CSTO – Spring 2024
Lecture 17 – March 14
Review of Previous Lecture

- **Conditional Probability**
 \[P(A|B) = \frac{P(A \cap B)}{P(B)} \]

- **Correlation & Independence**
 \[P(A|B) > P(A) \quad \Rightarrow A, B \text{ positively correlated} \]
 \[P(A|B) < P(A) \quad \Rightarrow A, B \text{ negatively correlated} \]
 \[P(A|B) = P(A) \quad \Rightarrow A, B \text{ independent} \]
 \(\iff \) equivalently: \[P(A \cap B) = P(A)P(B) \]
Review (cont.)

Intersections of Events: Product Rule

\[P(A \cap B) = P(B) \cdot P(A|B) \]
\[P(\bigcap_{i=1}^{n} A_i) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2) \cdot \ldots \cdot P(A_n|A_1 \cap \ldots \cap A_{n-1}) \]

Unions of Events: Inclusion-Exclusion

\[P(A \cup B) = P(A) + P(B) - P(A \cap B) \]
\[P(\bigcup_{i=1}^{n} A_i) = \sum_{i} P(A_i) - \sum_{i<j} P(A_i \cap A_j) + \sum_{i<j<k} P(A_i \cap A_j \cap A_k) - \ldots \]

Union Bound: \[P(\bigcup_{i=1}^{n} A_i) \leq \sum_{i=1}^{n} P(A_i) \]
Review (cont.)

- **Law of Total Probability**

 If A_1, \ldots, A_n partition \mathcal{R} then
 \[
 \Pr[B] = \sum_i \Pr[B \cap A_i] = \sum_i \Pr[B | A_i] \Pr[A_i]
 \]

 In particular:
 \[
 \Pr[B] = \Pr[B | A] \Pr[A] + \Pr[B | A] \Pr[A]
 \]

- **Bayes Rule**

 \[
 \Pr[A | B] = \frac{\Pr[B | A] \Pr[A]}{\Pr[B]} = \frac{\Pr[B | A] \Pr[A]}{\Pr[B | A] \Pr[A] + \Pr[B | A] \Pr[A]}
 \]

 can be computed if we know $\Pr[B | A], \Pr[B | A], \Pr[A]$
Today

Some applications of basic probability:

- Hashing (Birthday "Paradox")
- Coupon Collecting
- Load Balancing

We will use:

- Concepts from last lecture (Union Bound, Product Rule, ...)
- Asymptotics (large-n approximations)
Balls & Bins Model

Throw \(m \) balls uniformly at random into \(n \) bins

\[\Omega = \{1, \ldots, n\} \times \{1, \ldots, n\} \times \cdots \times \{1, \ldots, n\} \]

\(|\Omega| = n^m \)

[Each ball has choice of \(n \) bins]

Probability space is uniform:

for every \(\omega = (b_1, \ldots, b_m) \),

\[\Pr[\omega] = \frac{1}{|\Omega|} = \frac{1}{n^m} . \]

E.g. \(n = m = 2 \)

\[|\Omega| = 2^2 = 4 \]

\[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
\text{1} & \text{2} & \text{1} & \text{2} \\
\end{array} \]
Events in Balls & Bins

E.g. $E = \text{“bin 1 is empty”}$

(i) Calculating $\Pr [E]$ using counting

Since prob. space is uniform, we have

$$\Pr [E] = \frac{|E|}{|\Omega|} = \frac{|E|}{n^m}$$

$|E|$ = # of ways of arranging balls s.t. Bin 1 is empty

$= (n-1)^m$

Each ball now has only $n-1$ choices

So $\Pr [E] = \frac{(n-1)^m}{n^m} = \left(1 - \frac{1}{n}\right)^m$

Example: If $m=n$ then $\Pr [E] = \left(1 - \frac{1}{n}\right)^n \sim \frac{1}{e} \approx 0.37$
Events in Balls & Bins

E.g. \(E = \text{"bin 1 is empty"} \)

(ii) Calculating \(\Pr[E] \) using Product Rule

Define \(A_i = \text{"ith ball doesn't go to bin 1"} \)

\[\Pr[A_i] = 1 - \frac{1}{n} \quad \text{for all } i \]

\[E = \bigcap_{i=1}^{\infty} A_i \]

\[\Pr[E] = \Pr[A_1] \times \Pr[A_2 | A_1] \times \Pr[A_3 | A_1 \cap A_2] \times \ldots \times \Pr[A_m | A_1 \cap A_2 \cap \ldots \cap A_{m-1}] \]

\[= \Pr[A_1] \times \Pr[A_2] \times \ldots \times \Pr[A_m] \]

because the \(A_i \) are mutually independent!

\[= \left(1 - \frac{1}{n}\right)^m \]

same as before!
Application 1 : Hashing

Suppose we want to hash m keys into a hash table of size n.

Use a random hash function h that sends keys independently & u.a.r. to table locations.

To ADD a key $x \in U$:
Store x at location $h(x)$ (using linked list if necessary).

To DELETE a key $x \in U$:
Remove x from location $h(x)$.

To perform a MEMBER query for $x \in U$:
Check if x is stored at location $h(x)$.

Goal: Avoid collisions (\rightarrow linked lists)
Q: How large can \(m \) be (as a function of \(n \)) so that the probability of collisions is small?

Analysis: Balls & bins!

- Keys = balls, Table locations = bins

Q: In balls & bins with \(m \) balls, \(n \) bins, how large can \(m \) be so that (with good probability) no two balls land in same bin?

For now, “with good probability” = “with prob. \(\geq \frac{1}{2} \)”
Rough calculation: Union Bound

For each (unordered) pair of balls \(\{i, j\} \) with \(i \neq j \), let \(C_{i,j} \) denote the event that \(i, j \) land in same bin. Then \(\Pr [C_{i,j}] = \frac{1}{n} \).

\[\Pr [\bigcup C_{i,j}] \leq \sum_{\{i,j\}} \Pr [C_{i,j}] = \left(\binom{m}{2} \right) \times \frac{1}{n} \leq \frac{m^2}{2n} \]
Union bound:
\[
\Pr \left[\bigcup_{\{i,j\}} C_{\{i,j\}} \right] \leq \sum_{\{i,j\}} \Pr \left[C_{\{i,j\}} \right] = \left(\frac{m}{2} \right) \times \frac{1}{n} \leq \frac{m^2}{2n}
\]

We want this prob. to be small (say, \(\leq \frac{1}{2} \))
So we want \(\frac{m^2}{2n} \leq \frac{1}{2} \)

i.e., \(m \leq \sqrt{n} \) (or \(n \geq m^2 \))

To get smaller collision prob. \(\varepsilon \), just take \(m \leq \sqrt{2\varepsilon n} \)

Bottom line: If the size of our hash table is roughly the square of the number of keys to be stored, then we're likely to have no collisions.
More accurate calculation

Let A be the event “no collision occurs”.
Then we can calculate $\Pr[A]$ exactly as:

$$\Pr[A] = \frac{|A|}{|\Omega|} = \frac{|A|}{n^m}$$

Q: What is $|A|$?

A: Number of ways of arranging the m balls in different bins
 = \# ways of choosing m items out of n without replacement
 = $n \times (n-1) \times (n-2) \times \ldots \times (n-m+1)$

So

$$\Pr[A] = \frac{n(n-1)(n-2)\ldots(n-m+1)}{n^m} = 1 \left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\ldots\left(1-\frac{m-1}{n}\right)$$
Alternatively, using Product Rule:
Let A_i = "ball i chooses different bin from balls $1, \ldots, i-1$"
Then $A = A_1 \cap A_2 \cap \ldots \cap A_m$
And $\Pr[A] = \Pr \left[\bigcap_{i=1}^{m} A_i \right]$

$$= \Pr[A_1] \times \Pr[A_2 | A_1] \times \Pr[A_3 | A_1 \cap A_2] \times \ldots \times \Pr[A_m | A_1 \cap \ldots \cap A_{m-1}]$$

$$= 1 \times \left(1 - \frac{1}{n}\right) \times \left(1 - \frac{2}{n}\right) \times \ldots \times \left(1 - \frac{m-1}{n}\right)$$

same as above (phew!)

Since this is an exact formula for $\Pr[A]$, we can just fix any n and compute it for larger & larger values of m until $\Pr[A]$ drops to $\frac{1}{2}$ (phew!)
<table>
<thead>
<tr>
<th>N</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>365</th>
<th>500</th>
<th>1000</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_0</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>26</td>
<td>37</td>
<td>118</td>
<td>372</td>
<td>1177</td>
</tr>
</tbody>
</table>

$m_0 = \text{largest } m \text{ for which collision prob. remains below } \frac{1}{2}$
Can we get a formula for \(m_0 \)?

\[
Pr[A] = (1 - \frac{1}{n})(1 - \frac{2}{n}) \cdots (1 - \frac{m-1}{n})
\]

\[
\ln Pr[A] = \ln \left(1 - \frac{1}{n}\right) + \ln \left(1 - \frac{2}{n}\right) + \cdots + \ln \left(1 - \frac{m-1}{n}\right)
\]

\[
\ln(1-x) \approx -x \quad \text{for } x \text{ small}
\]

\[
\approx \left(-\frac{1}{n}\right) + \left(-\frac{2}{n}\right) + \cdots + \left(-\frac{m-1}{n}\right)
\]

\[
= -\frac{1}{n} \sum_{i=1}^{m-1} i
\]

\[
= -\frac{1}{n} \cdot \frac{m(m-1)}{2}
\]

\[
\approx -\frac{m^2}{2n}
\]

Hence

\[
Pr[A] \approx \mathcal{C}^{-\frac{m^2}{2n}}
\]
\[\Pr[A] = e^{-\frac{m^2}{2n}} \]

Want \(\Pr[A] = \frac{1}{2} \) (or \(\Pr[A] = 1 - \varepsilon \))

This means

\[e^{-\frac{m^2}{2n}} = \frac{1}{2} \]

\[m^2 = (2\ln 2)n \]

So a more accurate bound is

\[m \leq \sqrt{(2\ln 2)n} \]

\approx 1.177\sqrt{n}

More generally (for collision probability \(\varepsilon \))

\[m \leq \sqrt{2\ln \left(\frac{1}{\varepsilon} \right)} \cdot \sqrt{n} \]
<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>365</th>
<th>500</th>
<th>1000</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_0</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>26</td>
<td>37</td>
<td>118</td>
<td>372</td>
<td>1177</td>
</tr>
<tr>
<td>$1.177\sqrt{n}$</td>
<td>3.7</td>
<td>5.3</td>
<td>8.3</td>
<td>11.8</td>
<td>16.6</td>
<td>22.5</td>
<td>26.3</td>
<td>37.3</td>
<td>118</td>
<td>372</td>
<td>1177</td>
</tr>
</tbody>
</table>

M_0 = the largest m for which collision probability remains below $\frac{1}{2}$

$1.177\sqrt{n}$ = our approximation of M_0

Q: Why is 365 in the table?
Birthday “Paradox” / Birthday Problem

Q: In a room with \(m \) people, how large does \(m \) have to be so that \(\Pr [2 \text{ people share a birthday}] \geq \frac{1}{2} \) ?

A: 10
 20
 50
 100
 300
Birthday "Paradox" / Birthday Problem

Q: In a room with \(m \) people, how large does \(m \) have to be so that \(\Pr \left[2 \text{ people share a birthday} \right] \geq \frac{1}{2} \)?

A: This is exactly the collision problem for balls & bins!

\# bins \(n = 365 \)
\# balls \(m = \) \# people (assumes all birthdays equally likely; ignores leap years)

From table, answer is \(m = 23 \)

With \(m = 60 \), \(\Pr \left[2 \text{ people share a birthday} \right] > 99\% \)
Application 2: Coupon Collecting

There are \(n \) different baseball cards. Each box of cereal contains a uniformly random card.

Q: How many boxes do we need to buy so that, with good probability, we have collected at least one copy of every card?

A: Balls & bins again! Here we want to know how many balls we need to throw so that every bin contains at least 1 ball.
Let $A = \text{"some bin is empty"}$
$A_i = \text{"bin } i \text{ is empty"}$

Then $A = \bigcup_{i=1}^n A_i$

And $\Pr[A_i] = \left(1 - \frac{1}{n}\right)^n = e^{-m/n}$ (from earlier)

(using $\left(1 - \frac{1}{n}\right)^n \xrightarrow[n \to \infty]{} e^{-1}$)

Union Bound:

\[
\Pr[A] \leq \sum_{i=1}^n \Pr[A_i] = ne^{-m/n}
\]

So if we set $m = n \ln n + n$ we get

$\Pr[A] \leq e^{-1} < \frac{1}{2}$

Bottom line: Need to buy about $n \ln n$ boxes!
E.g. for $n = 100$, need to buy ~ 460 boxes
Application 3: Load Balancing

We have m jobs & n processors
We assign jobs independently and u.a.r. to processors

Q: What is the likely maximum load on a processor?

Obviously the max is at least $\lceil \frac{m}{n} \rceil$
But how much worse is it likely to be?

Focus on the case $\boxed{m=n}$ (#jobs = # processors)

Note: There will definitely be collisions since now $m \gg \sqrt{n}$
Strategy:
- Define $A_k = \text{"some processor has load } \geq k\text{"}$

 Goal: find smallest k s.t. $Pr[A_k] \leq \frac{1}{2}$

- Define $A_k(i) = \text{"bin } #i \text{ has load } \geq k\text{"}$

 New goal: find smallest k s.t. $Pr[A_k(i)] \leq \frac{1}{2^n}$

- Use Union Bound:

 $$Pr[A_k] = Pr[\bigcup_{i=1}^{n} A_k(i)] \leq n \times \frac{1}{2^n} = \frac{1}{2}$$
New goal: find smallest k s.t. $Pr[A_k(i)] \leq \frac{1}{2^n}$

Focus on bin #i
For any subset $S = \{1, \ldots, n\}$ of k balls, define $B_S = \{\text{all balls in } S \text{ land in bin } #i\}$

Claim: $A_k(i) = \bigcup_S B_S$

Union Bound (again!)
$$Pr[A_k(i)] \leq \sum_S Pr[B_S]$$

And $Pr[B_S] = \frac{1}{n^k}$; #of $S = \binom{n}{k}$

So: $Pr[A_k(i)] \leq \frac{1}{n^k} \binom{n}{k} = \frac{n(n-1) \ldots (n-k+1)}{k! n^k} \leq \frac{1}{k!}$
New goal: find smallest K s.t. $Pr[A_k(i)] \leq \frac{1}{2^n}$

$$Pr[A_k(i)] \leq \frac{1}{n^K} \binom{n}{K} = \frac{n(n-1)\ldots(n-k+1)}{k! \cdot n^K} \leq \frac{1}{k!}$$

Finally: We want

$$\frac{1}{k!} \leq \frac{1}{2^n}$$

Taking logs: $\ln(k!) \geq \ln(2n)$

Standard approximation (Stirling): $\ln(k!) \approx k \ln k - k$ (for large k)

So we want:

$$k \ln k - k \geq \ln(2n)$$

Solution: $K \approx \frac{\ln n}{\ln \ln n}$ (for large n)

Bottom line: With prob. $\geq 1/2$, max. load is $\leq \frac{\ln n}{\ln \ln n}$
Bottom line: With $p_{50} > \frac{1}{2}$, max. load is $\leq \frac{\ln n}{\ln \ln n}$

This bound is valid for very large values of n.

For realistic values of n, we need to increase it a bit to allow for lower-order terms in our approximations - a more careful analysis leads to

$$k \geq \frac{2 \ln n}{\ln \ln n}$$

<table>
<thead>
<tr>
<th>N</th>
<th>10</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>10^4</th>
<th>10^5</th>
<th>10^6</th>
<th>10^7</th>
<th>10^8</th>
<th>10^{15}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{2 \ln n}{\ln \ln n}$</td>
<td>55</td>
<td>55</td>
<td>5.7</td>
<td>6.0</td>
<td>6.8</td>
<td>7.2</td>
<td>8.2</td>
<td>9.4</td>
<td>10.6</td>
<td>11.6</td>
<td>12.6</td>
<td>20</td>
</tr>
</tbody>
</table>

E.g.: Send 350 pieces of mail randomly to US population. Unlikely any one person gets more than ~13 pieces!
Next lecture

- Random variables \([= \text{functions on probability spaces}]\)
- Expectation \([= \text{mean/average}]\)