CS70: Lecture 2. Outline.

Today: Proofs!!!
1. By Example.
2. Direct. (Prove $P \implies Q$.)
3. by Contraposition (Prove $P \implies Q$)
4. by Contradiction (Prove P)
5. by Cases
If time: discuss induction.

Review.

Theory: If you drink alcohol you must be at least 18.
Which cards do you turn over?

Drink Alcohol $\implies \geq 18$
“< 18” \implies Don’t Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Propositional Forms: $\land, \lor, \neg, P \iff Q = \neg (P \lor Q)$.
Truth Table. Putting together identities. (E.g., cases, substitution.)
Predicates, $P(x)$, and quantifiers. $\forall x, P(x)$.

DeMorgan’s: $\neg (P \land Q) = \neg P \land \neg Q$. $\neg \forall x, P(x) = \exists x, \neg P(x)$.

Quick Background and Notation.

Integers closed under addition.

$a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z}$

$a | b$ means “a divides b”.

2|4? Yes! Since for $q = 2, 4 = (2)2$.
7|23? No! No q where true.
4|2? No!
2|−4? Yes! Since for $q = 2, −4 = (−2)2$.

Formally: for $a, b \in \mathbb{Z}, a | b \iff \exists q \in \mathbb{Z}$ where $b = aq$.

3|15 since for $q = 5, 15 = (3)(5)$.

A natural number $p > 1$, is prime if it is divisible only by 1 and itself.

A number x is even if and only if $2 | x$, or $x = 2k$ for $x, k \in \mathbb{Z}$.
A number x is odd if and only if $x = 2k + 1$

Correct: (B) and (E).

Last time: Existential statement.

How to prove existential statement?
Give an example. (Sometimes called “proof by example.”)

Theorem: $\exists x \in \mathbb{N}(x = x^2)$

Proof: $0 = 0^2 = 0$

Often used to disprove claim.

Homework.

Divides.

$a | b$ means
(A) There exists $k \in \mathbb{Z}$, with $a = kb$.
(B) There exists $k \in \mathbb{Z}$, with $b = ka$.
(C) There exists $k \in \mathbb{N}$, with $b = ka$.
(D) There exists $k \in \mathbb{Z}$, with $k = ab$.
(E) a divides b

Incorrect: (C) sufficient not necessary. (A) Wrong way. (D) the product is an integer.

Correct: (B) and (E).

Direct Proof.

Theorem: For any $a, b, c \in \mathbb{Z}$, if $a | b$ and $a | c$ then $a | (b – c)$.

Proof: Assume $a | b$ and $a | c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b – c = a(q – q')$ (and $(q – q')$ is an integer so by definition of divides $a | (b – c)$)

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in \mathbb{Z}$.
Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \implies Q$

Assume P.

Therefore Q.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11divides n.

\[\forall n \in D_3, (11 \text{alt. sum of digits of } n) \implies 11 \mid n \]

Examples:

- $n = 121$, Alt Sum: 1 - 2 + 1 = 0. Divisible by 11. As is 121.
- $n = 605$, Alt Sum: 6 - 0 + 5 = 11. Divisible by 11. As is 605 (11 divides 605).

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add 99a + 11b to both sides.

$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$

Left hand side is $n, k + 9a + b$ is integer. \(\implies 11 \mid n\).

Direct proof of \(P \implies Q\):

Assumed: \(P\): 11|a - b + c. Proved: \(Q\): 11|n.

Another Direct Proof.

Thm: \(\forall n \in D_3, (11 \text{alt. sum of digits of } n) \implies 11 \mid n\)

Is converse a theorem?

\(\forall n \in D_3 (11) \implies (11 \text{alt. sum of digits of } n)\)

Yes? No?

Proof by Contraposition

Thm: For every n in Z^+ and $d \mid n$. If n is odd then d is odd.

$n = kd$ and $n = 2k' + 1$ for integers k, k'.

What do we know about d?

Goal: Prove $P \implies Q$.

Assume $\neg Q$.

...and prove $\neg P$.

Conclusion: $Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$. d is even. $\neg d = 2k$.

$d \mid n$ so we have

$n = qd = q(2k) = 2(kq)$

n is even. \(\neg P\)

Another Contraosition...

Lemma: For every n in N, n^2 is even \(\implies n\) is even. ($P \implies Q$)

n^2 is even, $n^2 = 2k$, \(\sqrt{2k}\) even?

Proof by contraposition: \(P \implies Q\) \(\iff\) \(\neg Q \implies \neg P\)

P = \(\neg P\) is even. \(\implies \neg P\) is odd

Q = \(\neg P\) is even. \(\implies \neg P\) is odd

Proof - $\neg P$ = $\neg Q$: n is odd \(\implies n^2\) is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

$n^2 = 2l + 1$ where l is a natural number.

... and n^2 is odd!

$\neg Q = \neg P$ $\implies P$ $\implies Q$ and ...

Another Contraosition...

\[\forall n \in D_3, (11 \text{alt. sum of digits of } n) \implies 11 \mid n \]

Proof: Assume 11|n.

$n = 100a + 10b + c = 11k$ \(\implies\) 99a + 11b + (a - b + c) = 11k

\(-a - b + c = 11(k - 9a - b) \implies a - b + c = 11l\) where \(l = (k - 9a - b) \in Z\)

That is 11 alternating sum of digits.

Note: similar proof to other. In this case every \(\implies\) is \(\iff\)

Often works with arithmetic properties ...

\(\neg P = \neg Q\) when multiplying by 0.

We have.

Theorem: \(\forall n \in N^+, (11 \text{alt. sum of digits of } n) \iff (11|n)\)

Proof by contradiction: form

\[\sqrt{2} \text{ is irrational.} \]

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: $P.$

$\neg P = P_1 \implies R$

$\neg P = Q_1 \implies \neg R$

$\neg P = R \land \neg R = False$

or $\neg P \implies False$

Contraosition of $\neg P \implies False$ is True $\implies P.$

Theorem P is true. And proven.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:
- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider number

 \[q = (p_1 \times p_2 \times \cdots p_k) + 1. \]

- \(q \) cannot be one of the primes as it is larger than any \(p_i \).
- \(q \) has prime divisor \(p \) (\(p > 1 \Rightarrow R \)) which is one of \(p_i \).
- \(p \) divides both \(x = p_1 \times p_2 \times \cdots p_k \) and \(q \), and divides \(q - x \),

 \[\Rightarrow p \mid (q - x) \Rightarrow p \leq (q - x) = 1. \]

- \(\therefore p \leq 1 \). (Contradicts \(R \))

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof by cases.

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

Multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a, b \) odd: \(-ab^4 \) is odd, \(a^5 \) is odd \(\implies a = b = 1 \). \(\therefore a = b = 1 \), \(\therefore a/b \) is a rational.

Case 2: \(a, b \) even: \(a^5 \) is even \(\implies p \leq (q - x) = 1 \).

Thus, we have irrational \(a \) and \(b \) with a rational \(x^5 \) (i.e., 2).

One of the cases is true so theorem holds.

Poll: Odds and evens.

\(x \) is even, \(y \) is odd.

Even numbers are divisible by 2...

Which are even?

- (A) \(x^3 \)
- (B) \(y^3 \)
- (C) \(x + 5x \)
- (D) \(ay \)
- (E) \(xy \)
- (F) \(x + y \)

A, D, E all contain a factor of 2.

\(x = 2k, \) and \(x^3 = 8k = 2(4k) \) and is even.

\(y^3 \) odd?

\(y = (2k + 1), \) \(y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1 \).

Odd times an odd?

Any power of an odd number? Odd.

Idea: \((2k + 1)^n\) has terms

(a) with the last term being 1

- (b) all other terms having a multiple of \(2k \).

- (C) \(x + 5x \)

- (D) \(ay \)

- (E) \(xy \)

- (F) \(x + y \)

A, D, E all contain a factor of 2.

\(x = 2k, \) and \(x^3 = 8k = 2(4k) \) and is even.

\(y^3 \) odd?

\(y = (2k + 1), \) \(y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1 \).

Odd times an odd?

Any power of an odd number? Odd.

Idea: \((2k + 1)^n\) has terms

(a) with the last term being 1

Product of first k primes.

Did we prove?

- "The product of the first \(k \) primes plus 1 is prime."
- No.

- The chain of reasoning started with a false statement.

Consider example...

- \(2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509 \)

- There is a prime in between 13 and \(q = 30031 \) that divides \(q \).
- Proof assumed no primes in between \(p_k \) and \(q \).

Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Assume \(\sqrt{2} = a/b \) for \(a, b \in \mathbb{Z} \).

Reduced form: \(a \) and \(b \) have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

\(a^2 \) is even \(\Rightarrow a \) is even.

\(a = 2k \) for some integer \(k \)

\[
b^2 = 2k^2
\]

\(b^2 \) is even \(\Rightarrow b \) is even.

\(a \) and \(b \) have a common factor. Contradiction.

Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Assume \(\sqrt{2} = a/b \) for \(a, b \in \mathbb{Z} \).

Reduced form: \(a \) and \(b \) have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

\(a^2 \) is even \(\Rightarrow a \) is even.

\(a = 2k \) for some integer \(k \)

\[
b^2 = 2k^2
\]

\(b^2 \) is even \(\Rightarrow b \) is even.

\(a \) and \(b \) have a common factor. Contradiction.
Poll: proof review.

Which of the following are (certainly) true?

(A) $\sqrt{2}$ is irrational.

(B) $\sqrt{2}$ is rational.

(C) $\sqrt{2}^2$ is rational or it isn’t.

(D) $(2^2)^2$ is rational.

(A), (C), (D)

(B) I don’t know.

Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$.

Start with $12 = 12$.

Divide one side by 3 and the other by 4 to get $4 = 3$.

By commutativity theorem holds.

Don’t assume what you want to prove!

Poll: What is the problem?

(A) Assumed what you were proving.

(B) No problem. Its fine.

(C) $x - y$ is zero.

(D) Can’t multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

CS70: Note 3. Induction!

Poll. What’s the biggest number?

(A) 100

(B) 101

(C) $n+1$

(D) infinity.

(E) This is about the “recursive leap of faith.”

Summary: Note 2.

Direct Proof:

To Prove: $P \implies Q$. Assume P. Prove Q.

$a|b$ and $a|c \implies a|(b - c)$.

By Contraposition:

To Prove: $P \implies \neg Q$. Assume $\neg Q$. Prove $\neg P$.

r^2 is odd $\implies n$ is odd. n is even $\implies r^2$ is even.

By Contradiction:

To Prove: $P \implies \neg Q$. Assume P. Prove False.

$\sqrt{2}$ is rational.

$\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^2$ worked.

Careful when proving!

Don’t assume the theorem. Divide by zero. Watch converse. ...

Be really careful!

Theorem: $1 = 2$

Proof: For $x = y$, we have

$(x^2 - x^2) = x^2 - y^2$

$x(x - y) = (x + y)(x - y)$

$x = (x + y)$

$x = 1$

$1 = 2$

Poll. What is the problem?

(A) Assumed what you were proving.

(B) No problem. Its fine.

(C) $x - y$ is zero.

(D) Can’t multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

$P \implies Q$ does not mean $Q \implies P$.
