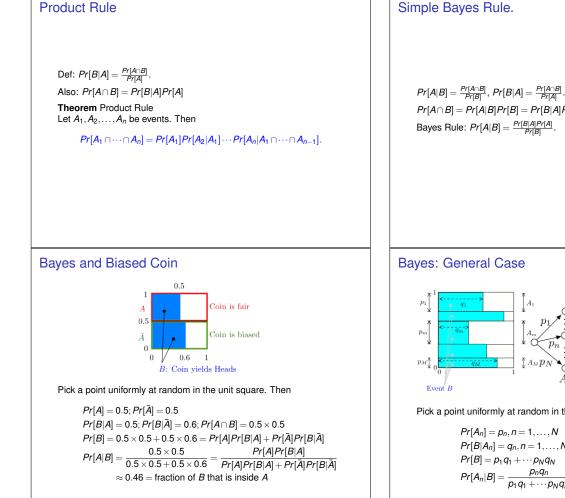
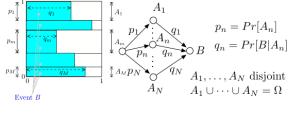
Today	Poll: blows my mind.	Probability Basics.
Probability: Keep building it formally And our intuition.	 Flip 300 million coins. Which is more likely? (A) 300 million heads. (B) 300 million tails. (C) Alternating heads and tails. (D) A tail every third spot. Given the history of the universe up to right now. What is the likelihood of our universe? (A) The likelihood is 1. Cuz here it is. (B) As likely as any other. Cuz of probability. (C) Well. Quantum. IDK- TBH. Perhaps a philosophical ("wastebasket") question. Also, "cuz" == "because" 	Probability Space. 1. Sample Space: Set of outcomes, Ω . 2. Probability: $Pr[\omega]$ for all $\omega \in \Omega$. 2.1 $0 \le Pr[\omega] \le 1$. 2.2 $\sum_{\omega \in \Omega} Pr[\omega] = 1$. Example: Two coins. 1. $\Omega = \{HH, HT, TH, TT\}$ (Note: Not $\Omega = \{H, T\}$ with two picks!) 2. $Pr[HH] = \cdots = Pr[TT] = 1/4$
Consequences of Additivity	Add it up. Poll.	Conditional Probability.
Theorem (a) Inclusion/Exclusion: $Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B];$ (b) Union Bound: $Pr[A_1 \cup \dots \cup A_n] \leq Pr[A_1] + \dots + Pr[A_n];$ (c) Law of Total Probability: If A_1, \dots, A_N are a partition of Ω , i.e., pairwise disjoint and $\bigcup_{m=1}^N A_m = \Omega$, then $Pr[B] = Pr[B \cap A_1] + \dots + Pr[B \cap A_N].$ Proof Idea: Total probability.	 What does Rao mean by "Add it up." (A) Organize intuitions/proofs around <i>Pr</i>[ω]. (B) Organize intuition/proofs around <i>Pr</i>[<i>A</i>]. (C) Some weird song whose refrain he heard in his youth. (A), (B), and (C) 	Definition: The conditional probability of <i>B</i> given <i>A</i> is $Pr[B A] = \frac{Pr[A \cap B]}{Pr[A]}$ $A \cap B$ In <i>A</i> ! In <i>B</i> ? Must be in <i>A</i> \cdot B. $Pr[B A] = \frac{Pr[A \cap B]}{Pr[A]}.$ Note also: $Pr[A \cap B] = Pr[B A]Pr[A]$
Add it up!		



Simple Bayes Rule.

 $Pr[A \cap B] = Pr[A|B]Pr[B] = Pr[B|A]Pr[A].$



Pick a point uniformly at random in the unit square. Then

$$Pr[A_n] = p_n, n = 1, \dots, N$$

$$Pr[B|A_n] = q_n, n = 1, \dots, N; Pr[A_n \cap B] = p_n q_n$$

$$Pr[B] = p_1 q_1 + \cdots p_N q_N$$

$$Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \cdots p_N q_N} = \text{ fraction of } B \text{ inside } A_n.$$

Is you coin loaded?

Your coin is fair w.p. 1/2 or such that Pr[H] = 0.6, otherwise. You flip your coin and it yields heads. What is the probability that it is fair? Analysis:

A = 'coin is fair', B = 'outcome is heads'

We want to calculate P[A|B]. We know P[B|A] = 1/2, $P[B|\bar{A}] = 0.6$, $Pr[A] = 1/2 = Pr[\bar{A}]$ Now,

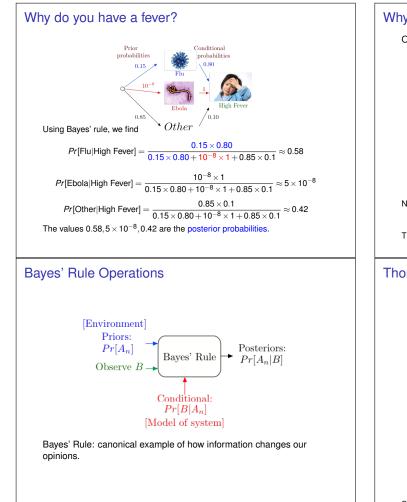
$$\begin{aligned} Pr[B] &= Pr[A \cap B] + Pr[\bar{A} \cap B] = Pr[A]Pr[B|A] + Pr[\bar{A}]Pr[B|\bar{A}] \\ &= (1/2)(1/2) + (1/2)0.6 = 0.55. \end{aligned}$$

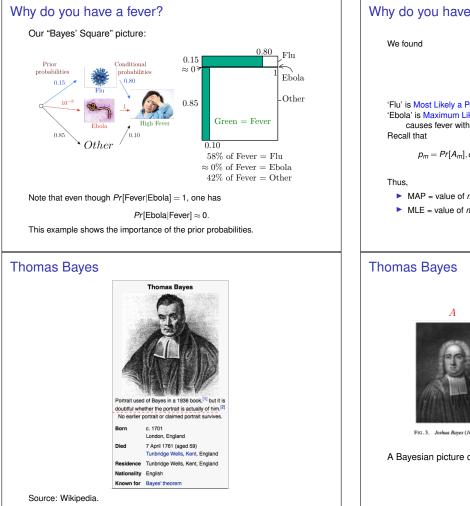
Thus,

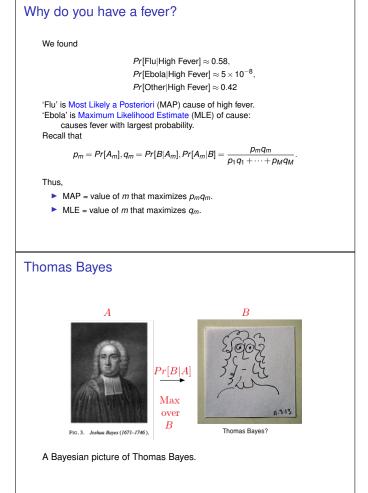
 $Pr[A|B] = \frac{Pr[A]Pr[B|A]}{Pr[B]} = \frac{(1/2)(1/2)}{(1/2)(1/2) + (1/2)0.6} \approx 0.45.$

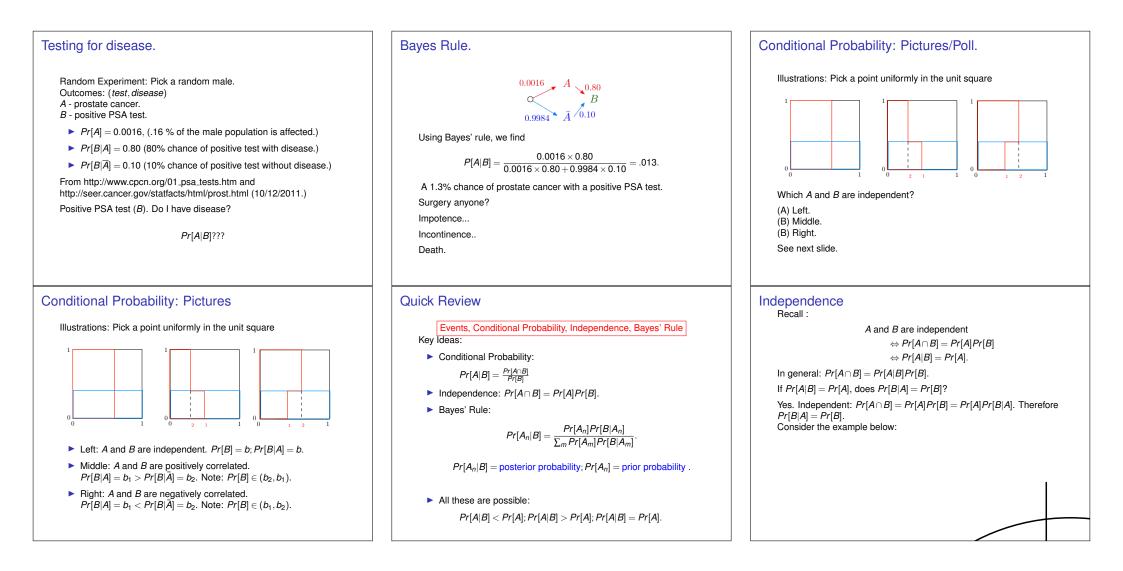
Bayes Rule

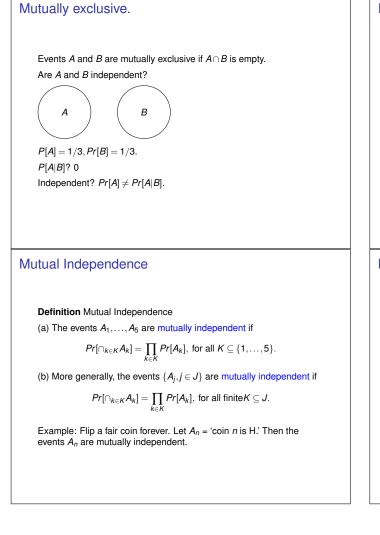
A general picture: We imagine that there are *N* possible causes $A_1, ..., A_N$. $p_n = \Pr[A_n]$ $p_n = \Pr[B|A_n]$ A_1, \ldots, A_N disjoint $A_1 \cup \cdots \cup A_N = \Omega$ 100 situations: $100p_nq_n$ where A_n and B occur, for n = 1, ..., N. In $100\sum_{m} p_m q_m$ occurrences of *B*, $100p_n q_n$ occurrences of *A*_n. Hence, $Pr[A_n|B] = \frac{p_n q_n}{\sum_m p_m q_m}$ But, $p_n = Pr[A_n], q_n = Pr[B|A_n], \sum_m p_m q - m = Pr[B]$, hence, $Pr[A_n|B] = \frac{Pr[B|A_n]Pr[A_n]}{Pr(B)}$







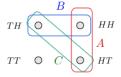




Pairwise Independence

Flip two fair coins. Let

- A = 'first coin is H' = {HT, HH};
- ▶ B = 'second coin is H' = {TH, HH};
- C = 'the two coins are different' = {TH, HT }.



A, C are independent; B, C are independent;

 $A \cap B$, C are not independent. ($Pr[A \cap B \cap C] = 0 \neq Pr[A \cap B]Pr[C]$.)

False: If A did not say anything about C and B did not say anything about C, then $A \cap B$ would not say anything about C.

Mutual Independence

Theorem

(a) If the events $\{A_j, j \in J\}$ are mutually independent and if K_1 and K_2 are disjoint finite subsets of J, then

 $\cap_{k \in K_1} A_k$ and $\cap_{k \in K_2} A_k$ are independent.

(b) More generally, if the K_n are pairwise disjoint finite subsets of J, then the events

 $\cap_{k \in K_n} A_k$ are mutually independent.

(c) Also, the same is true if we replace some of the A_k by \bar{A}_k .

Example

```
Flip a fair coin 5 times. Let A_n = \text{'coin } n \text{ is H'}, \text{ for } n = 1, \dots, 5.

Then,

A_m, A_n are independent for all m \neq n.

Also,

A_1 and A_3 \cap A_5 are independent.

Indeed,

Pr[A_1 \cap (A_3 \cap A_5)] = \frac{1}{8} = Pr[A_1]Pr[A_3 \cap A_5].

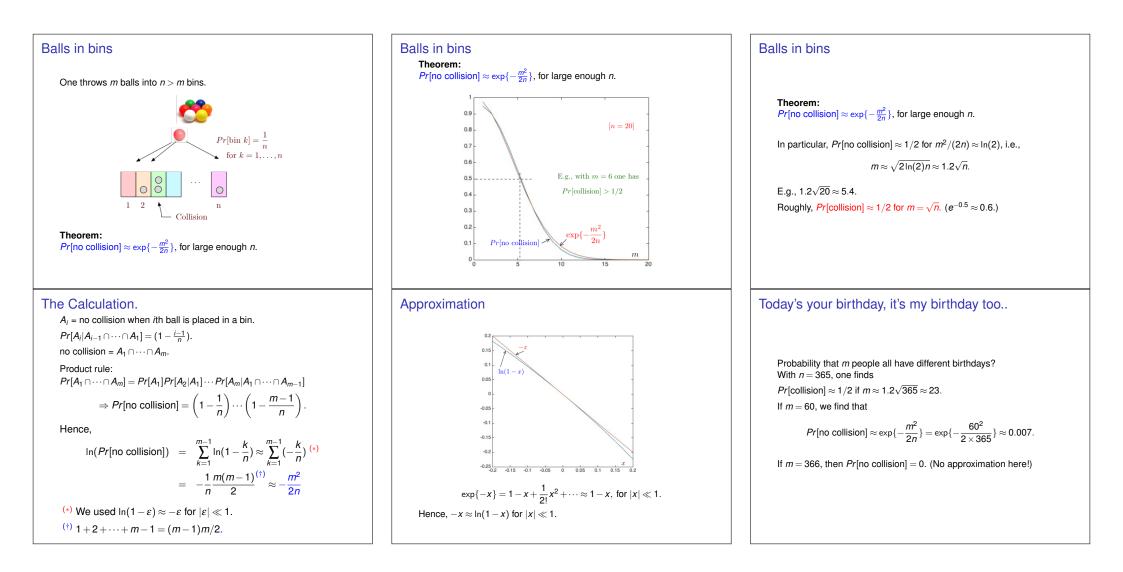
Similarly,

A_1 \cap A_2 and A_3 \cap A_4 \cap A_5 are independent.
```

This leads to a definition

Balls in bins

One throws *m* balls into n > m bins.



Checksums!

Consider a set of *m* files. Each file has a checksum of *b* bits. How large should *b* be for *Pr*[share a checksum] $\leq 10^{-3}$?

Claim: $b \ge 2.9 \ln(m) + 9$.

Proof:

Let $n = 2^b$ be the number of checksums. We know $Pr[no \text{ collision}] \approx \exp\{-m^2/(2n)\} \approx 1 - m^2/(2n)$. Hence,

$$\begin{split} & \textit{Pr}[\text{no collision}] \approx 1 - 10^{-3} \Leftrightarrow m^2/(2n) \approx 10^{-3} \\ & \Leftrightarrow 2n \approx m^2 10^3 \Leftrightarrow 2^{b+1} \approx m^2 2^{10} \\ & \Leftrightarrow b+1 \approx 10 + 2\log_2(m) \approx 10 + 2.9\ln(m). \end{split}$$

Note: $\log_2(x) = \log_2(e) \ln(x) \approx 1.44 \ln(x)$.

Collect all cards?

Experiment: Choose *m* cards at random with replacement. Events: E_k = 'fail to get player k', for k = 1, ..., n Probability of failing to get at least one of these *n* players:

 $p := Pr[E_1 \cup E_2 \cdots \cup E_n]$ How does one estimate *p*? Union Bound: $p = Pr[E_1 \cup E_2 \cdots \cup E_n] \le Pr[E_1] + Pr[E_2] \cdots Pr[E_n].$

 $Pr[E_k] \approx e^{-\frac{m}{n}}, k = 1, \ldots, n.$

 $p \leq ne^{-\frac{m}{n}}$.

Plug in and get

Coupon Collector Problem.

There are *n* different baseball cards. (Brian Wilson, Jackie Robinson, Roger Hornsby, ...) One random baseball card in each cereal box.

Theorem: If you buy *m* boxes, (a) $Pr[miss one specific item] \approx e^{-\frac{m}{n}}$ (b) $Pr[miss any one of the items] \le ne^{-\frac{m}{n}}$.

Collect all cards?

Thus,

Pr[missing at least one card $] \le ne^{-\frac{m}{n}}.$

Hence,

Pr[missing at least one card $] \le p$ when $m \ge n \ln(\frac{n}{p})$.

To get p = 1/2, set $m = n \ln (2n)$. $(p \le ne^{-\frac{m}{n}} \le ne^{-\ln(n/p)} \le n(\frac{p}{n}) \le p.)$ E.g., $n = 10^2 \Rightarrow m = 530$; $n = 10^3 \Rightarrow m = 7600$.

Coupon Collector Problem: Analysis.

Event A_m = 'fail to get Brian Wilson in *m* cereal boxes' Fail the first time: $(1 - \frac{1}{n})$ Fail the second time: $(1 - \frac{1}{n})$ And so on ... for *m* times. Hence,

$$Pr[A_m] = (1 - \frac{1}{n}) \times \dots \times (1 - \frac{1}{n})$$
$$= (1 - \frac{1}{n})^m$$
$$ln(Pr[A_m]) = m\ln(1 - \frac{1}{n}) \approx m \times (-\frac{1}{n})$$
$$Pr[A_m] \approx \exp\{-\frac{m}{n}\}.$$

For $p_m = \frac{1}{2}$, we need around $n \ln 2 \approx 0.69n$ boxes.

Quick Review.

Bayes' Rule, Mutual Independence, Collisions and Collecting

Main results:

- Bayes' Rule: $Pr[A_m|B] = p_m q_m / (p_1 q_1 + \dots + p_M q_M).$
- ▶ Product Rule: $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1] \cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$