# Today

Random Variables.

#### Review:Poll.

#### What's an event?

- (A) Party at Rao's house.
- (B) A protest at Sproul Plaza.
- (C) A subset of  $\Omega$  where  $\Omega$  is a sample space.
- (D) Has a probability associated with it.
- (E) Having 2 heads in 3 coin flips.

C,D,E

#### Bayes Rule is

- (A) Awesome.
- (B) Allows one to reason from evidence.
- (C)  $Pr[A|B] = Pr[A \cap B]/Pr[B]$  for events A and B.
- (D) Follows from the definition of Pr[A|B].
- (E) Converts P[A|B] to P[B|A]

A,B,D,E

C is definition of conditional probability

# Quick Review: Probability. Some Rules.

- **Sample Space:** Set of outcomes,  $\Omega$ .
- ▶ **Probability:**  $Pr[\omega]$  for all  $\omega \in \Omega$ .
  - ▶  $0 \le Pr[\omega] \le 1$ .,  $\sum_{\omega \in \Omega} Pr[\omega] = 1$ .
- ▶ Event:  $A \subseteq \Omega$ .  $Pr[A] = \sum_{\omega \in A} Pr[\omega]$ 
  - ▶ Inclusion/Exclusion:  $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$ .
  - ▶ Simple Total Probability:  $Pr[B] = Pr[A \cap B] + Pr[\overline{A} \cap B]$ .
  - Complement:  $Pr[\overline{A}] = 1 Pr[A]$ .
  - ▶ Union Bound.  $Pr[\cup_i A_i] \leq \sum_i Pr[A_i]$
  - ▶ Total Probability:  $Pr[B] = \sum_i Pr[B \cap A_i]$ , for partition  $\{A_i\}$ .
- ► Conditional Probability:  $Pr[A|B] = \frac{Pr[A \cap B]}{Pr[B]}$
- ▶ Bayes' Rule: Pr[A|B] = Pr[B|A]Pr[A]/Pr[B] $Pr[A_m|B] = p_m q_m/(\sum_{i=0}^m p_i q_i), p_m = Pr[A_m], q_m = Pr[B|A_m].$
- ▶ Product Rule or Intersection Rule:  $Pr[A_1 \cap \cdots \cap A_n] = Pr[A_1]Pr[A_2|A_1]\cdots Pr[A_n|A_1 \cap \cdots \cap A_{n-1}].$
- ▶ Total Probability/Product:  $Pr[B] = Pr[B|A]Pr[A] + Pr[B|\overline{A}]Pr[\overline{A}]$ .

## Random Variables

Random Variables

- 1. Random Variables.
- 2. Expectation
- 3. Distributions.

## Questions about outcomes ...

Experiment: roll two dice.

Sample Space:  $\{(1,1),(1,2),...,(6,6)\} = \{1,...,6\}^2$ How many pips? X((1,1)) = 2, X((3,4)) = 7,....

Experiment: flip 100 coins.

Sample Space:  $\{HHH\cdots H, THH\cdots H, \dots, TTT\cdots T\}$ 

How many heads in 100 coin tosses?

Experiment: choose a random student in cs70.

Sample Space: {Adam, Jin, Bing, ..., Angeline}

What midterm score?

Experiment: hand back assignments to 3 students at random.

Sample Space: {123,132,213,231,312,321}

How many students get back their own assignment?

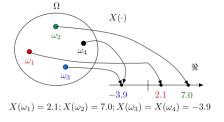
In each scenario, each outcome gives a number.

The number is a (known) function of the outcome.

#### Random Variables.

A **random variable**, X, for an experiment with sample space  $\Omega$  is a function  $X : \Omega \to \Re$ .

Thus,  $X(\cdot)$  assigns a real number  $X(\omega)$  to each  $\omega \in \Omega$ .



Function  $X(\cdot)$  defined on outcomes  $\Omega$ .

Function  $X(\cdot)$  is not random, not a variable!

What varies at random (among experiments)? The outcome!

Random variable makes partition: 
$$A_y = \{\omega \in \Omega : X(\omega) = y\} = X^{-1}(y)$$
  
 $A_{-3.9} = \{\omega_3, \omega_4\}, A_{2.1} = \{\omega_1\}, A_{7.0} = \{\omega_2\}.$ 

## Random Variables Definition: Poll.

#### Random Variable.

- (A) Is a function on a sample space.
- (B) X = i is an event in a sample space.
- (C) X > x is an event in a sample space.
- (E) For an experiment,  $X(\omega)$  is 'random'.
- (E) Is neither random nor a variable.

# Example 1 of Random Variable

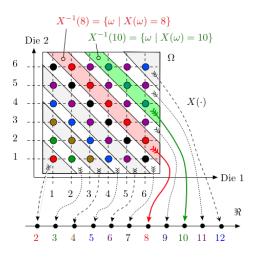
```
Experiment: roll two dice. Sample Space: \{(1,1),(1,2),\dots,(6,6)\}=\{1,\dots,6\}^2 Random Variable X: number of pips. X(1,1)=2 X(1,2)=3, \vdots X(6,6)=12, X(a,b)=a+b,(a,b)\in\Omega.
```

## Example 2 of Random Variable

```
Experiment: flip three coins Sample Space: \{HHH, THH, HTH, TTH, HHT, THT, HTT, TTT\} Winnings: if win 1 on heads, lose 1 on tails: X X(HHH) = 3 X(THH) = 1 X(HTH) = 1 X(TTH) = -1 X(HHT) = -1 X(TTT) = -3
```

## Number of pips in two dice.

"What is the likelihood of getting *n* pips?"

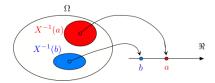


$$Pr[X = 10] = 3/36 = Pr[X^{-1}(10)]; Pr[X = 8] = 5/36 = Pr[X^{-1}(8)].$$

### Distribution

The probability of X taking on a value a.

**Definition:** The **distribution** of a random variable X, is  $\{(a, Pr[X = a]) : a \in \mathscr{A}\}$ , where  $\mathscr{A}$  is the range of X.



$$Pr[X = a] := Pr[X^{-1}(a)] \text{ where } X^{-1}(a) := \{\omega \mid X(\omega) = a\}.$$

From the "distribution view" is probability space.

(a) 
$$\Omega = \mathscr{A}$$

(b) 
$$Pr[a] = Pr[X = a]$$

In this part, often connect to experiment with outcomes.

Roll two dice.

How many pips? How many pips on first die? ...

Flip n coins.

How many heads? How many heads in the first n/2 flips? ...

## Handing back assignments

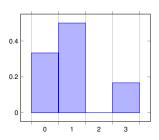
Experiment: hand back assignments to 3 students at random.

Sample Space:  $\Omega = \{123, 132, 213, 231, 312, 321\}$ 

How many students get back their own assignment? Random Variable: values of  $X(\omega)$ :  $\{3,1,1,0,0,1\}$ 

#### Distribution:

$$X = \begin{cases} 0, & \text{w.p. } 1/3 \\ 1, & \text{w.p. } 1/2 \\ 3, & \text{w.p. } 1/6 \end{cases}$$



## A couple of views.

A probability space: 
$$\Omega = \{0, 1, 3\}$$
.  $Pr[0] = 1/3, Pr[1] = 1/2, Pr[3] = 1/6$ .

"Same" (in a sense) as the distribution of number of fixed points on a permutation of size 3.

Experiment: Can define a random variable (or many) based on a function of any sample space.

Distribution: Can define a sample space using the possible values of a random variable.

#### Future:

Continuous distributions: the outcomes are values of random variables.

## Flip three coins

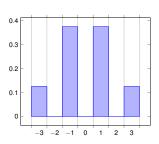
Experiment: flip three coins

Sample Space: {HHH, THH, HTH, TTH, HHT, THT, HTT, TTT}

Winnings: if win 1 on heads, lose 1 on tails. X Random Variable:  $\{3,1,1,-1,1,-1,-1,-3\}$ 

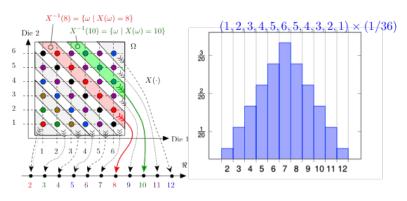
#### Distribution:

$$X = \begin{cases} -3, & \text{w. p. } 1/8 \\ -1, & \text{w. p. } 3/8 \\ 1, & \text{w. p. } 3/8 \\ 3 & \text{w. p. } 1/8 \end{cases}$$



## Number of pips.

#### Experiment: roll two dice.



# Expectation.

How did people do on the midterm?

Distribution.

Summary of distribution?

Average!



## **Expectation - Intuition**

Flip a loaded coin with Pr[H] = p a large number N of times.

Expect heads a fraction p of the times and tails a fraction 1 - p.

Say that you get 5 for every H and 3 for every T.

With N(H) outcomes with H and N(T) outcomes equal to T, you collect

$$5 \times N(H) + 3 \times N(T)$$
.

Your average gain per experiment is then

$$\frac{5N(H)+3N(T)}{N}.$$

Since  $\frac{N(H)}{N} \approx p = Pr[X = 5]$  and  $\frac{N(T)}{N} \approx 1 - p = Pr[X = 3]$ , we find that the average gain per outcome is approximately equal to

$$5Pr[X = 5] + 3Pr[X = 3].$$

We use this frequentist interpretation as a definition.

## **Expectation - Definition**

**Definition:** The **expected value** of a random variable *X* is

$$E[X] = \sum_{a \in \mathscr{A}} a \times Pr[X = a].$$

The expected value is also called the mean.

According to our intuition, we expect that if we repeat an experiment a large number N of times and if  $X_1, \ldots, X_N$  are the successive values of the random variable, then

$$\frac{X_1+\cdots+X_N}{N}\approx E[X].$$

That is indeed the case, in the same way that the fraction of times that X = x approaches Pr[X = x].

This (nontrivial) result is called the Law of Large Numbers.

The subjectivist(bayesian) interpretation of E[X] is less obvious.

# Expectation: A Useful Fact

#### Theorem:

$$E[X] = \sum_{\omega} X(\omega) \times Pr[\omega].$$

**Proof:** 

$$E[X] = \sum_{a} a \times Pr[X = a]$$

$$= \sum_{a} a \times \sum_{\omega: X(\omega) = a} Pr[\omega]$$

$$= \sum_{a} \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

$$= \sum_{\omega: X(\omega) = a} X(\omega) Pr[\omega]$$

Distributive property of multiplication over addition.

## An Example

Flip a fair coin three times.

$$\Omega = \{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}.$$

X = number of H's:  $\{3,2,2,2,1,1,1,0\}$ .

Thus,

$$\sum_{\omega} X(\omega) Pr[\omega] = \{3+2+2+2+1+1+1+0\} \times \frac{1}{8}.$$

Also,

$$\sum_{a} a \times Pr[X = a] = 3 \times \frac{1}{8} + 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 0 \times \frac{1}{8}.$$

What's the answer? Uh....  $\frac{3}{2}$ 

# Expectation and Average.

There are *n* students in the class;

$$X(m)$$
 = score of student  $m$ , for  $m = 1, 2, ..., n$ .

"Average score" of the *n* students: add scores and divide by *n*:

$$Average = \frac{X(1) + X(1) + \dots + X(n)}{n}.$$

Experiment: choose a student uniformly at random.

Uniform sample space:  $\Omega = \{1, 2, \dots, n\}, Pr[\omega] = 1/n$ , for all  $\omega$ .

Random Variable: midterm score:  $X(\omega)$ .

Expectation:

$$E(X) = \sum_{\omega} X(\omega) Pr[\omega] = \sum_{\omega} X(\omega) \frac{1}{n}.$$

Hence,

Average 
$$= E(X)$$
.

This holds for a uniform probability space.

## Named Distributions.

Some distributions come up over and over again.

...like "choose" or "stars and bars"....

Let's cover some.

## The binomial distribution: Poll.

Flip n coins with heads probability p.

- (A) Number of outcomes is  $2^n$ .
- (B) Number of possibilities with k heads  $\binom{n}{pk}$ .
- (C) Probability of k heads is  $p^k/2^n$ .
- (D) Number of possibilities with k heads  $\binom{n}{k}$
- (E) The probability of every outcome is  $1/2^n$ .
- (A) (D) (E) if p = 1/2.

## The binomial distribution.

Flip n coins with heads probability p.

Random variable: number of heads.

Binomial Distribution: Pr[X = i], for each i.

How many sample points in event "X = i"? i heads out of n coin flips  $\implies \binom{n}{i}$ 

What is the probability of  $\omega$  if  $\omega$  has i heads? Probability of heads in any position is p. Probability of tails in any position is (1-p).

$$Pr[\omega] = p^i (1-p)^{n-i}$$
.

Example: 2 heads/3 flips.

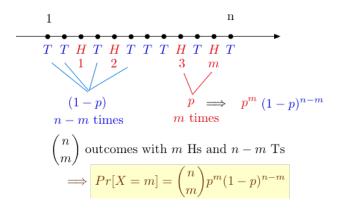
$$Pr[HTH] = p \times (1-p) \times p = p^{2}(1-p),$$
  
 $Pr[THH] = (1-p) \times p \times p = p^{2}(1-p)$ 

Probability of "X = i" is sum of  $Pr[\omega]$ ,  $\omega \in "X = i$ ".

$$Pr[X = i] = \binom{n}{i} p^{i} (1 - p)^{n-i}, i = 0, 1, ..., n : B(n, p)$$
 distribution

Example: 2 heads/3 flips.  $A = |\{THH, HTH, THH\}| = {3 \choose 2}$  $a \in A$ .  $Pr[a] = p^2(1-p)$ .  $\implies Pr[Heads = 2] = {3 \choose 2}p^2(1-p)$ .

## The binomial distribution.



## Error channel and...

A packet is corrupted with probability p.

Send n+2k packets.

Probability of at most *k* corruptions.

$$\sum_{i\leq k} \binom{n+2k}{i} p^i (1-p)^{n+2k-i}.$$

Also distribution in polling, experiments, etc.

## **Expectation of Binomial Distibution**

Parameter *p* and *n*. What is the expectation? Guess? *pn*.

$$Pr[X = i] = \binom{n}{i} p^i (1-p)^{n-i}, i = 0, 1, \dots, n : B(n, p)$$
 distribution

$$E[X] = \sum_{i} i \times Pr[X = i].$$

Uh oh? Well... It is pn.

Proof? After linearity of expectation this is easy.

Waiting is good.

### **Uniform Distribution**

Roll a six-sided balanced die. Let X be the number of pips (dots). X is equally likely to take any of the values  $\{1,2,\ldots,6\}$ .

*X* is *uniformly distributed* in  $\{1, 2, ..., 6\}$ .

Def: X is uniformly distributed in  $\{1,2,\ldots,n\}$  if Pr[X=m]=1/n for  $m=1,2,\ldots,n$ . In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$

## Geometric Distribution:Poll.

Let's flip a coin with Pr[H] = p until we get H.

The probability of exactly *i* flips is:

- (A) With *i* flips you have i-1 tails and 1 heads.
- (B)  $p^i$
- (C)  $(1-p)^{i-1}p$ . (D)  $(1-p)^{i-3}p(1-p)^2$  for i > 4.

### Geometric Distribution

Let's flip a coin with Pr[H] = p until we get H.



#### For instance:

$$\omega_1 = H$$
, or  $\omega_2 = T H$ , or  $\omega_3 = T T H$ , or  $\omega_n = T T T T \cdots T H$ .

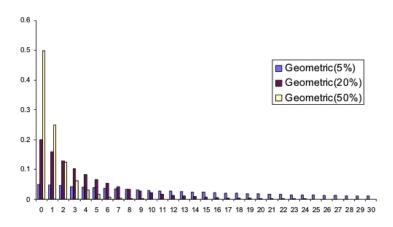
Note that  $\Omega = \{\omega_n, n = 1, 2, \ldots\}.$ 

Let X be the number of flips until the first H. Then,  $X(\omega_n) = n$ . Also,

$$Pr[X = n] = (1 - p)^{n-1}p, \ n \ge 1.$$

### Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$



Oops: Pr[X-1].

## Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \ge 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1-p)^{n-1} p = p \sum_{n=1}^{\infty} (1-p)^{n-1} = p \sum_{n=0}^{\infty} (1-p)^n.$$

Now, if |a| < 1, then  $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$ . Indeed,

$$S = 1 + a + a^{2} + a^{3} + \cdots$$

$$aS = a + a^{2} + a^{3} + a^{4} + \cdots$$

$$(1-a)S = 1 + a - a + a^{2} - a^{2} + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] = p \, \frac{1}{1 - (1 - p)} = 1.$$

# Geometric Distribution: Expectation

$$X =_D G(p)$$
, i.e.,  $Pr[X = n] = (1-p)^{n-1}p, n \ge 1$ .

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n \times (1-p)^{n-1}p.$$

Thus,

$$E[X] = p+2(1-p)p+3(1-p)^{2}p+4(1-p)^{3}p+\cdots$$

$$(1-p)E[X] = (1-p)p+2(1-p)^{2}p+3(1-p)^{3}p+\cdots$$

$$pE[X] = p+(1-p)p+(1-p)^{2}p+(1-p)^{3}p+\cdots$$
by subtracting the previous two identities
$$= \sum_{n=1}^{\infty} Pr[X=n] = 1.$$

Hence,

$$E[X]=\frac{1}{p}$$
.

## Poisson: Motivation and derivation.

McDonalds: How many McDonalds customers arrive in an hour?

Know: average is  $\lambda$ . What is distribution?

Example:  $Pr[2\lambda \text{ arrivals }]$ ?

Assumption: "arrivals are independent."

Derivation: cut hour into *n* intervals of length 1/n.

Pr[ two arrivals ] is " $(\lambda/n)^2$ " or small if n is large.

Model with binomial.

## Poisson

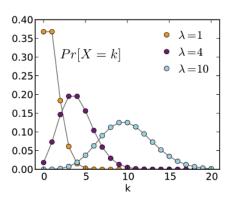
Experiment: flip a coin *n* times.

The coin is such that  $Pr[H] = \lambda/n$ .

Random Variable: *X* - number of heads.

Thus,  $X = B(n, \lambda/n)$ .

**Poisson Distribution** is distribution of *X* "for large *n*."



### Poisson

Experiment: flip a coin n times. The coin is such that  $Pr[H] = \lambda/n$ . Random Variable: X - number of heads. Thus,  $X = B(n, \lambda/n)$ . **Poisson Distribution** is distribution of X "for large n." We expect  $X \ll n$ . For  $m \ll n$  one has

$$Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, \text{ with } p = \lambda/n$$

$$= \frac{n(n-1)\cdots(n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1)\cdots(n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m}$$

$$\approx^{(1)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^{n-m} \approx^{(2)} \frac{\lambda^m}{m!} \left(1-\frac{\lambda}{n}\right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used  $m \ll n$ ; for (2) we used  $(1 - a/n)^n \approx e^{-a}$ .

### Poisson Distribution: Definition and Mean

**Definition** Poisson Distribution with parameter  $\lambda > 0$ 

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \ge 0.$$

Fact:  $E[X] = \lambda$ .

**Proof:** 

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$
$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$

Second line: Taylor's expansion of  $e^{\lambda}$ .

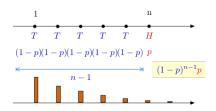
## Simeon Poisson

The Poisson distribution is named after:



## Equal Time: B. Geometric

The geometric distribution is named after:



I could not find a picture of D. Binomial, sorry.

## Summary

#### Random Variables

- ▶ A random variable X is a function  $X : \Omega \to \Re$ .
- $Pr[X = a] := Pr[X^{-1}(a)] = Pr[\{\omega \mid X(\omega) = a\}].$
- ▶  $Pr[X \in A] := Pr[X^{-1}(A)].$
- ▶ The distribution of X is the list of possible values and their probability:  $\{(a, Pr[X = a]), a \in \mathcal{A}\}.$
- $ightharpoonup E[X] := \sum_a aPr[X = a].$
- ►  $B(n,p), U[1:n], G(p), P(\lambda).$