

The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about. Probability:

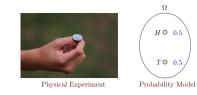
Precise, unambiguous, simple(!) way to reason about uncertainty.

Uncertainty = Fear Probability = Serenity Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.

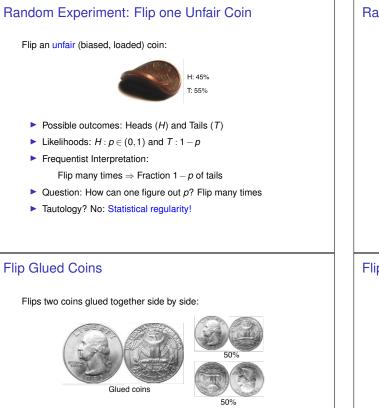
Random Experiment: Flip one Fair Coin

Flip a fair coin: model



The physical experiment is complex. (Shape, density, initial momentum and position, ...)

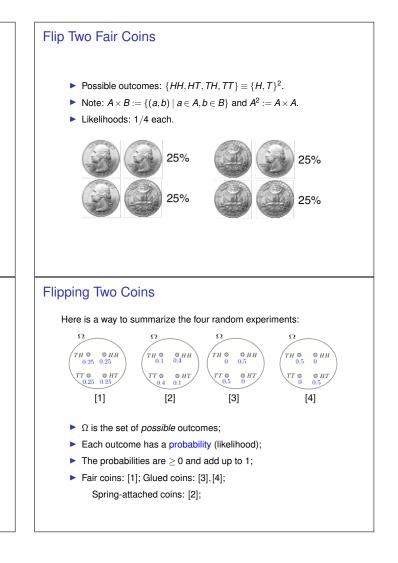
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: Pr[H] = 0.5, Pr[T] = 0.5.



- ► Possible outcomes: {*HT*, *TH*}.
- ► Likelihoods: *HT* : 0.5, *TH* : 0.5.
- Note: Coins are glued so that they show different faces.

Random Experiment: Flip one Unfair Coin

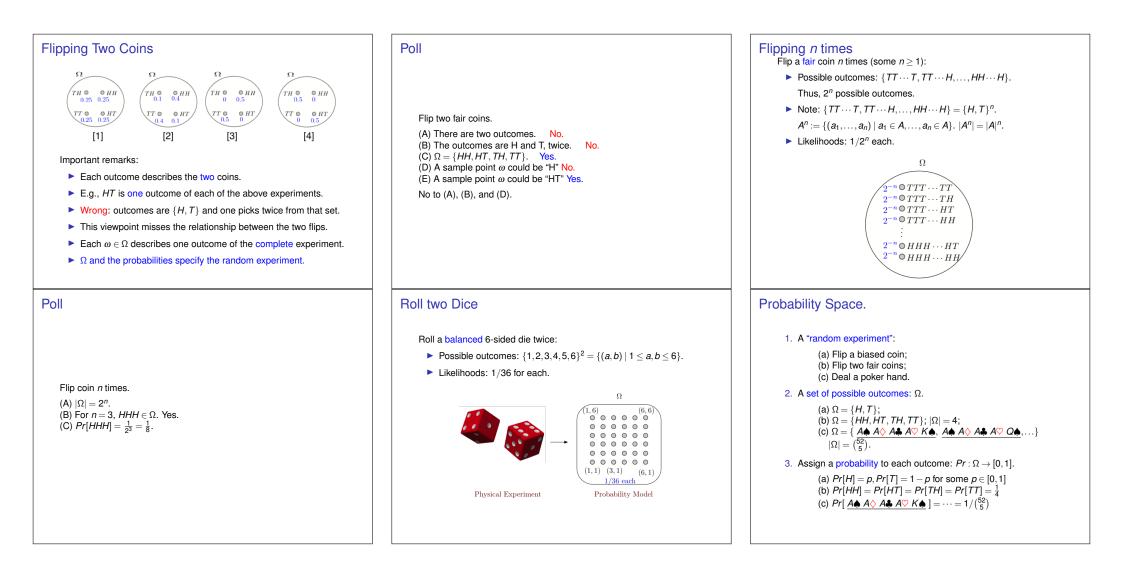
Flip an unfair (biased, loaded) coin: model

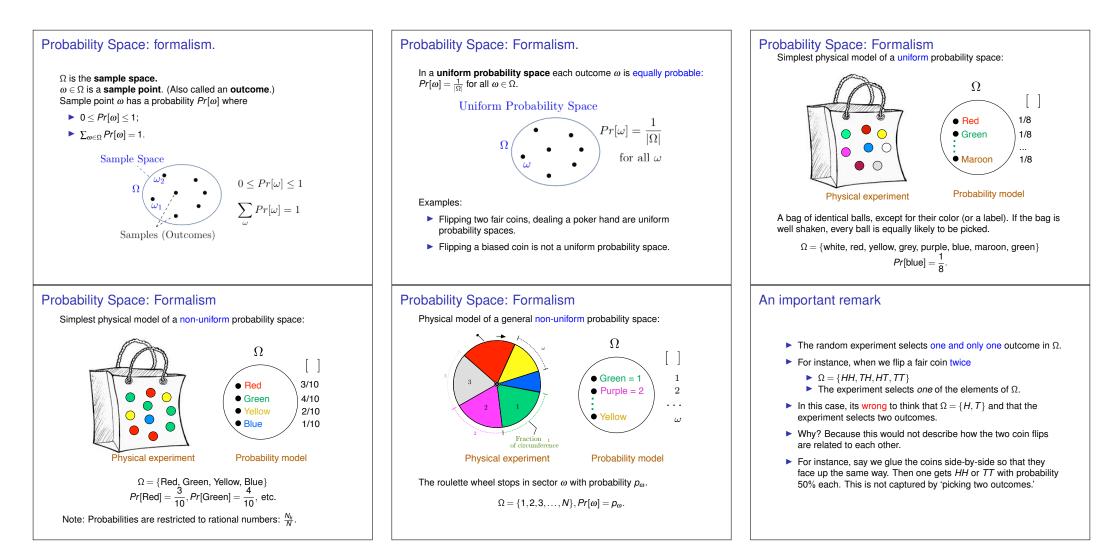


Flip two Attached Coins

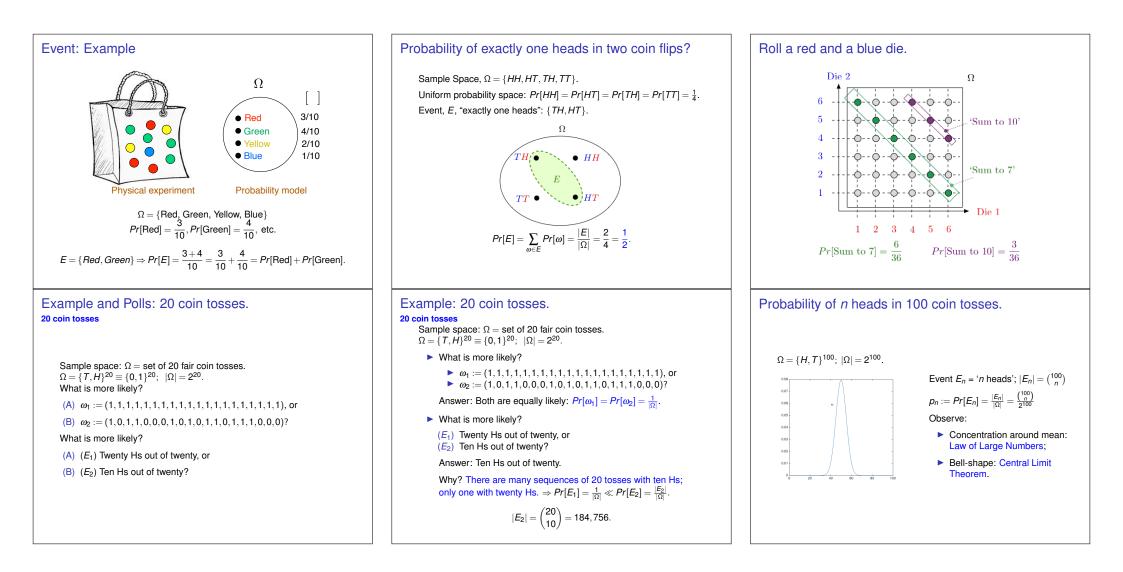
Flips two coins attached by a spring:

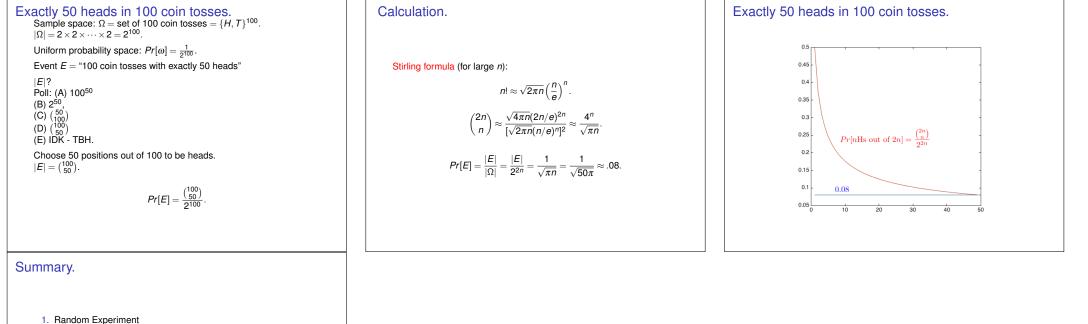
- ► Possible outcomes: {*HH*, *HT*, *TH*, *TT*}.
- Likelihoods: *HH* : 0.4, *HT* : 0.1, *TH* : 0.1, *TT* : 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.





Summary of Probability Basics	Onwards in Probability.	CS70: On to Events.
Modeling Uncertainty: Probability Space 1. Random Experiment 2. Probability Space: Ω ; $Pr[\omega] \in [0,1]; \sum_{\omega} Pr[\omega] = 1$. 3. Uniform Probability Space: $Pr[\omega] = 1/ \Omega $ for all $\omega \in \Omega$. Bag of marbles. With possibly different probabilities for each marble	Events, Conditional Probability, Independence, Bayes' Rule	Events, Conditional Probability, Independence, Bayes' Rule
Probability Basics Review Setup: • Random Experiment. Flip a fair coin twice. • Probability Space. • Sample Space: Set of outcomes, Ω . $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!) • Probability: $Pr[\omega]$ for all $\omega \in \Omega$. $Pr[HH] = \cdots = Pr[TT] = 1/4$ 1. $0 \le Pr[\omega] \le 1$. 2. $\Sigma_{\omega \in \Omega} Pr[\omega] = 1$.	$\begin{array}{c c} \textbf{Set notation review} \\ \Omega \\ \hline \Omega \\ \hline \\ \textbf{Figure: Two events} \\ \Omega \\ \hline \\ \textbf{Figure: Two events} \\ \textbf{Figure: Union (or)} \\ \hline \\ \Omega \\ \hline \\ \Omega \\ \hline \\ \textbf{Figure: Complement (not)} \\ \hline \\ \textbf{Figure: Intersection} \\ \textbf{Rigure: Symmetric difference (only one)} \\ \hline \\ \textbf{Figure: Symmetric difference (only one)} \\ \hline \\ \textbf{Figure: Symmetric difference (only one)} \\ \hline \\ \hline \\ \textbf{Figure: Symmetric difference (only one)} \\ \hline \\ $	Probability of exactly one 'heads' in two coin flips? Idea: Sum the probabilities of all the different outcomes that have exactly one 'heads': <i>HT</i> , <i>TH</i> . This leads to a definition! Definition: • An event, <i>E</i> , is a subset of outcomes: $E \subset \Omega$. • The probability of <i>E</i> is defined as $Pr[E] = \sum_{\omega \in E} Pr[\omega]$. Sample Space $Pr[E] = \sum_{\omega \in E} Pr[\omega]$ Samples (Outcomes) $Pr[E] = \frac{1}{ \Omega }$ $Pr[E] = \frac{ E }{ \Omega }$





- 2. Probability Space: Ω ; $Pr[\omega] \in [0, 1]$; $\sum_{\omega} Pr[\omega] = 1$.
- 3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega$.
- 4. Event: "subset of outcomes." $A \subseteq \Omega$. $Pr[A] = \sum_{w \in A} Pr[\omega]$
- 5. Some calculations.

Draw a marble from a bag.

- (A) What is the set of marbles? Sample Space Ω . (B) What is a marble? Sample point: $\omega \in \Omega$.
- (C) What is the set of blue marbles? $A \subseteq \Omega$. An event.