should modulus be?
Larger than 8 and prime!
The other constraint: arithmetic system can represent 0,1,2,3,4.
Send \(n \) packets \(b \)-bit packets, with \(k \) errors.
Modulus should be larger than \(n + k \) and also larger than \(2^b \).

Polynomials.

- ...give Secret Sharing.
- ...give Erasure Codes.

Error Correction:
Noisy Channel: corrupts \(k \) packets. (rather than loss.)
Additional Challenge: Finding which packets are corrupt.

The Scheme.

Problem: Communicate \(n \) packets \(m_1, \ldots, m_n \)
on noisy channel that corrupts \(k \) packets.

Reed-Solomon Code:
1. Make a polynomial, \(P(x) \) of degree \(n - 1 \), that encodes message.
 - \(P(1) = m_1, \ldots, P(n) = m_n \).
 - Comment: could encode with packets as coefficients.
2. Send \(P(1), \ldots, P(n + 2k) \).

After noisy channel: Receive values \(R(1), \ldots, R(n + 2k) \).

Properties:
1. \(P(i) = R(i) \) for at least \(n + k \) points \(i \).
2. \(P(x) \) is unique degree \(n - 1 \) polynomial that contains \(\geq n + k \) received points.
Properties: proof.

\[P(x) : \text{degree } n - 1 \text{ polynomial.} \]
\[\text{Send } P(1), \ldots, P(n + 2k) \]
\[\text{Receive } R(1), \ldots, R(n + 2k) \]
\[\text{At most } k \text{ is where } P(i) \neq R(i). \]

Properties:

1. \(P(i) = R(i) \) for at least \(n + k \) points \(i \).
2. \(P(x) \) is unique degree \(n - 1 \) polynomial that contains \(n + k \) received points.

Proof:

(1) Sure. Only \(k \) corruptions.
(2) Degree \(n - 1 \) polynomial \(Q(x) \) consistent with \(n + k \) points.

\[Q(x) \text{ agrees with } R(i), n + k \text{ times.} \]
\[P(x) \text{ agrees with } R(i), n + k \text{ times.} \]
\[\text{Total points contained by both: } 2n + 2k. \]
\[\text{Pigeons.} \]
\[\text{Total points to choose from: } n + 2k. \]
\[\text{Holes.} \]
\[\text{Points contained by both: } \geq n \geq P - H \text{ Collisions.} \]
\[\Rightarrow Q(i) = P(i) \text{ at } n \text{ points.} \]
\[\Rightarrow Q(x) = P(x). \]

Example.

Received \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \).
Find \(P(x) = p_2 x^2 + p_1 x + p_0 \) that contains \(n + k = 3 + 1 \) points.

All equations:

\[p_2 + p_1 + p_0 = 3 \text{ (mod 7)} \]
\[4p_2 + 2p_1 + p_0 = 1 \text{ (mod 7)} \]
\[2p_2 + 3p_1 + p_0 = 6 \text{ (mod 7)} \]
\[2p_2 + 4p_1 + p_0 = 0 \text{ (mod 7)} \]
\[4p_2 + 5p_1 + p_0 = 3 \text{ (mod 7)} \]

Assume point 1 is wrong and solve...no consistent solution!
Assume point 2 is wrong and solve...consistent solution!

In general.

\[P(x) = p_{n-1} x^{n-1} + \cdots + p_0 \text{ and receive } R(1), \ldots, R(m = n + 2k). \]

\[p_{n-1} + \cdots + p_0 = R(1) \text{ (mod } p) \]
\[p_{n-1} 2^{n-1} + \cdots + p_0 = R(2) \text{ (mod } p) \]
\[p_{n-1} 2^{n-1} + \cdots + p_0 = R(i) \text{ (mod } p) \]
\[p_{n-1} (m-1)! + \cdots + p_0 = R(m) \text{ (mod } p) \]

Error!! ... Where???
Could be anywhere!!! ... so try everywhere.

Runtime: \(\binom{n+k}{k} \) possibilities.

Something like \((n/k)^k \) ... Exponential in \(k \).

How do we find where the bad packets are efficiently?!!?!!

Example.

Message: 3, 0, 6.

Reed Solomon Code: \(P(x) = x^2 + x + 1 \) (mod 7) has \(P(1) = 3, P(2) = 0, P(3) = 6 \) modulo 7.

Send: \(P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3 \).

(Aside: Message in plain text!)

Receive \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \).

\[\text{P(i) = R(i) for } n + k = 3 + 1 = 4 \text{ points.} \]

In general.

\[P(x) = p_{n-1} x^{n-1} + \cdots + p_0 \text{ and receive } R(1), \ldots, R(m = n + 2k). \]

\[p_{n-1} + \cdots + p_0 = R(1) \text{ (mod } p) \]
\[p_{n-1} 2^{n-1} + \cdots + p_0 = R(2) \text{ (mod } p) \]
\[p_{n-1} 2^{n-1} + \cdots + p_0 = R(i) \text{ (mod } p) \]
\[p_{n-1} (m-1)! + \cdots + p_0 = R(m) \text{ (mod } p) \]

Error!! ... Where???
Could be anywhere!!! ... so try everywhere.

Runtime: \(\binom{n+k}{k} \) possibilities.

Something like \((n/k)^k \) ... Exponential in \(k \).

How do we find where the bad packets are efficiently?!!?!!

Slow solution.

Brute Force:

For each subset of \(n + k \) points

Fit degree \(n - 1 \) polynomial, \(Q(x) \), to \(n \) of them.

Check if consistent with \(n + k \) of the total points.

If yes, output \(Q(x) \).

- For subset of \(n + k \) pts where \(R(i) = P(i) \),
 method will reconstruct \(P(x) \)!
- For any subset of \(n + k \) pts,
 1. there is unique degree \(n - 1 \) polynomial \(Q(x) \) that fits \(n \) of them
 2. and where \(Q(x) \) is consistent with \(n + k \) points
 \[\Rightarrow P(x) = Q(x). \]

Reconstructs \(P(x) \) and only \(P(x) \)!!

Example.

Received \(R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \).
Find \(P(x) = p_2 x^2 + p_1 x + p_0 \) that contains \(n + k = 3 + 1 \) points.

Oh where, Oh where has my little dog gone?
Oh where, oh where can he be
With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Oh where, Oh where have my packets gone.. wrong?
Oh where, oh where do they not fit.
With the polynomial well put
But the channel a bit wrong
Where, oh where do we look?
Where oh where can my bad packets be?

\[
\begin{align*}
E(1)(p_{n-1} + \cdots + p_0) &\equiv R(1)E(1) \pmod{p} \\
0 \times E(2)(p_{n-2}z^{n-1} + \cdots + p_0) &\equiv R(2)E(2) \pmod{p} \\
\vdots \\
E(m)(p_{n-1}(m)^{n-1} + \cdots + p_0) &\equiv R(n+2k)E(m) \pmod{p}
\end{align*}
\]

Idea: Multiply equation \(i\) by 0 if and only if \(P(i) \neq R(i)\).

Zero times anything is zero!!! My love is won.

All equations satisfied!!!

But which equations should we multiply by 0? Where oh where???

We will use a polynomial!!! That we don't know. But can find!

Errors at points \(e_1, \ldots, e_k\). (In diagram above, \(e_1 = 1\).)

Error locator polynomial: \(E(x) = (x-e_1)(x-e_2)\cdots(x-e_k)\).

\(E(i) = 0\) if and only if \(e_i = i\) for some \(j\)

Multiply equations by \(E(i)\). (Above \(E(x) = (x\cdot2)\).)

All equations satisfied!!

Finding \(Q(x)\) and \(E(x)\)?

\(E(x)\) has degree \(k\) ...

\(E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0\).

\(\Rightarrow\) \(k\) (unknown) coefficients. Leading coefficient is 1.

\(Q(x) = P(x)E(x)\) has degree \(n+k-1\) ...

\(Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots + a_0\)

\(\Rightarrow\) \(n+k\) (unknown) coefficients.

Number of unknown coefficients: \(n+2k\).

Example.

\[
\begin{align*}
\text{Received } R(1) &\equiv 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \\
\text{Find } P(x) &\equiv px^2 + px + p_0 \text{ that contains } n+k = 3+1 \text{ points.}
\end{align*}
\]

Plug points...

\[
\begin{align*}
(1-\theta)(p_2+p_1+p_0) &\equiv (3)(1-\theta) \pmod{7} \\
(2-\theta)(4p_2+2p_1+p_0) &\equiv (1)(2-\theta) \pmod{7} \\
(3-\theta)(3p_2+3p_1+p_0) &\equiv (6)(3-\theta) \pmod{7} \\
(4-\theta)(5p_2+4p_1+p_0) &\equiv (0)(4-\theta) \pmod{7} \\
(5-\theta)(4p_2+5p_1+p_0) &\equiv (3)(5-\theta) \pmod{7}
\end{align*}
\]

Error locator polynomial: \((x-\theta)\).

Multiply equation \(i\) by \((i-\theta)\). All equations satisfied!

But don't know error locator polynomial. Do know form: \((x-e)\).

4 unknowns \((p_0, p_1, p_2, p_3)\), \(5\) nonlinear equations.

Solving for \(Q(x)\) and \(E(x)\)...and \(P(x)\)

For all points \(1, \ldots, n+2k = m\),

\[
Q(i) = R(i)E(i) \pmod{p}
\]

Gives \(n+2k\) linear equations.

\[
\begin{align*}
a_{n+k-1} + \cdots + a_0 &\equiv R(1)(1+b_{k-1}+\cdots+b_0) \pmod{p} \\
a_{n+k-1}(2)^{n+k-1} + \cdots + a_0 &\equiv R(2)((2)^k+b_{k-1}(2)^{k-1}+\cdots+b_0) \pmod{p} \\
\vdots \\
a_{n+k-1}(m)^{n+k-1} + \cdots + a_0 &\equiv R(m)((m)^k+b_{k-1}(m)^{k-1}+\cdots+b_0) \pmod{p}
\end{align*}
\]

..and \(n+2k\) unknown coefficients of \(Q(x)\) and \(E(x)\)!

Solve for coefficients of \(Q(x)\) and \(E(x)\).

\[
\text{Find } P(x) = Q(x)/E(x).
\]

..turn their heads each day,

\[
\begin{align*}
E(1)(p_{n-1} + \cdots + p_0) &\equiv R(1)E(1) \pmod{p} \\
E(i)(p_{n-1}(i)^{n-1} + \cdots + p_0) &\equiv R(i)E(i) \pmod{p} \\
E(m)(p_{n-1}(m)^{n-1} + \cdots + p_0) &\equiv R(m)E(m) \pmod{p}
\end{align*}
\]

...so satisfied, I'm on my way.

\(m = n+2k\) satisfied equations, \(n+k\) unknowns. But nonlinear!

Let \(Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0\).

Equations:

\[
Q(i) = R(i)E(i).
\]

and linear in \(a_0\) and coefficients of \(E(x)\)!

Example.

\[
\begin{align*}
\text{Received } R(1) &\equiv 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3 \\
\text{Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0} \\
E(x) &\equiv x - b_0 \\
Q(i) &\equiv R(i)E(i).
\end{align*}
\]

\[
\begin{align*}
a_3 + a_2 + a_1 + a_0 &\equiv 3(1-b_0) \pmod{7} \\
a_3 + 4a_2 + 2a_1 + a_0 &\equiv 1(2-b_0) \pmod{7} \\
a_3 + 2a_2 + 3a_1 + a_0 &\equiv 6(3-b_0) \pmod{7} \\
a_3 + 2a_2 + 4a_1 + a_0 &\equiv 0(4-b_0) \pmod{7} \\
a_3 + 4a_2 + 5a_1 + a_0 &\equiv 3(5-b_0) \pmod{7}
\end{align*}
\]

\(a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5\) and \(b_2 = 2\).

\[
Q(x) = x^2 + 6x^2 + 6x + 5.
\]

\[
E(x) = x - 2.
\]
Example: finishing up.

$Q(x) = x^3 + 6x^2 + 6x + 5.$
$E(x) = x - 2.$

\[x^2 + 1 \\ x - 2 \]
\[x^3 + 6x^2 + 6x + 5 \\ x^3 - 2x^2 \\
1x^2 + 6x + 5 \\ 1x^2 - 2x \\
\]
\[x + 5 \\ x - 2 \\
0 \]

$P(x) = x^2 + x + 1$
Message is $P(1) = 3, P(2) = 0, P(3) = 6.$
What is $\frac{1}{x-2}$? Hole there?

Error Correction: Berlekamp-Welsh

Message: m_1, \ldots, m_n.

Sender:
1. Form degree $n-1$ polynomial $P(x)$ where $P(i) = m_i$.
2. Send $P(1), \ldots, P(n + 2k)$.

Receiver:
1. Receive $R(1), \ldots, R(n + 2k)$.
2. Solve $n+2k$ equations, $Q(i) = E(i)R(i)$ to find $Q(x) = E(x)P(x)$ and $E(x)$.
3. Compute $P(x) = Q(x)/E(x)$.
4. Compute $P(1), \ldots, P(n)$.

Check all values? Sure.
Efficiency? Sure. Only $n + 2k$ values.
See where it is 0.

Hmmm...

Is there one and only one $P(x)$ from Berlekamp-Welsh procedure?

Existence: there is a $P(x)$ and $E(x)$ that satisfy equations.

Unique solution for $P(x)$

Uniqueness: any solution $Q'(x)$ and $E'(x)$ have
\[
\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).
\]

Proof:
We claim
\[
Q'(x)E(x) = Q(x)E'(x)
\]
on $n + 2k$ values of x.

Equation 2 implies 1:
$Q'(x)E(x)$ and $Q(x)E'(x)$ are degree $n + 2k - 1$
and agree on $n + 2k$ points.
$E(x)$ and $E'(x)$ have at most k zeros each.
Can cross divide at n points.
\[
\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}
\]
equal on n points.
Both degree $\leq n - 1$ \implies Same polynomial!

Last bit.

Fact: $Q'(x)E(x) = Q(x)E'(x)$ on $n + 2k$ values of x.

Proof: Construction implies that
\[
Q(i) = R(i)E(i)
\]
\[
Q'(i) = R(i)E'(i)
\]
for $i \in \{1, \ldots, n + 2k\}$.
If $E(i) = 0$, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.
\[
Q(i)E'(i) = Q'(i)E(i)
\]
holds when $E(i)$ or $E'(i)$ are zero.

When $E'(i)$ and $E(i)$ are not zero
\[
\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).
\]
Cross multiplying gives equality in fact for these points.
Points to polynomials, have to deal with zeros!
Example: dealing with $\frac{1}{x-2}$ at $x = 2$.

Check your understanding.

You have error locator polynomial!
Where oh where have my packets gone wrong?
Factor? Sure.
Check all values? Sure.
Efficiency? Sure. Only $n + 2k$ values.
See where it is 0.
Yaay!!
Berlekamp-Welsh algorithm decodes correctly when k errors!

Cool.
Really Cool!

Poll
Say you sent a message of length 4, encoded as $P(x)$ where one sends packets $P(1), \ldots, P(8)$.
You receive packets $R(1), \ldots, R(8)$.

Packets 1 and 4 are corrupted.

(A) $R(1) \neq P(1)$
(B) The degree of $P(x)E(x)$ is $3 + 2 = 5$.
(C) The degree of $E(x)$ is 2.
(D) The number of coefficients of $P(x)$ is 4.
(E) The number of coefficients of $P(x)Q(x)$ is 6.

(E) is false.

(A) $E(x) = (x - 1)(x - 4)$
(B) The number of coefficients in $E(x)$ is 2.
(C) The number of unknown coefficients in $E(x)$ is 2.
(D) $E(x) = (x - 1)(x - 2)$
(E) $R(4) \neq P(4)$
(F) The degree of $R(x)$ is 5.

(A), (C), (E), (F) doesn't type check!

Summary. Error Correction.
Communicate n packets, with k erasures.

How many packets? $n + k$
How to encode? With polynomial, $P(x)$.
Of degree? $n - 1$
Recover? Reconstruct $P(x)$ with any n points!

Communicate n packets, with k errors.

How many packets? $n + 2k$
Why? k changes to make diff. messages overlap
How to encode? With polynomial, $P(x)$. Of degree? $n - 1$.
Recover?
Reconstruct error polynomial, $E(X)$, and $P(x)$!

Nonlinear equations.
Reconstruct $E(x)$ and $Q(x) = E(x)P(x)$. Linear Equations.
Polynomial division! $P(x) = Q(x)/E(x)$!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!