Random Variables: Definitions

Definition
A random variable, X, for a random experiment with sample space Ω is a function $X : \Omega \to \mathbb{R}$.

Thus, $X(\omega)$ assigns a real number $X(\omega)$ to each $\omega \in \Omega$.

Definitions
(a) For $a \in \mathbb{R}$, one defines $X^{-1}(a) := \{ \omega \in \Omega \mid X(\omega) = a \}$.

(b) For $A \subset \mathbb{R}$, one defines $X^{-1}(A) := \{ \omega \in \Omega \mid X(\omega) \in A \}$.

(c) The probability that $X = a$ is defined as $Pr[X = a] = Pr[X^{-1}(a)]$.

(d) The probability that $X \in A$ is defined as $Pr[X \in A] = Pr[X^{-1}(A)]$.

(e) The distribution of a random variable X, is

$\{(a, Pr[X = a]) : a \in \sigma'\}$,

where σ' is the range of X. That is, $\sigma' = \{X(\omega), \omega \in \Omega\}$.

Some Distributions.

Binomial Distribution: $B(n, p)$, For $0 \leq i \leq n$, $Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}$.

Geometric Distribution: $G(p)$, For $i \geq 1$, $Pr[X = i] = (1-p)^{i-1} p$.

Poisson: Motivation and derivation.

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X “for large n”

McDonalds: How many arrive at McDonalds in an hour?

Know: average is λ.

What is distribution?

Example: $Pr[2 \lambda, \text{arrivals}]$?

Assumption: “arrivals are independent.”

Derivation: cut hour into n intervals of length $1/n$.

$Pr[\text{two arrivals}]$ is $(\lambda/n)^2$ or small if n is large.

Model with binomial.

Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X “for large n.”

We expect $X < n$. For $m \ll n$ one has

$$Pr[X = m] \approx \left(\frac{n}{m}\right) p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1) \ldots (n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1) \ldots (n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$\approx \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} \left(\frac{\lambda}{n}\right)^n = \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$; for (2) we used $(1 - a/n)^n \approx e^{-a}.$
Expectation - Definition

Definition: The expected value (or mean, or expectation) of a random variable X is

$$ E[X] = \sum_a a \times Pr[X = a]. $$

Theorem:

$$ E[X] = \sum_a X(a) \times Pr[a]. $$

Proof:

$$ E[X] = \sum_a a \times Pr[X = a] $$

$$ = \sum_a a \times \sum_{\omega : X(\omega) = a} Pr[\omega] $$

$$ = \sum_\omega X(\omega) Pr[\omega] $$

Poisson Distribution: Definition and Mean

Definition: Poisson Distribution with parameter $\lambda > 0$

$$ X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0. $$

Fact: $E[X] = \lambda.$

Proof:

$$ E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!} $$

$$ = e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} - e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!} $$

$$ = e^{-\lambda} \lambda e^{\lambda} = \lambda. $$

Recall: An Example

Flip a fair coin three times.

$$ \Omega = \{HHH, HHT, HTT, THH, THH, HTT, TTT\}. $$

$$ X = \text{number of } Hs: \{3, 2, 2, 1, 1, 0\}. $$

Thus,

$$ \sum_a X(a) Pr[a] = \{3 + 2 + 2 + 2 + 1 + 1 + 0\} \times \frac{1}{8}. $$

Also,

$$ \sum_a a \times Pr[X = a] = \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}. $$

Simeon Poisson

The Poisson distribution is named after:

Siméon Denis Poisson (1781–1840)

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable $X:

$$ \{HHH, HHT, HTT, THH, THH, HTT, TTT\} \rightarrow \{3, 1, 1, -1, -1, -1, -3\}. $$

$$ E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0. $$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!

It is the average value per experiment, if you perform the experiment many times:

$$ \frac{X_1 + \cdots + X_n}{n}, \text{ when } n \gg 1. $$

The fact that this average converges to $E[X]$ is a theorem: the Law of Large Numbers. (See later.)

Equal Time: B. Geometric

The geometric distribution is named after:

I could not find a picture of D. Binomial, sorry.

Win or Lose.

Expected winnings for heads/tails games, with 3 flips?

Recall the definition of the random variable $X:

$$ \{HHH, HHT, HTT, THH, THH, HTT, TTT\} \rightarrow \{3, 1, 1, -1, -1, -1, -3\}. $$

$$ E[X] = 3 \times \frac{1}{8} + 1 \times \frac{3}{8} - 1 \times \frac{3}{8} - 3 \times \frac{1}{8} = 0. $$

Can you ever win 0?

Apparently: expected value is not a common value, by any means.

The expected value of X is not the value that you expect!

It is the average value per experiment, if you perform the experiment many times:

$$ \frac{X_1 + \cdots + X_n}{n}, \text{ when } n \gg 1. $$

The fact that this average converges to $E[X]$ is a theorem: the Law of Large Numbers. (See later.)
Multiple Random Variables.

Experiment: toss two coins. \(\Omega = \{ HH, TH, HT, TT \} \).

\[
X_1(\omega) = \begin{cases}
1 & \text{if coin 1 is heads} \\
0 & \text{otherwise}
\end{cases} \quad X_2(\omega) = \begin{cases}
1 & \text{if coin 2 is heads} \\
0 & \text{otherwise}
\end{cases}
\]

Independent Random Variables.

Definition: Independence
The random variables \(X \) and \(Y \) are independent if and only if
\[
Pr(Y = b | X = a) = Pr(Y = b), \text{ for all } a \text{ and } b.
\]

Fact:
\(X, Y \) are independent if and only if
\[
Pr(X = a, Y = b) = Pr(X = a)Pr(Y = b), \text{ for all } a \text{ and } b.
\]

Follows from \(Pr[A \cap B] = Pr[A]Pr[B] \) (Product rule.)

Multiple Random Variables: setup.

Joint Distribution: \(\{(a,b) Pr(X = a, Y = b) : a \in \Omega, b \in \Omega\} \), where \(\Omega \) is possible values of \(Y \).

\[
\sum_{a \in \Omega, b \in \Omega} Pr(X = a, Y = b) = 1
\]

Marginal for \(X \): \(Pr(X = a) = \sum_{b \in \Omega} Pr(X = a, Y = b) \).
Marginal for \(Y \): \(Pr(Y = b) = \sum_{a \in \Omega} Pr(X = a, Y = b) \).

<table>
<thead>
<tr>
<th>X/Y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>0</td>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>Y</td>
<td>-3</td>
<td>2</td>
<td>-5</td>
<td>3</td>
</tr>
</tbody>
</table>

Conditional Probability: \(Pr(X = a | Y = b) = \frac{Pr(X = a, Y = b)}{Pr(Y = b)} \).

Review: Independence of Events

- Events \(A, B \) are independent if \(Pr[A \cap B] = Pr[A]Pr[B] \).
- Events \(A, B, C \) are mutually independent if \(A, B \) are independent, \(A, C \) are independent, \(B, C \) are independent and \(Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C] \).
- Events \(\{A_n, n \geq 0\} \) are mutually independent if …
- Example: \(X, Y \in \{0,1\} \) two fair coin flips \(\rightarrow X, Y \) are pairwise independent but not mutually independent.
- Example: \(X, Y, Z \in \{0,1\} \) three fair coin flips are mutually independent.

Independence: Examples

Example 1
Roll two die. \(X, Y \) = number of pips on the two dice. \(X, Y \) are independent.
Indeed: \(Pr[X = a, Y = b] = \frac{3}{a} \times \frac{2}{b} = \frac{3}{a} \times \frac{2}{b} \).

Example 2
Roll two die. \(X \) = total number of pips, \(Y \) = number of pips on die 1 minus number on die 2. \(X \) and \(Y \) are not independent.
Indeed: \(Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0 \).

Example 3
Flip a fair coin five times, \(X \) = number of HS in first three flips, \(Y \) = number of HS in last two flips. \(X \) and \(Y \) are independent.
Indeed:
\[
Pr[X = a, Y = b] = \left(\frac{3}{a} \right) \left(\frac{2}{3} \right)^{a-2} \times \left(\frac{2}{3} \right)^{2-b} = Pr[X = a]Pr[Y = b].
\]

Linearity of Expectation

Theorem:
\[
E[X + Y] = E[X] + E[Y]
\]
\[
E[cX] = cE[X]
\]
Proof: \(E[X] = \sum_{\omega \in \Omega} X(\omega) \times Pr[\omega] \).

\[
E[X + Y] = \sum_{\omega \in \Omega} (X(\omega) + Y(\omega))Pr[\omega]
\]
\[
= \sum_{\omega \in \Omega} X(\omega)Pr[\omega] + Y(\omega)Pr[\omega]
\]
\[
= \sum_{\omega \in \Omega} X(\omega)Pr[\omega] + \sum_{\omega \in \Omega} Y(\omega)Pr[\omega]
\]
\[
= E[X] + E[Y]
\]
Indicators

Definition
Let A be an event. The random variable X defined by

\[X(\omega) = \begin{cases}
1, & \text{if } \omega \in A \\
0, & \text{if } \omega \notin A
\end{cases} \]

is called the indicator of the event A.

Note that \(Pr[X = 1] = Pr[A] \) and \(Pr[X = 0] = 1 - Pr[A] \).

Hence, \(E[X] = 1 \times Pr[X = 1] + 0 \times Pr[X = 0] = Pr[A] \).

This random variable \(X(\omega) \) is sometimes written as \(1_{\{\omega \in A\}} \) or \(1_A(\omega) \).

Thus, we will write \(X = 1_A \).

Using Linearity - 2: Fixed point.

Hand out assignments at random to n students.

\(X = \text{number of students that get their own assignment back}. \)

\(X_m = \text{number of pips on roll m}. \)

\(X = X_1 + \cdots + X_n = \text{total number of pips in n rolls}. \)

\[E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \left(\frac{1}{6} \right) p(1-p)^{6-i}. \]

\[E[X] = \sum_{i=1}^{7} E[X_i]. \]

Note: Computing \(\sum_{i=1}^{7} x \cdot Pr[X = x] \) directly is not easy!

Using Linearity - 3: Binomial Distribution.

Flip n coins with heads probability \(p \). \(X = \text{number of heads}. \)

Binomial Distribution: \(Pr[X = i] \), for each i.

\[Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}. \]

\[E[X] = \sum_{i=1}^{n} i \cdot Pr[X = i] = \sum_{i=1}^{n} \left(\frac{n!}{i!(n-i)!} \right) p^i (1-p)^{n-i}. \]

Uh oh... Or... a better approach: Let

\[X_i = \begin{cases}
1, & \text{if } i \text{th flip is heads} \\
0, & \text{otherwise}
\end{cases} \]

Note that linearity holds even though the \(X_m \) are not independent (whatever that means).

Note: What is \(Pr[X = m]? \) Tricky....

Using Linearity - 4

Assume \(A \) and \(B \) are disjoint events. Then \(1_{A \cup B}(\omega) = 1_A(\omega) + 1_B(\omega) \).

Taking expectation, we get

In general, \(1_{A \cap B}(\omega) = 1_A(\omega) + 1_B(\omega) - 1_{A \cup B}(\omega). \)

Taking expectation, we get

\[Pr[A \cap B] = Pr[A] + Pr[B] - Pr[A \cup B]. \]

Observe that if \(Y(\omega) = b \) for all \(\omega \), then \(E[Y] = b \).

Thus, \(E[X + b] = E[X] + b \).
Empty Bins

Experiment: Throw \(m \) balls into \(n \) bins.

- \(Y \) - number of empty bins.
- Distribution is horrible.
- Expectation? \(X_i \) - indicator for bin \(i \) being empty.

\[E(Y) = X_1 + \ldots + X_n. \]

For \(n = m \) and large \(n, (1 - 1/n)^m \approx 1/2. \)

\[\frac{m}{n} \approx 0.368n \text{ empty bins on average}. \]

Coupon Collectors Problem.

Experiment: Get random coupon from \(n \) until get all \(n \) coupons.

Outcomes: \{123145...,56765... \}

Random Variable: \(X \) - length of outcome.

Today: \(E[X] \)?

Time to collect coupons.

- \(X \) - time to get \(n \) coupons.
- \(X_i \) - time to get first coupon. Note: \(X_1 = 1. \) \(E(X_1) = 1. \)
- \(X_2 \) - time to get second coupon after getting first.

\[Pr[\text{"second coupon"} \cap \text{"first coupon"}] = \frac{1}{n}. \]

\[E[X_2] = \frac{1}{n} \cdot \frac{1}{n} = \frac{1}{n^2}. \]

\[E[X] = \sum_{i=1}^{n} E(X_i) = \sum_{i=1}^{n} \frac{1}{i}. \]

Geometric Distribution: Expectation

\(X \sim G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \)

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Hence, \(E[X] = \frac{1}{p}. \)

Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \ldots + \frac{1}{n} = \int_1^n \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \text{ where } \gamma \approx 0.58 \text{ (Euler-Mascheroni constant)}. \]

Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend \(H(n) \) to the right of the table. As \(n \) increases, you can go as far as you want!
Paradox

par·a·dox
/ pə-ˈrä-dəks/
noun
-a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.

a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox

-a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.

a conclusion that is ultimately refuted by evidence

-a situation, person, or thing that combines contradictory features or qualities.

The cards have width 2. Induction shows that the center of gravity after \(n \) cards is \(H(n) \) away from the right-most edge.

Calculating \(E[g(X)] \)

Let \(Y = g(X) \). Assume that we know the distribution of \(X \).

We want to calculate \(E[Y] \).

Method 1: We calculate the distribution of \(Y \).

- \(\Pr[Y = y] = \Pr[X \in g^{-1}(y)] \) where \(g^{-1}(x) = \{ x \in \mathbb{R} : g(x) = y \} \).

This is typically rather tedious!

Method 2: We use the following result.

Let also \(g(X) = X^2 \). Then (method 2)

\[
E[g(X)] = \sum_{x = -2}^{2} x^2 \frac{1}{6} = \frac{4 + 1 + 0 + 1 + 4 + 9}{6} = 19 \frac{1}{6}.
\]

Thus,

\[
E[Y] = \frac{4}{6}, \text{ w.p. } \frac{2}{6}, \text{ w.p. } \frac{1}{6}, \text{ w.p. } \frac{9}{6} = 19 \frac{1}{6}.
\]

Stacking

The cards have width 2. Induction shows that the center of gravity after \(n \) cards is \(H(n) \) away from the right-most edge.

Summary

Probability Space: \(\Omega, \Pr[\omega] \geq 0, \sum \Pr[\omega] = 1 \).

Random Variable: Function on Sample Space.

Distribution: Function \(\Pr[X = a] \geq 0, \sum \Pr[X = a] = 1 \).

Expectation: \(E[X] = \sum a \Pr[a] = \sum \Pr[X = a] \).

Many Random Variables: each one function on a sample space.

Joint Distributions: Function \(\Pr[X = a, Y = b] \geq 0, \sum \Pr[X = a, Y = b] = 1 \).

Applications: compute expectations by decomposing.

Indicators: Empty bins. Fixed points.

Time to Coupon: Sum times to “next” coupon.

\(Y = f(X) \) is Random Variable.

Distribution of \(Y \) from distribution of \(X \).