Prop logic: so far.

Propositions are statements that are true or false. Propositional forms use \land, \lor, \neg . Propositional forms correspond to truth tables. Logical equivalence of forms means same truth tables. Implication: $P \Longrightarrow Q \iff \neg P \lor Q$. Contrapositive: $\neg Q \implies \neg P$ Converse: $Q \implies P$

Predicates: Statements with "free" variables. P(x) – true or false depending on value of x. P(3) is a proposition.

Back to: Wason's experiment:1

Theory: "If a person travels to Chicago, he/she/they flies." Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew. Which cards do you need to flip to test the theory? Chicago(x) = "x went to Chicago." Flew(x) = "x flew" Statement/theory: $\forall x \in \{A, B, C, D\}$, *Chicago*(x) \implies *Flew*(x) Chicago(A) = False. Do we care about Flew(A)? No. $Chicago(A) \implies Flew(A)$ is true. since Chicago(A) is False, Flew(B) = False. Do we care about Chicago(B)? Yes. $Chicago(B) \implies Flew(B) \equiv \neg Flew(B) \implies \neg Chicago(B)$. So Chicago(Bob) must be False. Chicago(C) = True. Do we care about Flew(C)? Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true. Flew(D) =True . Do we care about Chicago(D)? No. $Chicago(D) \implies Flew(D)$ is true if Flew(D) is true. Only have to turn over cards for Bob and Charlie.

Quantifiers..

There exists quantifier:

 $(\exists x \in S)(P(x)) \text{ means "There exists an } x \text{ in } S \text{ where } P(x) \text{ is true."}$ For example: $(\exists x \in \mathbb{N})(x = x^2)$ Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ " Much shorter to use a quantifier! For all quantifier; $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ." Examples: "Adding 1 makes a bigger number." $(\forall x \in \mathbb{N}) (x + 1 > x)$ "the square of a number is always non-negative" $(\forall x \in \mathbb{N})(x^2 \ge 0)$ Wait! What is \mathbb{N} ?

More for all quantifiers examples.

"doubling a number always makes it larger"

 $(\forall x \in \mathbb{N}) (2x > x)$ False Consider x = 0

Can fix statement...

$(\forall x \in \mathbb{N}) (2x \ge x)$ True

Square of any natural number greater than 5 is greater than 25."

 $(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.

Quantifiers: universes.

Quantifiers....negation...DeMorgan again.

Consider

 $\neg(\forall x \in S)(P(x)),$

English: there is an x in S where P(x) does not hold. That is, $\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works." For False, find x, where $\neg P(x)$. Counterexample. Bad input. Case that illustrates bug. For True : prove claim. Soon...

Summary.

```
Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: P \implies Q \iff \neg P \lor Q.

Contrapositive: \neg Q \implies \neg P

Converse: Q \implies P

Predicates: Statements with "free" variables.

Quantifiers: \forall x P(x), \exists y Q(y)

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

\neg(P \lor Q) \iff (\neg P \land \neg Q)

\neg \forall x P(x) \iff \exists x \neg P(x).

And now: proofs!
```

Negation of exists.

Consider

 $\neg(\exists x \in S)(P(x))$ English: means that there is no $x \in S$ where P(x) is true. English: means that for all $x \in S$, P(x) does not hold. That is, $\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$

Review.

Theory: If you drink alcohol you must be at least 18. Which cards do you turn over? Drink Alcohol $\implies "\ge 18"$ "< 18" \implies Don't Drink Alcohol. Contrapositive. (A) (B) (C) and/or (D)?

Which Theorem?

```
Theorem: (\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)
Which Theorem?
Fermat's Last Theorem!
Remember Special Triangles:
for n = 2, we have 3,4,5 and 5,7, 12 and ...
1637: Proof doesn't fit in the margins.
1993: Wiles ...(based in part on Ribet's Theorem)
DeMorgan Restatement:
Theorem: \neg (\exists n \in \mathbb{N}) \ (\exists a, b, c \in \mathbb{N}) \ (n \ge 3 \implies a^n + b^n = c^n)
```

CS70: Lecture 2. Outline.

Today: Proofs!!!

1. By Example.

- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$)
- 4. by Contradiction (Prove P.)

5. by Cases

If time: discuss induction.

Last time: Existential statement.

```
How to prove existential statement?
Give an example. (Sometimes called "proof by example.")
Theorem: (\exists x \in N)(x = x^2)
Pf: 0 = 0^2 = 0
```

Often used to disprove claim.

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$. Proof: Assume alb and alc b = aq and c = aq' where $q, q' \in Z$ b-c = aq - aq' = a(q - q') Done? (b-c) = a(q-q') and (q-q') is an integer so by definition of divides a(b-c)Works for $\forall a, b, c$? Argument applies to every $a, b, c \in Z$. Used distributive property and definition of divides. Direct Proof Form: Goal: $P \implies Q$ Assume P. Therefore Q.

Quick Background, Notation and Definitions!

```
Integers closed under addition.
  a, b \in Z \implies a + b \in Z
ab means "a divides b".
2|4? Yes! Since for q = 2, 4 = (2)2.
7|23? No! No q where true.
4|2? No!
2|-4? Yes! Since for q = 2, -4 = (-2)2.
Formally: for a, b \in \mathbb{Z}, a | b \iff \exists q \in \mathbb{Z} where b = aq.
3|15 since for q = 5, 15 = 3(5).
A natural number p > 1, is prime if it is divisible only by 1 and itself.
A number x is even if and only if 2|x, or x = 2k for x, k \in \mathbb{Z}.
A number x is odd if and only if x = 2k + 1 for x, k \in \mathbb{Z}.
```

Another direct proof.

Let D_3 be the 3 digit natural numbers. Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, then 11|*n*. $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$ Examples:

```
n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.
n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)
Proof: For n \in D_3, n = 100a + 10b + c, for some a, b, c.
Assume: Alt. sum: a - b + c = 11k for some integer k.
Add 99a + 11b to both sides.
 100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)
Left hand side is n, k+9a+b is integer. \implies 11|n.
Direct proof of P \implies Q:
Assumed P: 11|a-b+c. Proved Q: 11|n.
```

Divides.

ab means

(A) There exists $k \in \mathbb{Z}$, with a = kb. (B) There exists $k \in \mathbb{Z}$, with b = ka. (C) There exists $k \in \mathbb{N}$, with b = ka. (D) There exists $k \in \mathbb{Z}$, with k = ab. (E) a divides b

Incorrect: (C) sufficient not necessary. (A) Wrong way. (D) the product is an integer. Correct: (B) and (E).

The Converse

Thm: $\forall n \in D_3$, (11 alt. sum of digits of n) \implies 11 | nIs converse a theorem? $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ Yes? No?

Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11 *n*. $n = 100a + 10b + c = 11k \implies$ $99a+11b+(a-b+c)=11k \implies$ $a-b+c=11k-99a-11b \Longrightarrow$ $a-b+c=11(k-9a-b) \Longrightarrow$ $a-b+c=11\ell$ where $\ell=(k-9a-b)\in Z$ That is 11|alternating sum of digits. Note: similar proof to other direction. In this case every \implies is \iff Often works with arithmetic propertiesnot when multiplying by 0. We have. Theorem: $\forall n \in D_3$, (11 alt. sum of digits of n) \iff (11 |n) Proof by Obfuscation. ob·fus·ca·tion • /.äbfəˈskāSH(ə)n/ noun noun: obfuscation; plural noun: obfuscations the action of making something obscure, unclear, or unintelligible. "when confronted with sharp questions they resort to obfuscation"

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd. n = kd and n = 2k' + 1 for integers k, k'. what do we know about d? Goal: Prove $P \implies Q$. Assume $\neg Q$...and prove $\neg P$. Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$. **Proof:** Assume $\neg Q$: d is even. d = 2k. d|n so we have n = qd = q(2k) = 2(kq)n is even. $\neg P$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational. Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$. A simple property (equality) should always "not" hold. Proof by contradiction: **Theorem:** P. $\neg P \implies P_1 \cdots \implies R$ $\neg P \implies Q_1 \cdots \implies \neg R$ $\neg P \implies R \land \neg R \equiv False$ or $\neg P \implies False$ Contrapositive of $\neg P \implies False$ is *True* $\implies P$. Theorem P is true. And proven.

Another Contraposition...

Contradiction

Theorem: $\sqrt{2}$ is irrational. Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$. Reduced form: *a* and *b* have no common factors.

 $\sqrt{2}b = a$

```
2b^2 = a^2 = 4k^2
```

 a^2 is even $\implies a$ is even. a = 2k for some integer k

```
b^2 = 2k^2
```

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes. Proof:

► Assume finitely many primes: *p*₁,...,*p*_k.

Consider number

 $q = (p_1 \times p_2 \times \cdots p_k) + 1.$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p ("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,
- $> \implies p|(q-x) \implies p \le (q-x) = 1.$
- ▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

 $a^5 - ab^4 + b^5 = 0$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even + even = even. Not possible. Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows. $\hfill \Box$

Product of first *k* primes..

Did we prove?

"The product of the first k primes plus 1 is prime."

No.

The chain of reasoning started with a false statement.

Consider example..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q. As it assumed the only primes were the first k primes.

Proof by cases.

Theorem: There exist irrational *x* and *y* such that x^{y} is rational. Let $x = y = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$. $x^{y} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \times \sqrt{2}} = \sqrt{2}^{2} = 2$.

Thus, we have irrational x and y with a rational x^{y} (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

Poll: Odds and evens.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A) x^3 Even: $(2k)^3 = 2(4k^3)$ (B) y^3 (C) x + 5x Even: 2k + 5(2k) = 2(k+5k)(D) xy Even: 2(ky). (E) xy^5 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2. E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?
 $y = (2k+1)$. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$

Odd times an odd? Odd.

Any power of an odd number? Odd.
Idea: (2k + 1)ⁿ has terms
(a) with the last term being 1
(b) and all other terms having a multiple of 2k.

Poll: proof review.

```
Which of the following are (certainly) true?

(A) \sqrt{2} is irrational.

(B) \sqrt{2}^{\sqrt{2}} is rational.

(C) \sqrt{2}^{\sqrt{2}} is rational or it isn't.

(D) (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} is rational.

(A),(C),(D)

(B) I don't know.
```

Be careful.

Theorem: 3 = 4Proof: Assume 3 = 4. Start with 12 = 12. Divide one side by 3 and the other by 4 to get 4 = 3. By commutativity theorem holds. What's wrong? Don't assume what you want to prove!

CS70: Note 3. Induction!

Poll. What's the biggest number?

- (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."

Be really careful! Theorem: 1 = 2**Proof:** For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x-y) = (x+y)(x-y)x = (x + y)x = 2x1 = 2 Poll: What is the problem? (A) Assumed what you were proving. (B) No problem. Its fine. (C) x - y is zero. (D) Can't multiply by zero in a proof. Dividing by zero is no good. Multiplying by zero is wierdly cool! Also: Multiplying inequalities by a negative. $P \Longrightarrow Q$ does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. a|b and $a|c \implies a|(b-c)$.

By Contraposition: To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction: To Prove: *P* Assume $\neg P$. Prove False . $\sqrt{2}$ is rational. $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal. Universal: show that statement holds in all cases. Existence: used cases where one is true. Either $\sqrt{2}$ and $\sqrt{2}$ worked. or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving! Don't assume the theorem. Divide by zero.Watch converse. ...