Lecture 17

Bayes Rule & Applications in CS.
Lecture 16 Summary

- Probability is additive

- Union Bound \(\Pr(A_1 \cup \ldots \cup A_n) \leq \Pr(A_1) + \ldots + \Pr(A_n) \)

- Inclusion-Exclusion \(\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \)

- Total probability: if \(A_1, \ldots, A_n \) is a partition of \(\Omega \)
 then \(\Pr(B) = \Pr(A_1 \cap B) + \ldots + \Pr(A_n \cap B) \)

- Conditional probability: \(\Pr(B | A) = \frac{\Pr(A \cap B)}{\Pr(A)} \)

- Independence: \(\Pr(A \cap B) = \Pr(A) \cdot \Pr(B) \)

- Correlation: \(\Pr(A \cap B) > \Pr(A) \cdot \Pr(B) \)

- Bayes Rule
Total Probability with Conditional Probability

Assume \(\Omega \) is a union of disjoint events \(A_1, \ldots, A_n \)

Since \(B \) is the disjoint union of \(B \cap A_1, \ldots, B \cap A_n \)

\[
\Pr[B] = \Pr[B \cap A_1] + \ldots + \Pr[B \cap A_n]
\]

Thus, by the product rule

\[
\Pr[B] = \Pr[A_1] \cdot \Pr[B | A_1] + \ldots + \Pr[A_n] \cdot \Pr[B | A_n]
\]
Total Probability Rule with Conditional Probability

Prior Prob.

Conditional Prob.

\[\Pr[B] = \Pr[A_1] \cdot \Pr[B|A_1] + \ldots + \Pr[A_n] \cdot \Pr[B|A_n] \]
Bayes Rule

Suppose you know $Pr[B|A], Pr[A], Pr[B]$

What's $Pr[A|B]$?

$$Pr[A|B] = \frac{Pr[AnB]}{Pr[B]} = \frac{Pr[A] \cdot Pr[B|A]}{Pr[B]}$$
Bayes Rule Example #1

Experiment:

1. Pick at random either a fair coin or a biased coin with 60% chance heads.
2. Toss the coin you picked

$\Omega = \{(\text{fair, H}), (\text{fair, T}), (\text{biased, H}), (\text{biased, T})\}$

$A =$ "coin is fair" $B =$ "got H"

WTK: $Pr[A|B] = \frac{Pr[AnB]}{Pr[B]} = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{0.25}{Pr[B]}$

$Pr[B] = Pr[A]Pr[B|A] + Pr[\overline{A}]Pr[B|\overline{A}]$

$= 0.5 \times 0.5 + 0.5 \times 0.6 = 0.55$
Bayes

\[P_r(A|B) = \frac{P_r(A) \cdot P_r(B|A)}{P_r(B)} \]

Bayes Rule (Updated)

\[P_r(A|B) = \frac{P_r(A) \cdot P_r(B|A)}{P_r(A) \cdot P_r(B|A) + P_r(A^\perp) \cdot P_r(B|A^\perp)} = \frac{p_1}{p_1 + (1-p) q_2} \]
Bayes Rule Example #2

Suppose there's a disease that occurs in 0.001 of the population.

There's a test for the disease.

For a random person: $P(\text{test positive} \mid \text{sick}) = 0.99$

$P(\text{test positive} \mid \text{not sick}) = 0.01$

A random person arrives and tests positive.

Q: What's the likelihood that he has the disease?
$\Pr[\text{sick}] = 0.001$

$\Pr[\text{positive} | \text{sick}] = 0.99$

$\Pr[\text{positive} | \text{not sick}] = 0.01$

WTK: $\Pr[\text{sick} | \text{positive}]$

$$\Pr[A|B] = \frac{\Pr[A \cap B]}{\Pr[B]}$$

$$= \frac{\Pr[A] \cdot \Pr[B|A]}{\Pr[A] \cdot \Pr[B|A] + \Pr[A^c] \cdot \Pr[B|A]}$$

$$= \frac{0.001 \times 0.99}{0.001 \times 0.99 + 0.999 \times 0.01}$$

$$\approx 0.09$$
Primality Testing

\[n \rightarrow \text{Primality Testing} \rightarrow \begin{cases} \text{yes} & \text{if } n \text{ is prime} \\ \text{no} & \text{if } n \text{ is composite} \end{cases} \]

Properties:
- If \(n \) is prime, always output "yes".
- If \(n \) is composite, outputs "no" w.p. \(1 - \frac{1}{1000} \).

What's \(\Pr[C_n \text{ is prime} | \text{output is "yes"}] \)?

For that, \(n \) should be random as well.
- Pick \(n \in [2^{511}, 2^{512}) \) uniformly at random.
Primality Testing

\[
\begin{align*}
\Pr[A|B] &= \frac{p_1}{p_1 + (1-p)q_2} \\
A = \text{"n is prime"} &\quad B = \text{"answer is yes"} \\
p &= \frac{1}{350} & q_1 &= 1 & q_2 &= \frac{1}{1000} \\
\Pr[A|B] &= \frac{p \cdot q_1}{p \cdot q_1 + (1-p) \cdot q_2} = \frac{1}{350} + \frac{350 \cdot 1}{350 \cdot 1000} \approx 0.74
\end{align*}
\]
Poll: How many students do you need to have in a classroom so that you'll definitely have a pair of students with the same birthday?

A: 23
B: 365
C: 366
D: 365 \times 364
How many students do you need to have in a classroom so that you'll have a pair of students with the same birthday w.p. $\geq \frac{1}{2}$.
Birthday Paradox

Assumption: Each student has a uniformly random birthday out of the 365 options.

\[\Omega = \{ (x_1, \ldots, x_k) : \forall i \ 1 \leq x_i \leq 365 \} \quad |\Omega| = 365^k \]

\[E = \text{"no collision"} = \{ (x_1, \ldots, x_k) : \text{for all } i < j, x_i \neq x_j \} \]

\[|E| = 365 \cdot 364 \cdots (365 - k + 1) \]

\[Pr[E] = \frac{|E|}{|\Omega|} = \frac{365 \cdots (365 - k + 1)}{365^k} \]

By tedious calculation, when \(k = 23 \), \(Pr[E] \leq 0.5 \)

and hence \(Pr[\text{exists a collision}] > 0.5 \)
Birthday Paradox

Assumption: Each student has a uniformly random birthday out of the 365 options.

\(k \) students.

\[\Omega = \{ (x_1, \ldots, x_k) : \forall i \ 1 \leq x_i \leq 365 \} \]

\(E = \text{"no collision"} = \{ (x_1, \ldots, x_k) : \text{For all } i < j, x_i \neq x_j \} \)

\(\bar{E} = \text{"\exists collision"} = \{ (x_1, \ldots, x_k) : \exists i < j \text{ s.t. } x_i = x_j \} \)

How to get a simple upper bound on \(\Pr[\bar{E}] \)?

For \(1 \leq i < j \leq k \) let \(A_{ij} \) be the event indicating "\(x_i = x_j \)"

\[\Pr[\bar{E}] = \Pr[\bigcup_{1 \leq i < j \leq k} A_{ij}] \leq \sum_{1 \leq i < j \leq k} \Pr(CA_{ij}) = \binom{k}{2} \cdot \frac{1}{365} \]
Birthday Paradox in Computing

You create a hash table of size \(n \) and add \(k \) elements to it using a random hash function.

Q: What's the prob. for a collision?

\[
\Pr[\text{no collision}] = \frac{n \cdots (n-k+1)}{n^k}
\]

\[
\Pr[\exists \text{ collision}] \leq \sum_{1 \leq i < j \leq k} \Pr[\text{elements } i \& j \text{ collide}] = (k) \cdot \frac{1}{n}.
\]
What's the maximum capacity?

Let \(j \) be a parameter.

Denote by \(A_j = \) "there exists a bin with \(\geq j \) balls".

\[\Pr[A_j] = ? \]

Let \(A_{j,1}, A_{j,2}, \ldots, A_{j,n} \) be events \(A_{j,i} = \) "bin \(i \) has \(\geq j \) balls".

\[A_j = A_{j,1} \cup A_{j,2} \cup \cdots \cup A_{j,n}, \quad \Pr[A_j] \leq \sum_{i=1}^{n} \Pr[A_{j,i}] \]
What's the maximum capacity?

$A_{j,i} = " \text{bin } \# i \text{ has } \geq j \text{ balls}" \quad A_{j} = " \exists \text{ bin with } \geq j \text{ balls}"

$\Pr[A_{j,i}] \leq \binom{n}{j} \cdot \frac{n^{n-j}}{n^n} = \left(\frac{n}{j} \right) \cdot \frac{1}{n^j} = \frac{n \ldots (n-j+1)}{j! \cdot n^j} \leq \frac{1}{j!}$

$\Pr[A_{j}] \leq \Pr[A_{j,1}] + \ldots + \Pr[A_{j,n}] \leq n \cdot \frac{1}{j!}$

For example, for $n = 1,000,000$, $j = 10$, $\Pr[A_{j}] \leq 0.28$
Independence

We say that events A and B are independent if

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B].$$

Example: Toss two fair coins

- $A =$ "first coin is H"
- $B =$ "second coin is H"
- $C =$ "same result"

Poll: Which are independent

1: A, B
2: A, C
3: B, C
Independence

We say that events A and B are independent if $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$.

Example: Toss two fair coins

$A = "\text{first coin is } H\"$

$B = "\text{second coin is } H\"$

$C = "\text{same result }\"

$A \& B$ are indep.

$A \& C$ are indep.

$B \& C$ are indep.
Independence

We say that events A and B are independent if $\Pr[A \cap B] = \Pr[A] \cdot \Pr[B]$.

Example: Toss two fair coins

$A = \text{"first coin is H"}$
$B = \text{"second coin is H"}$
$C = \text{"same result"}$

Are A, B, C independent together?

$\Pr[C \mid A \cap B] = 1$
Definition Pairwise Independence

We say that events A_1, \ldots, A_n are pairwise independent if

$$\forall \ i \neq j \quad A_i \text{ and } A_j \text{ are independent}.$$

Definition Mutual Independence

We say that events A_1, A_2, A_3 are mutually independent if they are pairwise independent and

$$\Pr(A_1 \cap A_2 \cap A_3) = \Pr(A_1) \cdot \Pr(A_2) \cdot \Pr(A_3).$$
Definition Pairwise Independence

We say that events A_1, \ldots, A_n are pairwise independent if for all $i \neq j$, A_i and A_j are independent.

Definition Mutual Independence

We say that events A_1, \ldots, A_n are mutually independent if for each non-empty subset $I = \{1, \ldots, n\}$, $\Pr[\bigcap_{i \in I} A_i] = \prod_{i \in I} \Pr[A_i]$.
Secret Sharing

n shares threshold 3

Degree a polynomial

How to pick the polynomial:

1. Pick \(s = a_0 \in \{0, 1, \ldots, p-1\} \) uniformly at random.
2. Pick \(a_1, a_2 \in \{0, 1, \ldots, p-1\} \)

\[
f(x) = a_2 x^2 + a_1 x + a_0
\]

Share \(i \): \(f(i) \)

\[
\Pr \left[\left. s = a \right| f(x_1) = y_1, f(x_2) = y_2 \right] = \frac{\Pr \left[s = a, f(x_1) = y_1, f(x_2) = y_2 \right]}{\Pr \left[f(x_1) = y_1, f(x_2) = y_2 \right]} = \frac{1/p^3}{y/p^3} = \frac{1}{p}
\]
Secret Sharing

\(n \) shares threshold 3

Degree a polynomial

How to pick the polynomial: let \(p > n \) be a prime

1. Pick \(s = a_0 \in \{0, 1, \ldots, p-1\} \) uniformly at random.
2. Pick \(a_1, a_2 \in \{0, 1, \ldots, p-1\} \)

\[f(x) = a_2 x^2 + a_1 x + a_0 \]

Share \(i \): \(f(i) \)

Every three shares are independent:

\[\Pr[f(x_1) = y_1 \land f(x_2) = y_2 \land f(x_3) = y_3] = \frac{1}{p^3} \]

but 4 shares are not.