Prop logic: so far.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$ Converse: $Q \implies P$

Predicates: Statements with "free" variables. P(x) – true or false depending on value of x.

P(3) is a proposition.

Quantifiers..

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true." For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S)$ (P(x)). means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

 $(\forall x \in \mathbb{N}) (x+1 > x)$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait! What is \mathbb{N} ?

Quantifiers: universes.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has universe: "the natural numbers".

Universe examples include..

- $\mathbb{N} = \{0, 1, ...\}$ (natural numbers).
- $\mathbb{Z} = \{\dots, -1, 0, \dots\}$ (integers)
- ► Z⁺ (positive integers)
- ▶ ℝ (real numbers)
- Any set: $S = \{Alice, Bob, Charlie, Donna\}.$
- See note 0 for more!

Back to: Wason's experiment:1

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew. Which cards do you need to flip to test the theory?

Chicago(x) = "x went to Chicago." Flew(x) = "x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}$, *Chicago*(x) \implies *Flew*(x)

Chicago(A) = False. Do we care about Flew(A)? No. $Chicago(A) \implies Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)? Yes. $Chicago(B) \implies Flew(B) \equiv \neg Flew(B) \implies \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)? Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

Flew(D) = True. Do we care about Chicago(D)? No. $Chicago(D) \implies Flew(D)$ is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.

More for all quantifiers examples.

"doubling a number always makes it larger"

 $(\forall x \in \mathbb{N}) (2x > x)$ False Consider x = 0

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.

Quantifiers..not commutative.

In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) \ (\forall x \in \mathbb{N}) \ (y = x^2)$$
 False

In English: "the square of every natural number is a natural number."

$$(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)$$
 True

Quantifiers....negation...DeMorgan again.

Consider

$$\neg$$
($\forall x \in S$)($P(x)$),

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works." For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True : prove claim. Soon...

Negation of exists.

Consider

 $\neg(\exists x \in S)(P(x))$

English: means that there is no $x \in S$ where P(x) is true. English: means that for all $x \in S$, P(x) does not hold.

That is,

$$eg (\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

Which Theorem?

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$ Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles: for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ... (based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $\neg(\exists n \in \mathbb{N}) (\exists a, b, c \in \mathbb{N}) (n \ge 3 \implies a^n + b^n = c^n)$

Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation" $\neg (P \lor Q) \iff (\neg P \land \neg Q)$ $\neg \forall x \ P(x) \iff \exists x \neg P(x).$

And now: proofs!

Review.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol \implies " ≥ 18 "

"< 18" \implies Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \implies Q$.)
- 3. by Contraposition (Prove $P \implies Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

Last time: Existential statement.

How to prove existential statement?

Give an example. (Sometimes called "proof by example.")

Theorem: $(\exists x \in N)(x = x^2)$

Pf: $0 = 0^2 = 0$

Often used to disprove claim.

Quick Background, Notation and Definitions!

Integers closed under addition.

 $a, b \in Z \implies a + b \in Z$

a b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

- 7|23? No! No q where true.
- 4|2? No!
- 2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

A number x is even if and only if 2|x, or x = 2k for $x, k \in \mathbb{Z}$.

A number x is odd if and only if x = 2k + 1 for $x, k \in \mathbb{Z}$.

Divides.

a|b means

- (A) There exists $k \in \mathbb{Z}$, with a = kb.
- (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.

(E) a divides b

Incorrect:

- (C) sufficient not necessary.
- (A) Wrong way.
- (D) the product is an integer.

Correct: (B) and (E).

Direct Proof.

Theorem: For any $a, b, c \in Z$, if $a \mid b$ and $a \mid c$ then $a \mid (b - c)$.

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q') and (q - q') is an integer so by definition of divides a|(b - c)

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$. Used distributive property and definition of divides.

Direct Proof Form: Goal: $P \implies Q$ Assume P.

Therefore Q.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of *n* is divisible by 11, then 11|n.

 $\forall n \in D_3, (11 | alt. sum of digits of n) \implies 11 | n$

Examples:

n = 121 Alt Sum: 1 - 2 + 1 = 0. Divis. by 11. As is 121.

n = 605 Alt Sum: 6 - 0 + 5 = 11 Divis. by 11. As is 605 = 11(55)

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: 11|a-b+c. Proved Q: 11|n.

The Converse

Thm: $\forall n \in D_3$, (11 alt. sum of digits of n) \implies 11 | nIs converse a theorem? $\forall n \in D_3$, (11 | n) \implies (11 alt. sum of digits of n) Yes? No?

Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies$$

$$99a + 11b + (a - b + c) = 11k \implies$$

$$a - b + c = 11k - 99a - 11b \implies$$

$$a - b + c = 11(k - 9a - b) \implies$$

$$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff

Often works with arithmetic propertiesnot when multiplying by 0.

We have.

Theorem: $\forall n \in D_3$, (11 alt. sum of digits of n) \iff (11 | n)

Proof by Contraposition

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

```
n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
```

Goal: Prove $P \implies Q$.

Assume $\neg Q$...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: *d* is even. d = 2k.

d|n so we have

n = qd = q(2k) = 2(kq)

n is even. $\neg P$

Another Contraposition...

Lemma: For every *n* in *N*, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even. $n^2 = 2k \dots \sqrt{2k}$ even? **Proof by contraposition:** $(P \implies Q) \equiv (\neg Q \implies \neg P)$ Q = 'n is even' $\neg Q =$ 'n is odd' Prove $\neg Q \implies \neg P$: *n* is odd $\implies n^2$ is odd. n = 2k + 1 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$ $n^2 = 2l + 1$ where l is a natural number. ... and n^2 is odd! $\neg Q \implies \neg P$ so $P \implies Q$ and ...

Proof by Obfuscation.

noun

noun: obfuscation; plural noun: obfuscations

the action of making something <u>obscure</u>, unclear, or <u>unintelligible</u>. "when confronted with sharp questions they resort to obfuscation"

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold. Proof by contradiction:

Theorem: P.

- $\neg P \implies P_1 \cdots \implies R$
- $\neg P \implies Q_1 \cdots \implies \neg R$
- $\neg P \implies R \land \neg R \equiv False$

or $\neg P \implies False$

Contrapositive of $\neg P \implies False$ is *True* $\implies P$. Theorem *P* is true. And proven.

Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P: \sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2 = 2k^2$$

 b^2 is even $\implies b$ is even. *a* and *b* have a common factor. Contradiction.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k .
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- q cannot be one of the primes as it is larger than any p_i .
- q has prime divisor p("p > 1" = R) which is one of p_i .
- *p* divides both $x = p_1 \cdot p_2 \cdots p_k$ and *q*, and divides q x,

$$\Rightarrow p|(q-x) \implies p \leq (q-x) = 1.$$

▶ so $p \le 1$. (Contradicts *R*.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first k primes..

Did we prove?

- "The product of the first k primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $\blacktriangleright 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q. As it assumed the only primes were the first k primes.

Poll: Odds and evens.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A) x^3 Even: $(2k)^3 = 2(4k^3)$ (B) y^3 (C) x + 5x Even: 2k + 5(2k) = 2(k + 5k)(D) xy Even: 2(ky). (E) xy^5 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2. E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

y³. Odd?

y = (2k+1). $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

Any power of an odd number? Odd. Idea: $(2k+1)^n$ has terms (a) with the last term being 1 (b) and all other terms having a multiple of 2k.

Proof by cases.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals. **Proof:** First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: *a* and *b* can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible. Case 3: *a* odd, *b* even: odd - even +even = even. Not possible. Case 4: *a* even, *b* even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Proof by cases.

Theorem: There exist irrational x and y such that x^{y} is rational. Let $x = v = \sqrt{2}$. Case 1: $x^{y} = \sqrt{2}^{\sqrt{2}}$ is rational. Done! Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational. • New values: $x = \sqrt{2}^{\sqrt{2}}$, $v = \sqrt{2}$. $x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds. Question: Which case holds? Don't know!!!

Poll: proof review.

Which of the following are (certainly) true?

(A) $\sqrt{2}$ is irrational. (B) $\sqrt{2}^{\sqrt{2}}$ is rational. (C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't. (D) $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ is rational. (A),(C),(D) (B) I don't know.

Be careful.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

What's wrong?

Don't assume what you want to prove!

Be really careful!

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

Poll: What is the problem?

(A) Assumed what you were proving.

(B) No problem. Its fine.

(C) x - y is zero.

(D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

$$P \Longrightarrow Q$$
 does not mean $Q \Longrightarrow P$.

Summary: Note 2.

Direct Proof: To Prove: $P \implies Q$. Assume P. Prove Q. a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: *P* Assume $\neg P$. Prove False .

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.Watch converse. ...

CS70: Note 3. Induction!

Poll. What's the biggest number?

- (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."