Today: Proofs!!!

1. By Example (or Counterexample).
2. Direct. (Prove $P \implies Q$.)
3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
4. by Contradiction (Prove P by assuming $\neg P$ and reaching a contradiction.)
5. by Cases (enumerate an exhaustive set of cases)
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a|b\) means “a divides b”.

2|4? Yes!

7|23? No!

4|2? No!

Formally: \(a|b \iff \exists q \in \mathbb{Z} \text{ where } b = aq\).

3|15 since for \(q = 5\), \(15 = 3(5)\).

A natural number \(p > 1\), is **prime** if it is divisible only by 1 and itself.
Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in \mathbb{Z}$, if $a | b$ and $a | c$ then $a | b - c$.

Proof: Assume $a | b$ and $a | c$

- $b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ Done?

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so

$a | (b - c)$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in \mathbb{Z}$.

Direct Proof Form:

Goal: $P \implies Q$

Assume P.

...

Therefore Q.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Left hand side is n, $k + 9a + b$ is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: $11|a - b + c$. Proved Q: $11|n$.
The Converse

Thm: $\forall n \in D_3, (11 | \text{alt. sum of digits of } n) \implies 11 | n$

Is converse a theorem?
$\forall n \in D_3, (11 | n) \implies (11 | \text{alt. sum of digits of } n)$

Example: $n = 264$. $11 | n$? $11 | 2 - 6 + 4$?
Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Proof: Assume $11|n$.

\[
\begin{align*}
n &= 100a + 10b + c = 11k \\
99a + 11b + (a - b + c) &= 11k \\
a - b + c &= 11k - 99a - 11b \\
a - b + c &= 11(k - 9a - b) \\
a - b + c &= 11\ell \quad \text{where } \ell = (k - 9a - b) \in \mathbb{Z}
\end{align*}
\]

That is $11|\text{alternating sum of digits.}$

Note: similar proof to other. In this case every \implies is \iff.

Often works with arithmetic properties except when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \iff (11|n)$
Theorem: \(\forall n \in D_3, (11\mid n) \implies (11\mid \text{alt. sum of digits of } n) \)

“Proof”:
Let \(n = abc \), where \(a, b, \) and \(c \) are the hundreds, tens, and units digits of \(n \), respectively.

If 11 divides \(n \), then there exists an integer \(k \) such that: \(n = 11k \)

Now, let’s calculate the alternating sum of digits:
Alternating sum = \(a - b + c \)

Since \(n = 11k \), we have: \(a - b + c = 11k \)

This shows that the alternating sum of digits is equal to 11 times some integer \(k \), and therefore, it is divisible by 11.
Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even. $d = 2k$.

$d|n$ so we have

$$n = qd = q(2k) = 2(kq)$$

n is even. $\neg P$
Lemma: For every n in N, n^2 is even \implies n is even. ($P \implies Q$)

n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Proof by contraposition: ($P \implies Q$) \equiv ($\neg Q \implies \neg P$)

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

$Q = 'n$ is even' $\neg Q = 'n$ is odd'

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

$n^2 = 2l + 1$ where l is a natural number..

... and n^2 is odd!

$\neg Q \implies \neg P$ so $P \implies Q$ and ...
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $\left(\frac{a}{b}\right)^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

\[\neg P \Rightarrow P_1 \cdots \Rightarrow R \]

\[\neg P \Rightarrow P_1 \cdots \Rightarrow \neg R \]

\[\neg P \Rightarrow \text{False} \]

Contrapositive: True $\Rightarrow P$. Theorem P is proven.
Theorem: \(\sqrt{2} \) is irrational.

Assume \(\neg P: \sqrt{2} = a/b \) for \(a, b \in \mathbb{Z} \).

Reduced form: \(a \) and \(b \) have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

\(a^2 \) is even \(\implies a \) is even.

\(a = 2k \) for some integer \(k \)

\[
b^2 = 2k^2
\]

\(b^2 \) is even \(\implies b \) is even.

\(a \) and \(b \) have a common factor. Contradiction.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider
 \[q = p_1 \times p_2 \times \cdots p_k + 1. \]

- \(q \) cannot be one of the primes as it is larger than any \(p_i \).
- \(q \) has prime divisor \(p \) ("\(p > 1 \) = R") which is one of \(p_i \).
- \(p \) divides both \(x = p_1 \cdot p_2 \cdots p_k \) and \(q \), and divides \(q - x \),
 \[\Rightarrow p|q - x \Rightarrow p \leq q - x = 1. \]
- so \(p \leq 1. \) (Contradicts \(R. \))

The original assumption that “the theorem is false” is false, thus the theorem is proven.
Did we prove?

▶ “The product of the first k primes plus 1 is prime.”
▶ No.
▶ The chain of reasoning started with a false statement.

Consider example..

▶ $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
▶ There is a prime *in between* 13 and $q = 30031$ that divides q.
▶ Proof assumed no primes *in between*.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd +odd = even. Not possible.
Case 2: \(a \) even, \(b \) odd: even - even +odd = even. Not possible.
Case 3: \(a \) odd, \(b \) even: odd - even +even = even. Not possible.
Case 4: \(a \) even, \(b \) even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

 \[
 x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2.
 \]

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds.

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

\[
(x^2 - xy) = x^2 - y^2 \\
x(x - y) = (x + y)(x - y) \\
x = (x + y) \\
x = 2x \\
1 = 2
\]

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

$P \implies Q$ does not mean $Q \implies P$.
Summary

Direct Proof:
To Prove: $P \implies Q$. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:
To Prove: P Assume $\neg P$. Prove False .

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
 Either $\sqrt{2}$ and $\sqrt{2}$ worked.
 or $\sqrt{2}$ and $\sqrt{2^2}$ worked.

Careful when proving!
Don’t assume the theorem. Divide by zero. Watch converse. ...