Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables. P(x) – true or false depending on value of x.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables. P(x) – true or false depending on value of x. P(3) is a proposition.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables. P(x) – true or false depending on value of x. P(3) is a proposition.

There exists quantifier:

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "(0 = 0)

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1)$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "
$$(0=0) \lor (1=1) \lor (2=4)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "
$$(0=0) \lor (1=1) \lor (2=4) \lor \dots$$
"

Much shorter to use a quantifier!

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor ...$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait!

There exists quantifier:

 $(\exists x \in S)(P(x))$ means "There exists an x in S where P(x) is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to " $(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \dots$ "

Much shorter to use a quantifier!

For all quantifier;

 $(\forall x \in S) (P(x))$. means "For all x in S, P(x) is True ."

Examples:

"Adding 1 makes a bigger number."

$$(\forall x \in \mathbb{N}) (x+1 > x)$$

"the square of a number is always non-negative"

$$(\forall x \in \mathbb{N})(x^2 >= 0)$$

Wait! What is N?

Quantifiers: universes.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has universe:

Quantifiers: universes.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Quantifiers: universes.

Proposition: "For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$."

Proposition has **universe**: "the natural numbers".

Universe examples include..

- ightharpoonup
 vert
 vert
- $ightharpoonup \mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- ► Z⁺ (positive integers)
- $ightharpoonup \mathbb{R}$ (real numbers)
- ▶ Any set: $S = \{Alice, Bob, Charlie, Donna\}.$
- See note 0 for more!

Back to: Wason's experiment:1 Theory:

Theory: "If a person travels to Chicago, he/she/they flies."

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = "x went to Chicago."

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = "x went to Chicago." Flew(x) = "x flew"

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

 $Chicago(x) = "x \text{ went to Chicago."} \qquad Flew(x) = "x \text{ flew"}$

Statement/theory: $\forall x \in \{A, B, C, D\}$, Chicago(x)

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

 $Chicago(x) = "x \text{ went to Chicago."} \qquad Flew(x) = "x \text{ flew"}$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

$$Chicago(A) = False$$
.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)? No.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, Chicago(x) \Longrightarrow Flew(x)

Chicago(A) = False . Do we care about Flew(A)?

No. $Chicago(A) \implies Flew(A)$ is true. since Chicago(A) is False,

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 Flew(x) = "x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Chicago(x) = "x went to Chicago." Flew(x) = "x flew"

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

$$Chicago(A) = False$$
. Do we care about $Flew(A)$?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)? Yes.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

```
Chicago(x) = "x went to Chicago." Flew(x) = "x flew"
```

Statement/theory: $\forall x \in \{A, B, C, D\}$, Chicago(x) \Longrightarrow Flew(x)

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)? Yes. $Chicago(B) \implies Flew(B)$

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

```
Chicago(x) = "x went to Chicago." Flew(x) = "x flew"
```

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)? Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

$$Chicago(A) = False$$
. Do we care about $Flew(A)$?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$.

So Chicago(Bob) must be False.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

```
Chicago(x) = "x went to Chicago." Flew(x) = "x flew"
```

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)? Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x \text{ went to Chicago."} \qquad Flew(x) = "x \text{ flew"}$$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)? Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)?

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False . Do we care about
$$Flew(A)$$
?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

$$Flew(B) = False$$
. Do we care about $Chicago(B)$?

Yes. $Chicago(B) \implies Flew(B) \equiv \neg Flew(B) \implies \neg Chicago(B)$. So Chicago(Bob) must be False.

```
Chicago(C) = True. Do we care about Flew(C)? Yes.
```

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)? Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)? Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

Flew(D) = True.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)?

Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

Flew(D) = True. Do we care about Chicago(D)?

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)? Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

Flew(D) = True. Do we care about Chicago(D)? No.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

$$Chicago(x) = "x went to Chicago."$$
 $Flew(x) = "x flew"$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

Chicago(A) = False. Do we care about Flew(A)?

No. $Chicago(A) \Longrightarrow Flew(A)$ is true. since Chicago(A) is False,

Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \Longrightarrow Flew(B) \equiv \neg Flew(B) \Longrightarrow \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)?

Yes. $Chicago(C) \implies Flew(C)$ means Flew(C) must be true.

Flew(D) = True. Do we care about Chicago(D)? No. $Chicago(D) \implies Flew(D)$ is true if Flew(D) is true.

Theory: "If a person travels to Chicago, he/she/they flies."

Alice to Baltimore, Bob drove, Charlie to Chicago, and Donna flew.

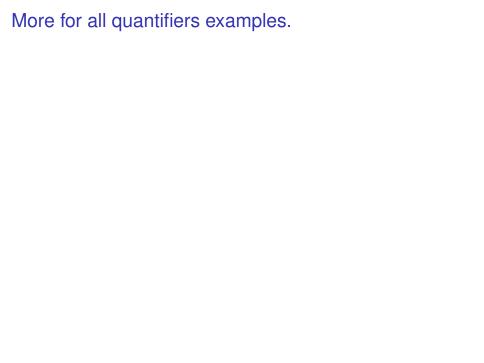
Which cards do you need to flip to test the theory?

$$Chicago(x) = "x \text{ went to Chicago."} \qquad Flew(x) = "x \text{ flew"}$$

Statement/theory: $\forall x \in \{A, B, C, D\}$, $Chicago(x) \implies Flew(x)$

$$Chicago(A) = False$$
. Do we care about $Flew(A)$?

No. $Chicago(A) \implies Flew(A)$ is true. since Chicago(A) is False,


Flew(B) = False. Do we care about Chicago(B)?

Yes. $Chicago(B) \implies Flew(B) \equiv \neg Flew(B) \implies \neg Chicago(B)$. So Chicago(Bob) must be False.

Chicago(C) = True. Do we care about Flew(C)? Yes. $Chicago(C) \Longrightarrow Flew(C)$ means Flew(C) must be true.

Flew(D) = True. Do we care about Chicago(D)? No. $Chicago(D) \Longrightarrow Flew(D)$ is true if Flew(D) is true.

Only have to turn over cards for Bob and Charlie.

$$(\forall x \in \mathbb{N}) (2x > x)$$

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

$$(\forall x \in \mathbb{N})$$

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

$$(\forall x \in \mathbb{N})(x > 5)$$

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

$$(\forall x \in \mathbb{N})(x > 5 \implies$$

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

$$(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$$

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$$

Idea alert:

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

"doubling a number always makes it larger"

$$(\forall x \in \mathbb{N}) (2x > x)$$
 False Consider $x = 0$

Can fix statement...

$$(\forall x \in \mathbb{N}) (2x \ge x)$$
 True

"Square of any natural number greater than 5 is greater than 25."

$$(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25).$$

Idea alert: Restrict domain using implication.

Later we may omit universe if clear from context.

$$(\exists y \in \mathbb{N})$$

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N})$$

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

$$(\forall x \in \mathbb{N})$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

$$(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

$$(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)$$

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

$$(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)$$
 True

▶ In English: "there is a natural number that is the square of every natural number".

$$(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)$$
 False

$$(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)$$
 True

Consider

$$\neg(\forall x \in S)(P(x)),$$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works." For False, find x, where $\neg P(x)$.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Consider

$$\neg (\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

Consider

$$\neg(\forall x\in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim.

Consider

$$\neg(\forall x\in S)(P(x)),$$

English: there is an x in S where P(x) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ "For all inputs x the program works."

For False , find x, where $\neg P(x)$.

Counterexample.

Bad input.

Case that illustrates bug.

For True: prove claim. Soon...

Consider

Consider

$$\neg(\exists x \in S)(P(x))$$

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that there is no $x \in S$ where P(x) is true.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that there is no $x \in S$ where P(x) is true. English: means that for all $x \in S$, P(x) does not hold.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that there is no $x \in S$ where P(x) is true. English: means that for all $x \in S$, P(x) does not hold.

That is,

$$\neg(\exists x \in S)(P(x)) \iff \forall (x \in S) \neg P(x).$$

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Theorem: $(\forall n \in \mathbb{N}) \ n \geq 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$ Which Theorem?

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

Theorem: $(\forall n \in \mathbb{N}) \ n \geq 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $(\forall n \in \mathbb{N}) \ n \ge 3 \implies \neg (\exists a, b, c \in \mathbb{N}) \ (a^n + b^n = c^n)$

Which Theorem?

Fermat's Last Theorem!

Remember Special Triangles:

for n = 2, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn't fit in the margins.

1993: Wiles ...(based in part on Ribet's Theorem)

DeMorgan Restatement:

Theorem: $\neg(\exists n \in \mathbb{N}) \ (\exists a,b,c \in \mathbb{N}) \ (n \ge 3 \implies a^n + b^n = c^n)$

Summary.

Propositions are statements that are true or false.

Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems!

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff$$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$\neg \forall x \ P(x) \iff$$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$

$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot .

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \Longrightarrow Q \Longleftrightarrow \neg P \lor Q$.

Contrapositive: $\neg Q \Longrightarrow \neg P$

Converse: $Q \Longrightarrow P$

Predicates: Statements with "free" variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: "Flip and Distribute negation"

$$\neg (P \lor Q) \iff (\neg P \land \neg Q)$$
$$\neg \forall x \ P(x) \iff \exists x \ \neg P(x).$$

And now: proofs!

Theory: If you drink alcohol you must be at least 18.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol \implies " \ge 18"

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" ⇒ Don't Drink Alcohol.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" \implies Don't Drink Alcohol. Contrapositive.

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" \Longrightarrow Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

Theory: If you drink alcohol you must be at least 18.

Which cards do you turn over?

Drink Alcohol ⇒ "≥ 18"

"< 18" \Longrightarrow Don't Drink Alcohol. Contrapositive.

(A) (B) (C) and/or (D)?

CS70: Lecture 2. Outline.

Today: Proofs!!!

- 1. By Example.
- 2. Direct. (Prove $P \Longrightarrow Q$.)
- 3. by Contraposition (Prove $P \Longrightarrow Q$)
- 4. by Contradiction (Prove P.)
- 5. by Cases

If time: discuss induction.

How to prove existential statement?

How to prove existential statement?

Give an example. (Sometimes called "proof by example.")

How to prove existential statement?

Give an example. (Sometimes called "proof by example.")

Theorem: $(\exists x \in N)(x = x^2)$

How to prove existential statement?

Give an example. (Sometimes called "proof by example.")

Theorem: $(\exists x \in N)(x = x^2)$

Pf: $0 = 0^2 = 0$

How to prove existential statement?

Give an example. (Sometimes called "proof by example.")

Theorem: $(\exists x \in N)(x = x^2)$

Pf: $0 = 0^2 = 0$

Often used to disprove claim.

Integers closed under addition.

Integers closed under addition.

$$a, b \in Z \implies a + b \in Z$$

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4?

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4?

7|23?

4|2?

Integers closed under addition.

```
a,b\in Z \implies a+b\in Z
```

a|b means "a divides b".

2|4?

7|23?

4|2?

2|-4?

Integers closed under addition.

```
a,b\in Z \implies a+b\in Z
```

a|b means "a divides b".

2|4?

7|23?

4|2?

2|-4?

Integers closed under addition.

```
a,b\in Z \implies a+b\in Z
```

a|b means "a divides b".

2|4?

7|23?

4|2?

2|-4?

Integers closed under addition.

```
a,b\in Z \implies a+b\in Z
```

a|b means "a divides b".

2|4?

7|23?

4|2?

2|-4?

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|*b* means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

2|-4? Yes!

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

Integers closed under addition.

```
a,b\in Z \implies a+b\in Z
```

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

2|-4? Yes!

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

2|-4? Yes!

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q=5,

Integers closed under addition.

$$a,b\in Z \implies a+b\in Z$$

a|b means "a divides b".

2|4? Yes!

7|23? No!

4|2? No!

2|-4? Yes!

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No!

4|2? No!

2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a|b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

A number x is even if and only if 2|x, or x = 2k for $x, k \in \mathbb{Z}$.

Integers closed under addition.

$$a,b \in Z \implies a+b \in Z$$

a|b means "a divides b".

2|4? Yes! Since for q = 2, 4 = (2)2.

7|23? No! No *q* where true.

4|2? No!

2|-4? Yes! Since for q = 2, -4 = (-2)2.

Formally: for $a, b \in \mathbb{Z}$, $a | b \iff \exists q \in \mathbb{Z}$ where b = aq.

3|15 since for q = 5, 15 = 3(5).

A natural number p > 1, is **prime** if it is divisible only by 1 and itself.

A number x is even if and only if 2|x, or x = 2k for $x, k \in \mathbb{Z}$.

A number x is odd if and only if x = 2k + 1 for $x, k \in \mathbb{Z}$.

- a|b means
 - (A) There exists $k \in \mathbb{Z}$, with a = kb.
 - (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.
- (E) a divides b

a|b means

- (A) There exists $k \in \mathbb{Z}$, with a = kb.
- (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.
- (E) a divides b

Incorrect:

(C) sufficient not necessary.

a|b means

- (A) There exists $k \in \mathbb{Z}$, with a = kb.
- (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.
- (E) a divides b

Incorrect:

- (C) sufficient not necessary.
- (A) Wrong way.

a|b means

- (A) There exists $k \in \mathbb{Z}$, with a = kb.
- (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.
- (E) a divides b

Incorrect:

- (C) sufficient not necessary.
- (A) Wrong way.
- (D) the product is an integer.

a|b means

- (A) There exists $k \in \mathbb{Z}$, with a = kb.
- (B) There exists $k \in \mathbb{Z}$, with b = ka.
- (C) There exists $k \in \mathbb{N}$, with b = ka.
- (D) There exists $k \in \mathbb{Z}$, with k = ab.
- (E) a divides b

Incorrect:

- (C) sufficient not necessary.
- (A) Wrong way.
- (D) the product is an integer.

Correct: (B) and (E).

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq'

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

b = aq and c = aq' where $q, q' \in Z$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|cb = aq and c = aq' where $q, q' \in Z$

b-c=aq-aq'=a(q-q') Done?

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b = aq and c = aq' where $q, q' \in Z$ b - c = aq - aq' = a(q - q') Done? (b - c) = a(q - q')

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so by definition of divides

Theorem: For any $a,b,c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c $b=aq \text{ and } c=aq' \text{ where } q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides

Works for $\forall a, b, c$?

a|(b-c)

a|(b-c)

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c $b=aq \text{ and } c=aq' \text{ where } q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides

Works for $\forall a, b, c$? Argument applies to *every* $a, b, c \in Z$.

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c $b=aq \text{ and } c=aq' \text{ where } q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides

Works for $\forall a, b, c$?

a|(b-c)

Argument applies to every $a, b, c \in Z$.

Used distributive property and definition of divides.

Theorem: For any $a, b, c \in Z$, if a|b and a|c then a|(b-c).

Proof: Assume
$$a|b$$
 and $a|c$

$$b = aq$$
 and $c = aq'$ where $q, q' \in Z$

$$b-c=aq-aq'=a(q-q')$$
 Done?

$$(b-c)=a(q-q')$$
 and $(q-q')$ is an integer so by definition of divides

$$a|(b-c)$$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c $b=aq \text{ and } c=aq' \text{ where } q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides

Works for $\forall a, b, c$?

a|(b-c)

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \Longrightarrow Q$

Direct Proof.

Theorem: For any $a,b,c\in Z$, if a|b and a|c then a|(b-c). **Proof:** Assume a|b and a|c b=aq and c=aq' where $q,q'\in Z$ b-c=aq-aq'=a(q-q') Done? (b-c)=a(q-q') and (q-q') is an integer so by definition of divides a|(b-c)

Works for $\forall a, b, c$?

Argument applies to *every* $a, b, c \in Z$.

Used distributive property and definition of divides.

Direct Proof Form:

Goal: $P \Longrightarrow Q$ Assume P.

Direct Proof.

```
Theorem: For any a, b, c \in \mathbb{Z}, if a|b and a|c then a|(b-c).
Proof: Assume a|b and a|c
  b = aq and c = aq' where q, q' \in Z
b-c=aq-aq'=a(q-q') Done?
(b-c)=a(q-q') and (q-q') is an integer so by definition of divides
   a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
  Used distributive property and definition of divides.
Direct Proof Form:
 Goal: P \Longrightarrow Q
  Assume P.
```

Direct Proof.

```
Theorem: For any a, b, c \in \mathbb{Z}, if a|b and a|c then a|(b-c).
Proof: Assume a|b and a|c
  b = aq and c = aq' where q, q' \in Z
b-c=aq-aq'=a(q-q') Done?
(b-c)=a(q-q') and (q-q') is an integer so by definition of divides
   a|(b-c)
Works for \forall a, b, c?
 Argument applies to every a, b, c \in Z.
  Used distributive property and definition of divides.
Direct Proof Form:
 Goal: P \Longrightarrow Q
  Assume P.
  Therefore Q.
```

Let D_3 be the 3 digit natural numbers.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

 $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is 605

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

```
\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n|
```

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is *n*,

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a - b + c = 11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then 11|n.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$$n = 121$$
 Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$$n = 605$$
 Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, n = 100a + 10b + c, for some a, b, c.

Assume: Alt. sum: a-b+c=11k for some integer k.

Add 99a + 11b to both sides.

$$100a+10b+c=11k+99a+11b=11(k+9a+b)$$

Left hand side is n, k+9a+b is integer. $\implies 11|n$.

Direct proof of $P \Longrightarrow Q$:

Assumed P: 11|a-b+c. Proved Q: 11|n.

Thm: $\forall n \in D_3$, (11|alt. sum of digits of n) \implies 11|n

```
Thm: \forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n Is converse a theorem? \forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n) Yes?
```

```
Thm: \forall n \in D_3, (11|alt. sum of digits of n) \Longrightarrow 11|n Is converse a theorem? \forall n \in D_3, (11|n) \Longrightarrow (11|alt. sum of digits of n) Yes? No?
```

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof:

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$

Proof: Assume 11|n.

n = 100a + 10b + c = 11k

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow 99a + 11b + (a - b + c) = 11k$

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b)
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell
```

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

That is 11 alternating sum of digits.

```
Theorem: \forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)

Proof: Assume 11|n.

n = 100a + 10b + c = 11k \Longrightarrow
99a + 11b + (a - b + c) = 11k \Longrightarrow
a - b + c = 11k - 99a - 11b \Longrightarrow
a - b + c = 11(k - 9a - b) \Longrightarrow
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z
```

Theorem:
$$\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$$
Proof: Assume $11|n$.

 $n = 100a + 10b + c = 11k \Longrightarrow$
 $99a + 11b + (a - b + c) = 11k \Longrightarrow$
 $a - b + c = 11k - 99a - 11b \Longrightarrow$
 $a - b + c = 11(k - 9a - b) \Longrightarrow$
 $a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow$ $99a + 11b + (a - b + c) = 11k \Longrightarrow$ $a - b + c = 11k - 99a - 11b \Longrightarrow$ $a - b + c = 11(k - 9a - b) \Longrightarrow$ $a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$

That is 11 alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff Often works with arithmetic properties ...

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow$ $99a + 11b + (a - b + c) = 11k \Longrightarrow$ $a - b + c = 11k - 99a - 11b \Longrightarrow$ $a - b + c = 11(k - 9a - b) \Longrightarrow$ $a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$

That is 11 alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff Often works with arithmetic properties ...

...not when multiplying by 0.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n. $n = 100a + 10b + c = 11k \Longrightarrow$

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11|alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|n) \Longrightarrow (11|\text{alt. sum of digits of } n)$ **Proof:** Assume 11|n.

$$n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in Z$$

That is 11 alternating sum of digits.

Note: similar proof to other direction. In this case every \implies is \iff

Often works with arithmetic properties ...

...not when multiplying by 0.

We have.

Theorem: $\forall n \in D_3$, (11|alt. sum of digits of n) \iff (11|n)

Thm: For $n \in \mathbb{Z}^+$ and d|n. If n is odd then d is odd.

Thm: For $n \in Z^+$ and d|n. If n is odd then d is odd.

n = kd and n = 2k' + 1 for integers k, k'.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = kd and n = 2k' + 1 for integers k, k'.

what do we know about d?

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = kd and n = 2k' + 1 for integers k, k'.

what do we know about d?

Goal: Prove $P \Longrightarrow Q$.

Thm: For $n \in \mathbb{Z}^+$ and $d \mid n$. If n is odd then d is odd.

n = kd and n = 2k' + 1 for integers k, k'.

what do we know about d?

Goal: Prove $P \Longrightarrow Q$.

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
```

n = kd and n = 2k' + 1 for integers k, k'.

what do we know about d?

Goal: Prove $P \Longrightarrow Q$.

Assume $\neg Q$

...and prove $\neg P$.

```
Thm: For n \in Z^+ and d \mid n. If n is odd then d is odd. n = kd and n = 2k' + 1 for integers k, k'. what do we know about d?

Goal: Prove P \implies Q.

Assume \neg Q
```

Conclusion: $\neg Q \Longrightarrow \neg P$

```
Thm: For n \in Z^+ and d \mid n. If n is odd then d is odd. n = kd and n = 2k' + 1 for integers k, k'. what do we know about d?

Goal: Prove P \Longrightarrow Q.

Assume \neg Q
...and prove \neg P.
```

```
Thm: For n \in Z^+ and d|n. If n is odd then d is odd. n = kd and n = 2k' + 1 for integers k, k'. what do we know about d?

Goal: Prove P \Longrightarrow Q.

Assume \neg Q
...and prove \neg P.
```

Conclusion: $\neg Q \Longrightarrow \neg P$ equivalent to $P \Longrightarrow Q$.

```
Thm: For n \in Z^+ and d|n. If n is odd then d is odd. n = kd and n = 2k' + 1 for integers k, k'. what do we know about d?

Goal: Prove P \implies Q.

Assume \neg Q....and prove \neg P.

Conclusion: \neg Q \implies \neg P equivalent to P \implies Q.

Proof: Assume \neg Q: d is even.
```

```
Thm: For n \in Z^+ and d|n. If n is odd then d is odd. n = kd and n = 2k' + 1 for integers k, k'. what do we know about d?

Goal: Prove P \implies Q.

Assume \neg Q....and prove \neg P.

Conclusion: \neg Q \implies \neg P equivalent to P \implies Q.

Proof: Assume \neg Q: d is even. d = 2k.
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd = q(2k)
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd = q(2k) = 2(kq)
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd = q(2k) = 2(kq)
n is even.
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd = q(2k) = 2(kq)
n is even. \neg P
```

```
Thm: For n \in \mathbb{Z}^+ and d \mid n. If n is odd then d is odd.
  n = kd and n = 2k' + 1 for integers k, k'.
what do we know about d?
Goal: Prove P \Longrightarrow Q.
Assume \neg Q
...and prove \neg P.
Conclusion: \neg Q \Longrightarrow \neg P equivalent to P \Longrightarrow Q.
Proof: Assume \neg Q: d is even. d = 2k.
d n so we have
  n = qd = q(2k) = 2(kq)
n is even. \neg P
```


Another Contraposition...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ...

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$ n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

 $P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

Q = 'n is even' $\neg Q =$ 'n is odd'

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

Q = 'n is even' $\neg Q =$ 'n is odd'

Prove $\neg Q \Longrightarrow \neg P$: n is odd $\Longrightarrow n^2$ is odd.

n = 2k + 1

 $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove
$$\neg Q \Longrightarrow \neg P$$
: n is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

$$n^2 = 2I + 1$$
 where I is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P$$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by contraposition:
$$(P \Longrightarrow Q) \equiv (\neg Q \Longrightarrow \neg P)$$

$$Q =$$
 'n is even' $\neg Q =$ 'n is odd'

Prove
$$\neg Q \Longrightarrow \neg P$$
: n is odd $\Longrightarrow n^2$ is odd.

$$n = 2k + 1$$

$$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1.$$

$$n^2 = 2I + 1$$
 where *I* is a natural number..

... and n^2 is odd!

$$\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$$

 $\neg Q \Longrightarrow \neg P \text{ so } P \Longrightarrow Q \text{ and } ...$

Lemma: For every n in N, n^2 is even $\implies n$ is even. $(P \implies Q)$

Proof by Obfuscation.

Proof by Obfuscation.

noun

noun: obfuscation; plural noun: obfuscations

the action of making something <u>obscure</u>, unclear, or <u>unintelligible</u>. "when confronted with sharp questions they resort to obfuscation"

Proof by Obfuscation.

noun

noun: obfuscation; plural noun: obfuscations

the action of making something <u>obscure</u>, unclear, or <u>unintelligible</u>. "when confronted with sharp questions they resort to obfuscation"

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Must show:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$,

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

 $\neg P \Longrightarrow P_1 \cdots$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies \textit{Q}_1 \cdots$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \implies Q_1 \cdots \implies \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$
 $\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$
 $\neg P \Longrightarrow R \land \neg R \equiv False$

or
$$\neg P \Longrightarrow False$$

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \Longrightarrow R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \Longrightarrow R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv$$
False

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow \textit{False}$ is $\textit{True} \Longrightarrow P$.

Theorem *P* is true.

Proof by contradiction:form

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always "not" hold.

Proof by contradiction:

Theorem: P.

$$\neg P \Longrightarrow P_1 \cdots \implies R$$

$$\neg P \Longrightarrow Q_1 \cdots \Longrightarrow \neg R$$

$$\neg P \implies R \land \neg R \equiv \mathsf{False}$$

or
$$\neg P \Longrightarrow False$$

Contrapositive of $\neg P \Longrightarrow False$ is $True \Longrightarrow P$.

Theorem *P* is true. And proven.

Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2=a^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: *a* and *b* have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in Z$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

 a^2 is even $\implies a$ is even.

a = 2k for some integer k

$$b^2=2k^2$$

 b^2 is even $\implies b$ is even. a and b have a common factor. Contradiction.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

Proof:

▶ Assume finitely many primes: $p_1,...,p_k$.

Theorem: There are infinitely many primes.

- ▶ Assume finitely many primes: $p_1,...,p_k$.
- Consider number

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

ightharpoonup q cannot be one of the primes as it is larger than any p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q,

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|(q-x)$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup p > p | (q-x) \implies p \leq (q-x)$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q = (p_1 \times p_2 \times \cdots p_k) + 1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p|(q-x) \implies p \leq (q-x) = 1.$

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow \rho|(q-x) \implies \rho \leq (q-x) = 1.$
- ▶ so $p \le 1$.

Theorem: There are infinitely many primes.

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow \rho|(q-x) \implies \rho \leq (q-x) = 1.$
- ▶ so $p \le 1$. (Contradicts R.)

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p | (q-x) \implies p \leq (q-x) = 1.$
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: $p_1, ..., p_k$.
- Consider number

$$q=(p_1\times p_2\times\cdots p_k)+1.$$

- ightharpoonup q cannot be one of the primes as it is larger than any p_i .
- ▶ q has prime divisor p ("p > 1" = R) which is one of p_i .
- ▶ p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides q x,
- $ightharpoonup \Rightarrow p \leq (q-x) = 1.$
- ▶ so $p \le 1$. (Contradicts R.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.

Product of first *k* primes..

Did we prove?

▶ "The product of the first *k* primes plus 1 is prime."

Product of first *k* primes..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.

Product of first *k* primes..

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- The chain of reasoning started with a false statement.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- ► No.
- ▶ The chain of reasoning started with a false statement.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

Consider example..

 $ightharpoonup 2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime in between 13 and q = 30031 that divides q.
- ▶ Proof assumed no primes *in between* p_k and q.

Did we prove?

- ▶ "The product of the first *k* primes plus 1 is prime."
- No.
- The chain of reasoning started with a false statement.

- \triangleright 2 × 3 × 5 × 7 × 11 × 13 + 1 = 30031 = 59 × 509
- ▶ There is a prime *in between* 13 and q = 30031 that divides q.
- Proof assumed no primes in between p_k and q.
 As it assumed the only primes were the first k primes.

x is even, y is odd.

x is even, y is odd.

Even numbers are divisible by 2.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

- (A) x^3
- $(B) y^3$
- (C) x + 5x
- (D) xy
- (E) xy^5

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

- (A) x^{3}
- $(B) y^3$
- (C) x + 5x
- (D) *xy*
- (E) xy^5

A, C, D, E all contain a factor of 2.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

 y^3 . Odd?

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd?

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

Any power of an odd number?

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky).

(E)
$$xy^5$$
 Even: $2(ky^5)$.

A, C, D, E all contain a factor of 2.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

Any power of an odd number? Odd.

Idea: $(2k+1)^n$ has terms

(a) with the last term being 1

x is even, y is odd.

Even numbers are divisible by 2.

Which are even?

(A)
$$x^3$$
 Even: $(2k)^3 = 2(4k^3)$

(B) y^3

(C)
$$x + 5x$$
 Even: $2k + 5(2k) = 2(k + 5k)$

(D) xy Even: 2(ky). (E) xy^5 Even: $2(ky^5)$.

E.g., x = 2k, $x^3 = 8k = 2(4k)$ and is even.

$$y^3$$
. Odd?

$$y = (2k+1)$$
. $y^3 = 8k^3 + 24k^2 + 24k + 1 = 2(4k^3 + 12k^2 + 12k) + 1$.

Odd times an odd? Odd.

Any power of an odd number? Odd.

Idea: $(2k+1)^n$ has terms

- (a) with the last term being 1
- (b) and all other terms having a multiple of 2k.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even!

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd +odd = even. Not possible. Case 2: *a* even, *b* odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible. Case 2: a even, b odd: even - even + odd = even. Not possible. Case 3: a odd, b even: odd - even + even = even. Not possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even +even = even.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: *a* even, *b* even: even - even +even = even. Possible.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible,

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible.

Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: *a* odd, *b* even: odd - even + even = even. Not possible.

Case 4: *a* even, *b* even: even - even + even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and x = a/b for $a, b \in Z$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0$$

Multiply by b^5 ,

$$a^5 - ab^4 + b^5 = 0$$

Case 1: *a* odd, *b* odd: odd - odd + odd = even. Not possible. Case 2: *a* even, *b* odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible. Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.

Theorem: There exist irrational x and y such that x^y is rational.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values:
$$x = \sqrt{2}^{\sqrt{2}}$$
, $y = \sqrt{2}$.

$$x^y =$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2}$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2). One of the cases is true so theorem holds.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?

Theorem: There exist irrational x and y such that x^y is rational.

Let
$$x = y = \sqrt{2}$$
.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^{y} = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2}*\sqrt{2}} = \sqrt{2}^{2} = 2.$$

Thus, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don't know!!!

- (A) $\sqrt{2}$ is irrational.
- (B) $\sqrt{2}^{\sqrt{2}}$ is rational.
- (C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
- (D) $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ is rational.

- (A) $\sqrt{2}$ is irrational.
- (B) $\sqrt{2}^{\sqrt{2}}$ is rational.
- (C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
- (D) $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ is rational.
- (A),(C),(D)

- (A) $\sqrt{2}$ is irrational.
- (B) $\sqrt{2}^{\sqrt{2}}$ is rational.
- (C) $\sqrt{2}^{\sqrt{2}}$ is rational or it isn't.
- (D) $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$ is rational.
- (A),(C),(D)
- (B) I don't know.

Theorem: 3 = 4

Theorem: 3 = 4

 $\textbf{Proof:} \ \mathsf{Assume} \ 3 = 4.$

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get

4 = 3.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

What's wrong?

Theorem: 3 = 4

Proof: Assume 3 = 4.

Start with 12 = 12.

Divide one side by 3 and the other by 4 to get 4 = 3.

By commutativity theorem holds.

What's wrong?

Don't assume what you want to prove!

Theorem: 1 = 2

Proof:

Theorem: 1 = 2

Proof: For x = y, we have

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^2 - xy) = x^2 - y^2$$

 $x(x - y) = (x + y)(x - y)$

Theorem: 1 = 2Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$

$$(x^2 - xy) = x^2 - y^2$$

$$x(x - y) = (x + y)(x - y)$$

$$x = (x + y)$$

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y)x = 2x

Theorem: 1 = 2 Proof: For x = y, we have $(x^2 - xy) = x^2 - y^2$ x(x - y) = (x + y)(x - y) x = (x + y) x = 2x1 = 2

```
Theorem: 1 = 2

Proof: For x = y, we have

(x^2 - xy) = x^2 - y^2

x(x - y) = (x + y)(x - y)

x = (x + y)

x = 2x

1 = 2
```

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good.

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

Theorem: 1 = 2

Proof: For x = y, we have

$$(x^{2}-xy) = x^{2}-y^{2}$$

$$x(x-y) = (x+y)(x-y)$$

$$x = (x+y)$$

$$x = 2x$$

$$1 = 2$$

Poll: What is the problem?

- (A) Assumed what you were proving.
- (B) No problem. Its fine.
- (C) x y is zero.
- (D) Can't multiply by zero in a proof.

Dividing by zero is no good. Multiplying by zero is wierdly cool!

Also: Multiplying inequalities by a negative.

$$P \Longrightarrow Q$$
 does not mean $Q \Longrightarrow P$.

Direct Proof:

Direct Proof:

To Prove: $P \Longrightarrow Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P.

Direct Proof:

To Prove: $P \implies Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q. a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$.

Direct Proof:

To Prove: $P \implies Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q. a|b and $a|c \Longrightarrow a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. p^2 is odd $\Longrightarrow p$ is odd. $\equiv p$ is even $\Longrightarrow p^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q. a|b and $a|c \Longrightarrow a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$. n^2 is odd $\Longrightarrow n$ is odd. $\equiv n$ is even $\Longrightarrow n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Direct Proof:

To Prove: $P \implies Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q. a|b and $a|c \Longrightarrow a|(b-c)$.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. p^2 is odd $\implies p$ is odd. $\equiv p$ is even. $\Rightarrow p^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q. a|b and $a|c \Longrightarrow a|(b-c)$.

By Contraposition:

To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$. p^2 is odd $\implies p$ is odd. $\equiv p$ is even. $\Rightarrow p^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse.

Direct Proof:

To Prove: $P \Longrightarrow Q$. Assume P. Prove Q.

a|b and $a|c \implies a|(b-c)$.

By Contraposition:

To Prove: $P \Longrightarrow Q$ Assume $\neg Q$. Prove $\neg P$.

 n^2 is odd $\implies n$ is odd. $\equiv n$ is even $\implies n^2$ is even.

By Contradiction:

To Prove: P Assume $\neg P$. Prove False.

 $\sqrt{2}$ is rational.

 $\sqrt{2} = \frac{a}{b}$ with no common factors....

By Cases: informal.

Universal: show that statement holds in all cases.

Existence: used cases where one is true.

Either $\sqrt{2}$ and $\sqrt{2}$ worked.

or $\sqrt{2}$ and $\sqrt{2}^{\sqrt{2}}$ worked.

Careful when proving!

Don't assume the theorem. Divide by zero. Watch converse. ...

CS70: Note 3. Induction!

Poll. What's the biggest number?

- (A) 100
- (B) 101
- (C) n+1
- (D) infinity.
- (E) This is about the "recursive leap of faith."