
Today

Probability:
Keep building it formally..
And our intuition.



Poll: blows my mind.

Flip 300 million coins.

Which is more likely?
(A) 300 million heads.
(B) 300 million tails.
(C) Alternating heads and tails.
(D) A tail every third spot.

Given the history of the universe up to right now.

What is the likelihood of our universe?
(A) The likelihood is 1. Cuz here it is.
(B) As likely as any other. Cuz of probability.
(C) Well. Quantum. IDK- TBH.

Perhaps a philosophical (“wastebasket”) question.

Also, “cuz” == “because”
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Probability Basics.

Probability Space.

1. Sample Space: Set of outcomes, Ω.

2. Probability: Pr [ω] for all ω ∈ Ω.
2.1 0 ≤ Pr [ω]≤ 1.
2.2 ∑ω∈Ω Pr [ω] = 1.

Example: Two coins.

1. Ω= {HH,HT ,TH,TT}
(Note: Not Ω= {H,T} with two picks!)

2. Pr [HH] = · · ·= Pr [TT ] = 1/4
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Consequences of Additivity

Theorem

(a) Inclusion/Exclusion: Pr [A∪B] = Pr [A]+Pr [B]−Pr [A∩B];

(b) Union Bound: Pr [A1 ∪·· ·∪An]≤ Pr [A1]+ · · ·+Pr [An];

(c) Law of Total Probability:

If A1, . . .AN are a partition of Ω, i.e.,

pairwise disjoint and ∪N
m=1Am =Ω, then

Pr [B] = Pr [B∩A1]+ · · ·+Pr [B∩AN ].

Proof Idea: Total probability.

Add it up!
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Add it up. Poll.

What does Rao mean by “Add it up.”

(A) Organize intuitions/proofs around Pr [ω].
(B) Organize intuition/proofs around Pr [A].
(C) Some weird song whose refrain he heard in his youth.

(A), (B), and (C)
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Conditional Probability.

Definition: The conditional probability of B given A is

Pr [B|A] = Pr [A∩B]

Pr [A]

A B

A B
In A!
In B?

Must be in A∩B.

A∩B

Pr [B|A] = Pr [A∩B]
Pr [A] .

Note also:

Pr [A∩B] = Pr [B|A]Pr [A]
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Product Rule

Def: Pr [B|A] = Pr [A∩B]
Pr [A] .

Also: Pr [A∩B] = Pr [B|A]Pr [A]

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1 ∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩·· ·∩An−1].



Product Rule

Def: Pr [B|A] = Pr [A∩B]
Pr [A] .

Also: Pr [A∩B] = Pr [B|A]Pr [A]

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1 ∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩·· ·∩An−1].



Product Rule

Def: Pr [B|A] = Pr [A∩B]
Pr [A] .

Also: Pr [A∩B] = Pr [B|A]Pr [A]

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1 ∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩·· ·∩An−1].



Product Rule

Def: Pr [B|A] = Pr [A∩B]
Pr [A] .

Also: Pr [A∩B] = Pr [B|A]Pr [A]

Theorem Product Rule
Let A1,A2, . . . ,An be events. Then

Pr [A1 ∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩·· ·∩An−1].



Simple Bayes Rule.

Pr [A|B] = Pr [A∩B]
Pr [B] , Pr [B|A] = Pr [A∩B]

Pr [A] .

Pr [A∩B] = Pr [A|B]Pr [B] = Pr [B|A]Pr [A].

Bayes Rule: Pr [A|B] = Pr [B|A]Pr [A]
Pr [B] .
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Is you coin loaded?
Your coin is fair w.p. 1/2 or such that Pr [H] = 0.6, otherwise.

You flip your coin and it yields heads.

What is the probability that it is fair?

Analysis:

A = ‘coin is fair’,B = ‘outcome is heads’

We want to calculate P[A|B].

We know P[B|A] = 1/2,P[B|Ā] = 0.6,Pr [A] = 1/2 = Pr [Ā]

Now,

Pr [B] = Pr [A∩B]+Pr [Ā∩B] = Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]
= (1/2)(1/2)+(1/2)0.6 = 0.55.

Thus,

Pr [A|B] =
Pr [A]Pr [B|A]

Pr [B]
=

(1/2)(1/2)
(1/2)(1/2)+(1/2)0.6

≈ 0.45.
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Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
Pr [B|A] = 0.5;Pr [B|Ā] = 0.6;Pr [A∩B] = 0.5×0.5
Pr [B] = 0.5×0.5+0.5×0.6 = Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]

Pr [A|B] =
0.5×0.5

0.5×0.5+0.5×0.6
=

Pr [A]Pr [B|A]
Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]

≈ 0.46 = fraction of B that is inside A
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Pr [A|B] =
0.5×0.5

0.5×0.5+0.5×0.6
=

Pr [A]Pr [B|A]
Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]
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Pr [A|B] =
0.5×0.5

0.5×0.5+0.5×0.6
=

Pr [A]Pr [B|A]
Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]
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Pr [B|A] = 0.5;Pr [B|Ā] = 0.6;Pr [A∩B] = 0.5×0.5
Pr [B] =

0.5×0.5+0.5×0.6 = Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]
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Pr [A|B] =
0.5×0.5

0.5×0.5+0.5×0.6
=

Pr [A]Pr [B|A]
Pr [A]Pr [B|A]+Pr [Ā]Pr [B|Ā]

≈ 0.46

= fraction of B that is inside A



Bayes and Biased Coin

Pick a point uniformly at random in the unit square. Then

Pr [A] = 0.5;Pr [Ā] = 0.5
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Bayes: General Case

Pick a point uniformly at random in the unit square. Then

Pr [An] = pn,n = 1, . . . ,N
Pr [B|An] = qn,n = 1, . . . ,N;Pr [An ∩B] = pnqn

Pr [B] = p1q1 + · · ·pNqN

Pr [An|B] =
pnqn

p1q1 + · · ·pNqN
= fraction of B inside An.
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Bayes Rule
A general picture: We imagine that there are N possible causes
A1, . . . ,AN .

100 situations: 100pnqn where An and B occur, for n = 1, . . . ,N.
In 100∑m pmqm occurences of B, 100pnqn occurrences of An.

Hence,

Pr [An|B] = pnqn
∑m pmqm

.

But, pn = Pr [An],qn = Pr [B|An],∑m pmq−m = Pr [B], hence,

Pr [An|B] = Pr [B|An]Pr [An]
Pr [B] .
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Why do you have a fever?

Using Bayes’ rule, we find

Pr [Flu|High Fever] =
0.15×0.80

0.15×0.80+10−8 ×1+0.85×0.1
≈ 0.58

Pr [Ebola|High Fever] =
10−8 ×1

0.15×0.80+10−8 ×1+0.85×0.1
≈ 5×10−8

Pr [Other|High Fever] =
0.85×0.1

0.15×0.80+10−8 ×1+0.85×0.1
≈ 0.42

The values 0.58,5×10−8,0.42 are the posterior probabilities.
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Why do you have a fever?

Our “Bayes’ Square” picture:

Flu

Other

Ebola

58% of Fever = Flu

42% of Fever = Other
⇡ 0% of Fever = Ebola

0.15

0.85

⇡ 0

0.80

0.10

1

Green = Fever

Note that even though Pr [Fever|Ebola] = 1, one has

Pr [Ebola|Fever]≈ 0.

This example shows the importance of the prior probabilities.
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Why do you have a fever?

We found

Pr [Flu|High Fever]≈ 0.58,

Pr [Ebola|High Fever]≈ 5×10−8,

Pr [Other|High Fever]≈ 0.42

‘Flu’ is Most Likely a Posteriori (MAP) cause of high fever.
‘Ebola’ is Maximum Likelihood Estimate (MLE) of cause:

causes fever with largest probability.
Recall that

pm = Pr [Am],qm = Pr [B|Am],Pr [Am|B] =
pmqm

p1q1 + · · ·+pMqM
.

Thus,
▶ MAP = value of m that maximizes pmqm.
▶ MLE = value of m that maximizes qm.
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Bayes’ Rule Operations

Bayes’ Rule: canonical example of how information changes our
opinions.
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Thomas Bayes

Source: Wikipedia.



Thomas Bayes

A Bayesian picture of Thomas Bayes.



Testing for disease.

Random Experiment: Pick a random male.

Outcomes: (test ,disease)
A - prostate cancer.
B - positive PSA test.

▶ Pr [A] = 0.0016, (.16 % of the male population is affected.)

▶ Pr [B|A] = 0.80 (80% chance of positive test with disease.)

▶ Pr [B|A] = 0.10 (10% chance of positive test without disease.)

From http://www.cpcn.org/01 psa tests.htm and
http://seer.cancer.gov/statfacts/html/prost.html (10/12/2011.)

Positive PSA test (B). Do I have disease?

Pr [A|B]???
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Bayes Rule.

Using Bayes’ rule, we find

P[A|B] =
0.0016×0.80

0.0016×0.80+0.9984×0.10
= .013.

A 1.3% chance of prostate cancer with a positive PSA test.

Surgery anyone?

Impotence...

Incontinence..

Death.
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Conditional Probability: Pictures/Poll.

Illustrations: Pick a point uniformly in the unit square
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0
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b1b2 b1 b2

Which A and B are independent?

(A) Left.
(B) Middle.
(B) Right.

See next slide.
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▶ Middle: A and B are positively correlated.
Pr [B|A] = b1 > Pr [B|Ā] = b2. Note: Pr [B] ∈ (b2,b1).

▶ Right: A and B are negatively correlated.
Pr [B|A] = b1 < Pr [B|Ā] = b2. Note: Pr [B] ∈ (b1,b2).
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Note: Pr [B] ∈ (b2,b1).

▶ Right: A and B are negatively correlated.
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Quick Review

Events, Conditional Probability, Independence, Bayes’ Rule

Key Ideas:

▶ Conditional Probability:

Pr [A|B] = Pr [A∩B]
Pr [B]

▶ Independence: Pr [A∩B] = Pr [A]Pr [B].

▶ Bayes’ Rule:

Pr [An|B] =
Pr [An]Pr [B|An]

∑m Pr [Am]Pr [B|Am]
.

Pr [An|B] = posterior probability;Pr [An] = prior probability .

▶ All these are possible:

Pr [A|B]< Pr [A];Pr [A|B]> Pr [A];Pr [A|B] = Pr [A].
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Independence
Recall :

A and B are independent

⇔ Pr [A∩B] = Pr [A]Pr [B]

⇔ Pr [A|B] = Pr [A].

In general: Pr [A∩B] = Pr [A|B]Pr [B].

If Pr [A|B] = Pr [A], does Pr [B|A] = Pr [B]?

Yes. Independent: Pr [A∩B] = Pr [A]Pr [B] = Pr [A]Pr [B|A]. Therefore
Pr [B|A] = Pr [B].
Consider the example below:
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0.1

A1
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A3

B B̄

Which are independent? (A) (A2,B) (B) (A2, B̄) (C) (A1,B).
(A2,B) are independent: Pr [A2|B] = 0.5 = Pr [A2].
(A2, B̄) are independent: Pr [A2|B̄] = 0.5 = Pr [A2].
(A1,B) are not independent: Pr [A1|B] = 0.1

0.5 = 0.2 ̸= Pr [A1] = 0.25.
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Mutually exclusive.
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Are A and B independent?

A B

P[A] = 1/3,Pr [B] = 1/3.

P[A|B]? 0

Independent? Pr [A] ̸= Pr [A|B].
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Pairwise Independence
Flip two fair coins. Let

▶ A = ‘first coin is H’ = {HT ,HH};

▶ B = ‘second coin is H’ = {TH,HH};

▶ C = ‘the two coins are different’ = {TH,HT}.

A,C are independent; B,C are independent;

A∩B,C are not independent. (Pr [A∩B∩C] = 0 ̸= Pr [A∩B]Pr [C].)

False: If A did not say anything about C and B did not say
anything about C, then A∩B would not say anything about C.
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Example

Flip a fair coin 5 times.

Let An = ‘coin n is H’, for n = 1, . . . ,5.

Then,
Am,An are independent for all m ̸= n.

Also,
A1 and A3 ∩A5 are independent.

Indeed,

Pr [A1 ∩ (A3 ∩A5)] =
1
8
= Pr [A1]Pr [A3 ∩A5].

Similarly,
A1 ∩A2 and A3 ∩A4 ∩A5 are independent.

This leads to a definition ....
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Mutual Independence

Definition Mutual Independence

(a) The events A1, . . . ,A5 are mutually independent if

Pr [∩k∈K Ak ] = ∏
k∈K

Pr [Ak ], for all K ⊆ {1, . . . ,5}.

(b) More generally, the events {Aj , j ∈ J} are mutually independent if

Pr [∩k∈K Ak ] = ∏
k∈K

Pr [Ak ], for all finiteK ⊆ J.

Example: Flip a fair coin forever. Let An = ‘coin n is H.’ Then the
events An are mutually independent.
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Mutual Independence

Theorem

(a) If the events {Aj , j ∈ J} are mutually independent and if K1 and K2
are disjoint finite subsets of J, then

∩k∈K1Ak and ∩k∈K2 Ak are independent.

(b) More generally, if the Kn are pairwise disjoint finite subsets of J,
then the events

∩k∈KnAk are mutually independent.

(c) Also, the same is true if we replace some of the Ak by Āk .
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Mutual Independence

Theorem

(a) If the events {Aj , j ∈ J} are mutually independent and if K1 and K2
are disjoint finite subsets of J, then

∩k∈K1Ak and ∩k∈K2 Ak are independent.

(b) More generally, if the Kn are pairwise disjoint finite subsets of J,
then the events

∩k∈KnAk are mutually independent.

(c) Also, the same is true if we replace some of the Ak by Āk .
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In particular, Pr [no collision]≈ 1/2 for m2/(2n)≈ ln(2), i.e.,

m ≈
√

2 ln(2)n ≈ 1.2
√

n.

E.g., 1.2
√

20 ≈ 5.4.

Roughly, Pr [collision]≈ 1/2 for m =
√

n. (e−0.5 ≈ 0.6.)
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The Calculation.
Ai = no collision when i th ball is placed in a bin.

Pr [Ai |Ai−1 ∩·· ·∩A1] = (1− i−1
n ).

no collision = A1 ∩·· ·∩Am.

Product rule:
Pr [A1 ∩·· ·∩Am] = Pr [A1]Pr [A2|A1] · · ·Pr [Am|A1 ∩·· ·∩Am−1]

⇒ Pr [no collision] =
(

1− 1
n

)
· · ·

(
1− m−1

n

)
.

Hence,

ln(Pr [no collision]) =
m−1

∑
k=1

ln(1− k
n
)≈

m−1

∑
k=1

(−k
n
) (∗)

= −1
n

m(m−1)
2

(†)

≈−m2

2n

(∗) We used ln(1− ε)≈−ε for |ε| ≪ 1.
(†) 1+2+ · · ·+m−1 = (m−1)m/2.
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Approximation

exp{−x}= 1−x +
1
2!

x2 + · · · ≈ 1−x , for |x | ≪ 1.

Hence, −x ≈ ln(1−x) for |x | ≪ 1.



Approximation

exp{−x}= 1−x +
1
2!

x2 + · · · ≈ 1−x , for |x | ≪ 1.

Hence, −x ≈ ln(1−x) for |x | ≪ 1.



Approximation

exp{−x}= 1−x +
1
2!

x2 + · · · ≈ 1−x , for |x | ≪ 1.

Hence, −x ≈ ln(1−x) for |x | ≪ 1.



Today’s your birthday, it’s my birthday too..

Probability that m people all have different birthdays?

With n = 365, one finds

Pr [collision]≈ 1/2 if m ≈ 1.2
√

365 ≈ 23.

If m = 60, we find that

Pr [no collision]≈ exp{−m2

2n
}= exp{− 602

2×365
} ≈ 0.007.

If m = 366, then Pr [no collision] = 0. (No approximation here!)
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Checksums!

Consider a set of m files.
Each file has a checksum of b bits.
How large should b be for Pr [share a checksum]≤ 10−3?

Claim: b ≥ 2.9 ln(m)+9.

Proof:

Let n = 2b be the number of checksums.
We know Pr [no collision]≈ exp{−m2/(2n)} ≈ 1−m2/(2n). Hence,

Pr [no collision]≈ 1−10−3 ⇔ m2/(2n)≈ 10−3

⇔ 2n ≈ m2103 ⇔ 2b+1 ≈ m2210

⇔ b+1 ≈ 10+2 log2(m)≈ 10+2.9 ln(m).

Note: log2(x) = log2(e) ln(x)≈ 1.44 ln(x).
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Coupon Collector Problem.

There are n different baseball cards.
(Brian Wilson, Jackie Robinson, Roger Hornsby, ...)

One random baseball card in each cereal box.

Theorem: If you buy m boxes,

(a) Pr [miss one specific item]≈ e−m
n

(b) Pr [miss any one of the items]≤ ne−m
n .
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Coupon Collector Problem: Analysis.

Event Am = ‘fail to get Brian Wilson in m cereal boxes’

Fail the first time: (1− 1
n )

Fail the second time: (1− 1
n )

And so on ... for m times. Hence,

Pr [Am] = (1− 1
n
)×·· ·× (1− 1

n
)

= (1− 1
n
)m

ln(Pr [Am]) = m ln(1− 1
n
)≈ m× (−1

n
)

Pr [Am] ≈ exp{−m
n
}.

For pm = 1
2 , we need around n ln2 ≈ 0.69n boxes.
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Collect all cards?

Experiment: Choose m cards at random with replacement.

Events: Ek = ‘fail to get player k’ , for k = 1, . . . , n

Probability of failing to get at least one of these n players:

p := Pr [E1 ∪E2 · · ·∪En]

How does one estimate p? Union Bound:
p = Pr [E1 ∪E2 · · ·∪En]≤ Pr [E1]+Pr [E2] · · ·Pr [En].

Pr [Ek ]≈ e−m
n ,k = 1, . . . ,n.

Plug in and get
p ≤ ne−m
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Collect all cards?

Thus,

Pr [missing at least one card]≤ ne−m
n .

Hence,

Pr [missing at least one card]≤ p when m ≥ n ln(
n
p
).

To get p = 1/2, set m = n ln(2n) .

(p ≤ ne−m
n ≤ ne−ln(n/p) ≤ n(p

n )≤ p.)

E.g., n = 102 ⇒ m = 530;n = 103 ⇒ m = 7600.
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Quick Review.

Bayes’ Rule, Mutual Independence, Collisions and Collecting

Main results:

▶ Bayes’ Rule: Pr [Am|B] = pmqm/(p1q1 + · · ·+pMqM).

▶ Product Rule:
Pr [A1 ∩·· ·∩An] = Pr [A1]Pr [A2|A1] · · ·Pr [An|A1 ∩·· ·∩An−1].
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