Solving for $Q(x)$ and $E(x)$... and $P(x)$

For all points $1,\ldots,i,n + 2k = m$,

$$Q(i) = R(i)E(i) \pmod p$$

Gives $n + 2k$ linear equations.

\[
\begin{align*}
 a_n &+ a_0 = R(1)(1 + b_0 + \cdots + b_0) \quad \pmod p \\
 a_{n-k} &+ \cdots + a_0 = R(2)(2^k + b_0 + \cdots + b_0) \quad \pmod p \\
 &\vdots \\
 a_{n-1} &+ \cdots + a_0 = R(m)(m^k + b_0 + \cdots + b_0) \quad \pmod p
\end{align*}
\]

... and $n + 2k$ unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of $Q(x)$ and $E(x)$.

Find $P(x) = Q(x)/E(x)$.

Review: Error Correction scheme.

Message “is” points on $P(x)$. (degree $n - 1$, $n + 2k$ points.)
Channel: Send $P(i)$, receive $R(i)$.
Errors are wrong values at $\leq k$ points.
Error locator polynomial:
$E(x) = (x - e_1)(x - e_2)\cdots(x - e_n) = x^k + b_k + \cdots + b_0$.
Find: $Q(x) = E(x)P(x) = a_n + \cdots + a_0$ and $E(x)$.
Using $n + 2k$ equations: $Q(i) = R(i)E(i)$.

Poll

Say you sent a message of length 4, encoded as $P(x)$ where one sends packets $P(1),\ldots,P(8)$.
You receive packets $R(1),\ldots,R(8)$.

Poll

What are the ideas?

(A) Multiply a wrong equation by zero makes it correct.
(B) Multiply by non-zero keeps it informative.
(C) A polynomial of degree k, can have exactly k zeros.
(D) Multiplying two polynomials gives a polynomial.
(E) $Q(i) = E(i)R(i)$ is linear in coeffs of Q and E.

Cool.

Really Cool!
Probability

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?

For now: Counting!
Later: Probability.

The future in this course.

What's to come? Probability.
A bag contains:

What is the chance that a ball taken from the bag is blue?

Count blue. Count total. Divide. Chances?
(A) Red Probability is 3/8
(B) Blue probability is 3/9
(C) Yellow Probability is 2/8
(D) Blue probability is 3/8
Today: Counting!

Outline: basics

1. Counting.
2. Tree
3. Rules of Counting
4. Sample with/without replacement where order does/doesn't matter.

Count?

How many outcomes possible for \(k \) coin tosses?
How many poker hands?
How many handshakes for \(n \) people?
How many diagonals in a \(n \) sided convex polygon?
How many 10 digit numbers?
How many 10 digit numbers without repetition?
How many ways can I divide up 5 dollars among 3 people?

Using a tree..

How many 3-bit strings?
How many different sequences of three bits from \{0,1\}?
How would you make one sequence?
How many different ways to do that making?

8 leaves which is \(2 \times 2 \times 2 \). One leaf for each string.
8 3-bit strings!
First Rule of Counting: Product Rule

Objects made by choosing from \(n_1 \), then \(n_2 \), ..., then \(n_k \) the number of objects is \(n_1 \times n_2 \times \cdots \times n_k \).

In picture, \(2 \times 2 \times 3 = 12! \)

Functions, polynomials.

How many functions \(f \) mapping \(S \) to \(T \)?
- \(|T| \) ways to choose for \(f(s_1) \), \(|T| \) ways to choose for \(f(s_2) \), ...
- \(\cdots |T|^{\left|S\right|^{\left|T\right|}} \)

How many polynomials of degree \(d \) modulo \(p \)?
- \(p \) ways to choose for first coefficient, \(p \) ways for second, ...
- \(\cdots p^{d+1} \)
- \(p \) values for first point, \(p \) values for second, ...
- \(\cdots p^{d+1} \)

Questions?

Poll

Mark what's correct.
- (A) \(|10 \text{ digit numbers}| = 10^{10} \)
- (B) \(|k \text{ coin tosses}| = 2^k \)
- (C) \(|10 \text{ digit numbers}| = 9 \times 10^9 \)
- (D) \(|n \text{ digit base } m \text{ numbers}| = m^n \)
- (E) \(|n \text{ digit base } m \text{ numbers}| = (m − 1)m^{n−1} \)

(A) or (C)? (D) or (E)? (B) are correct.

Permutations.

- How many 10 digit numbers without repeating a digit?
- \(10 \) ways for first, \(9 \) ways for second, \(8 \) ways for third, ...
- \(\cdots 10 \times 9 \times 8 = 10! \).\(^1\)
- How many different samples of size \(k \) from \(n \) numbers without replacement.
- \(n \) ways for first choice, \(n − 1 \) ways for second, ...
- \(\cdots n \times (n − 1) \times (n − 2) \times \cdots 1 = n! \)

- How many orderings of \(n \) objects are there?
- **Permutations of \(n \) objects.**
- \(n \) ways for first, \(n − 1 \) ways for second, ...
- \(\cdots n \times (n − 1) \times (n − 2) \times 1 = n! \).

\(^1\)By definition: \(0! = 1 \).

Using the first rule.

- How many outcomes possible for \(k \) coin tosses?
- 2 ways for first choice, 2 ways for second choice, ...
- \(2 \times 2 \times 2 = 2^k \)
- How many 10 digit numbers?
- \(10 \) ways for first choice, \(10 \) ways for second choice, ...
- \(10 \times 10 \times \cdots 10 = 10^k \)
- How many \(n \) digit base \(m \) numbers?
- \(m \) ways for first, \(m \) ways for second, ...
- \(m^n \)

(Is \(09 \), a two digit number?)
- If no. Then \((m − 1)m^{n−1} \).

One-to-One Functions.

- How many one-to-one functions from \(|S| \) to \(|S| \)?
- \(|S| \) choices for \(f(s_1) \), \(|S| − 1 \) choices for \(f(s_2) \), ...
- So total number is \(|S| \times |S| − 1 \cdots 1 = |S|! \)
- A one-to-one function is a permutation!
Counting sets...when order doesn’t matter.

How many poker hands?
52 × 51 × 50 × 49 × 48 ???

Are A, K, Q, 10, J of spades and 10, J, Q, K of spades the same?

Second Rule of Counting: If order doesn’t matter count ordered objects and then divide by number of orderings.²

Number of orderings for a poker hand: “5!”
(The “!” means factorial, not Exclamation.)

Can write as...
\[
\frac{52!}{51!} \times \frac{50!}{49!} \times \frac{48!}{47!}
\]

Generic: ways to choose 5 out of 52 possibilities.

²When each unordered object corresponds equal numbers of ordered objects.

Example: Visualize the proof.

First rule: \(n_1 \times n_2 \times \cdots \times n_k \). **Product Rule.**

Second rule: when order doesn’t matter divide...

3 card Poker deals: \(52 \times 51 \times 50 = \frac{51!}{48!} \). **First rule.**

Poker hands: \(\Delta \)?

Hand: Q, K, A.

Deals: Q, K, A: Q, A, K: K, A, Q: K, Q, A: A, Q, K.

\(\Delta = 3 \times 2 \times 1 \). **First rule again.**

Total: \(\frac{52!}{48!} \). **Second Rule!**

Choose k out of n.

Ordered set: \(\frac{n!}{(n-k)!} \). **First rule!**

\(\Delta \) \(\frac{n!}{(n-k)!} \). **Second rule!**

Example: Anagram

First rule: \(n_1 \times n_2 \times \cdots \times n_k \). **Product Rule.**

Second rule: when order doesn’t matter divide...

Orderings of ANAGRAM?

Ordered Set: 7!

A’s are the same!

What is \(\Delta \)?

ANAGRAM

A₁NA₂GRA₁M, A₂NA₁GRA₂M, ...

\(\Delta = 3 \times 2 \times 1 = 3! \). **First rule!**

\(\Rightarrow \frac{7!}{3!} \). **Second rule!**

Ordered to unordered.

Second Rule of Counting: If order doesn’t matter count ordered objects and then divide by number of orderings.

- How many red nodes (ordered objects)? 9.
- How many red nodes mapped to one blue node? 3.
- How many blue nodes (unordered objects)? \(\frac{9}{3} = 3 \).
- How many poker deals? \(52 \times 51 \times 49 \times 48 \).
- How many poker deals per hand?
 - Map each deal to ordered deal: 5!
 - How many poker hands? \(\frac{52 \times 51 \times 49 \times 48}{5!} \)

Questions?

..order doesn’t matter.

Choose 2 out of n?

\[
\frac{n \times (n-1)}{2} = \frac{n!}{(n-2)! \times 2}
\]

Choose 3 out of n?

\[
\frac{n \times (n-1) \times (n-2)}{3!} = \frac{n!}{(n-3)! \times 3!}
\]

Choose k out of n?

\[
\frac{n!}{(n-k)! \times k!}
\]

Notation: \(\binom{n}{k} \) and pronounced “n choose k.”

Questions?

Poll

Mark what’s correct.

(A) (Poker hands) \(\frac{52!}{51! \times 48!} \)
(B) Orderings of ANAGRAM \(\frac{7!}{3!} \)
(C) Orderings of “CAT” \(\frac{3!}{3!} \)
(D) Orders of MISSISSIPPI \(\frac{11!}{4!4!2!} \)
(E) Orderings of ANAGRAM \(\frac{7!}{3!} \)
(F) Orders of MISSISSIPPI \(\frac{11!}{10!} \)

(A)-(E) are correct.
Split up some money...

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice (2^5), divide out order ??

5 dollars for Bob and 0 for Alice:
one ordered set: (B,B,B,B,B).
4 for Bob and 1 for Alice:
5 ordered sets: (B,B,B,B,B) ; (B,A,B,B,B); ...

“Sorted” way to specify, first Alice’s dollars, then Bob’s.
(B,B,B,B,B) : 1 ; (B,B,B,B,B) ...
(A,B,B,B,B) : 5 ; (A,B,B,B,B) ,...
and so on.

How many different 5 star and 2 bar diagrams?
| ⋆ | ⋆ ⋆ ⋆ ⋆ .

7 positions in which to place the 2 bars.

Second rule of counting is no good here!

Summary.

First rule: \(n_1 \times n_2 \cdots \times n_3 \).

k Samples with replacement from n items: \(n^k \).

Second rule: when order doesn’t matter (sometimes) can divide...

Sample without replacement: \(\binom{n}{k} \)

Second rule: when order doesn’t matter (sometimes) can divide...

Sample without replacement and order doesn’t matter: \(\binom{n}{k} \times \frac{k!}{(n-k)!} \).

One-to-one rule: equal in number if one-to-one correspondence.

Pause Bijection!

Sample k times from n objects with replacement and order doesn’t matter: \(\binom{n+k-1}{k} \).

Problem: depends on how many of each item we chose!

Different number of unordered elts map to each unordered elt.

Unordered elt: \(1,2,3 \) 3! ordered elts map to it.

Unordered elt: \(1,2,2 \) 2! ordered elts map to it.

How do we deal with this mess??

Session Practice.

How many orderings of letters of CAT?
3 ways to choose first letter, 2 ways for second, 1 for last.

How many orderings of the letters in ANAGRAM?

Ordered, except for A!
total orderings of 7 letters, 7!
total “extra counts” or orderings of three A’s? 3!
Total orderings? \(\frac{7!}{3!} \)

How many orderings of MISSISSIPPI?
4 S’s, 4 I’s, 2 P’s.

11 letters total.
11! ordered objects.
4! x 4! x 2! ordered objects per “unordered object”

\(\frac{11!}{(4!)^2 \times 2!} \)

Second rule of counting is no good here!

How do we deal with this mess??

Splitting 5 dollars...

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: ...

Each split “is” a sequence of stars and bars.
Each sequence of stars and bars “is” a split.

Counting Rule: if there is a one-to-one mapping between two sets they have the same size!

Sampling...

Sample k items out of n

Without replacement:

Order matters: \(n \times n-1 \times n-2 \cdots \times n-k+1 = \frac{n!}{(n-k)!} \)

Order does not matter:

Second Rule: divide by number of orders “k!”

\(\frac{n!}{(n-k)! \times k!} \)

“n choose k”

With Replacement.

Order matters: \(n \times n \times \cdots \times n = n^k \)

Order does not matter: Second rule ??

Problem: depends on how many of each item we chose!

Different number of unordered elts map to each unordered elt.

Unordered elt: \(1,2,3 \) 3! ordered elts map to it.

Unordered elt: \(1,2,2 \) 2! ordered elts map to it.

How do we deal with this mess??

Stars and Bars.

How many different 5 star and 2 bar diagrams?

| ⋆ | ⋆ ⋆ ⋆ ⋆ .

7 positions in which to place the 2 bars.

| ⋆ | ⋆ ⋆ ⋆ ⋆ |

Bars in first and third position.

| ⋆ | ⋆ ⋆ ⋆ ⋆ |

Bars in second and seventh position.

\(\binom{5}{2} \) ways to do so and \(\binom{5}{2} \) ways to split 5 dollars among 3 people.
Stars and Bars.

Ways to add up \(n \) numbers to sum to \(k \)? or

"\(k \) from \(n \) with replacement where order doesn’t matter."

In general, \(k \) stars \(n - 1 \) bars.

\[\binom{n+k-1}{n-1} \]

\(n+k-1 \) positions from which to choose \(n-1 \) bar positions.

Or: \(k \) unordered choices from set of \(n \) possibilities with replacement. Sample with replacement where order doesn’t matter.

Quick review of the basics.

First rule: \(n_1 \times n_2 \times \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).

Sample without replacement: \(\frac{n^k}{k!} \).

Second rule: when order doesn’t matter divide

"\(n \) choose \(k \)"

One-to-one rule: equal in number if one-to-one correspondence.

Distribute \(k \) dollars to \(n \) people.

Summary.

First rule: \(n_1 \times n_2 \times \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).

Sample without replacement: \(\frac{n^k}{k!} \).

Second rule: when order doesn’t matter (sometimes) can divide...

Sample without replacement and order doesn’t matter: \(\binom{n}{k} = \frac{n!}{k!(n-k)!} \).

"\(n \) choose \(k \)"

One-to-one rule: equal in number if one-to-one correspondence.

Pause Bijection!

Sample \(k \) times from \(n \) objects with replacement and order doesn’t matter: \(\binom{n+k-1}{n-1} \).

Poll

Mark what’s correct.

(A) ways to split \(k \) dollars among \(n \): \(\binom{k+n-1}{n-1} \)

(B) ways to split \(n \) dollars among \(k \): \(\binom{n+k-1}{k-1} \)

(C) ways to split 5 dollars among 3: \(\binom{5+3-1}{3-1} \)

(D) ways to split 5 dollars among 3: \(\binom{7}{5} \)

All correct.

Sampling...

Sample \(k \) items out of \(n \)

Without replacement:

Order matters: \(n \times n-1 \times n-2 \times \cdots \times n-k+1 = \frac{n!}{(n-k)!} \)

Order does not matter:

Second Rule: divide by number of orders – \("k!" \)

\(\binom{n}{k} \) = \(\frac{n!}{k!(n-k)!} \)

"\(n \) choose \(k \)"

With Replacement:

Order matters: \(n \times n \times \cdots \times n = n^k \)

Order does not matter: Second rule ???

Problem: depends on how many of each item we chose!

Different number of unordered elts map to each unordered elt.

Unordered elt: 1, 2, 3 \(3! \) ordered elts map to it.

Unordered elt: 1, 2, 2 \(3 \) ordered elts map to it.

How do we deal with this mess??
Splitting up some money...

How many ways can Bob and Alice split 5 dollars?
For each of 5 dollars pick Bob or Alice (2^5), divide out order.
5 dollars for Bob and 0 for Alice: one ordered set: (B, B, B, B, B).
4 for Bob and 1 for Alice: 5 ordered sets: (A, B, B, B, B), (B, A, B, B, B), ...
“Sorted” way to specify, first Alice’s dollars, then Bob’s.
(A, B, B, B, B): 5 ordered sets: (A, B, B, B, B), (B, A, B, B, B), ...
(A, A, B, B, B): 3 ordered sets: (A, A, B, B, B), (A, B, A, B, B), ...
and so on.

Second rule of counting is no good here!

Splitting 5 dollars..

How many ways can Alice, Bob, and Eve split 5 dollars.
Alice gets 3, Bob gets 1, Eve gets 1: (A, A, B, B, E).
Separate Alice’s dollars from Bob’s and then Bob’s from Eve’s.
Five dollars are five stars: ******.
Alice: 2, Bob: 1, Eve: 2.
Stars and Bars: *|*|*|*|*.
Alice: 0, Bob: 1, Eve: 4.
Stars and Bars: |*|*|*|*|*.
Each split “is” a sequence of stars and bars.
Each sequence of stars and bars “is” a split.
Counting Rule: if there is a one-to-one mapping between two sets they have the same size!

Stars and Bars.

Ways to add up n numbers to sum to k? or “k from n with replacement where order doesn’t matter.”
In general, k stars n−1 bars.

|***|*|*|*|

n + k -1 positions from which to choose n−1 bar positions.

\[
\binom{n+k-1}{n-1}
\]
Or: k unordered choices from set of n possibilities with replacement. Sample with replacement where order doesn’t matter.