Today: Proofs!!!
Today: Proofs!!!

1. By Example (or Counterexample).
Today: Proofs!!!

1. By Example (or Counterexample).
2. Direct. (Prove $P \implies Q$.)
Today: Proofs!!

1. By Example (or Counterexample).
2. Direct. (Prove $P \implies Q$.)
3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
Today: Proofs!!!

1. By Example (or Counterexample).
2. Direct. (Prove $P \implies Q$.)
3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
4. by Contradiction (Prove P by assuming $\neg P$ and reaching a contradiction.)
CS70: Lecture 2. Outline.

Today: Proofs!!!

1. By Example (or Counterexample).
2. Direct. (Prove $P \implies Q$.)
3. by Contraposition (Prove $P \implies Q$ by proving $\neg Q \implies \neg P$)
4. by Contradiction (Prove P by assuming $\neg P$ and reaching a contradiction.)
5. by Cases (enumerate an exhaustive set of cases)
Quick Background and Notation.

Integers closed under addition.

$a, b \in \mathbb{Z} \Rightarrow a + b \in \mathbb{Z}$

$a | b$ means "a divides b".

2 | 4? Yes!

7 | 23? No!

4 | 2? No!

Formally:

$a | b \iff \exists q \in \mathbb{Z}$ where $b = aq$.

3 | 15 since for $q = 5$, $15 = 3(5)$.

A natural number $p > 1$ is prime if it is divisible only by 1 and itself.
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

2 | 4? Yes!

7 | 23? No!

4 | 2? No!

Formally:

\[a \mid b \iff \exists q \in \mathbb{Z} \text{ where } b = aq \]

3 | 15 since for \(q = 5 \), 15 = 3(5).

A natural number \(p > 1 \), is prime if it is divisible only by 1 and itself.
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a \mid b \) means “a divides b.”
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a \parallel b \) means “a divides b”.

2\parallel 4?

3\parallel 15 since for \(q = 5 \), 15 = 3(5).
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a | b \) means “a divides b”.

2|4? Yes!
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a | b \) means “a divides b”.

2 | 4? Yes!

7 | 23?
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a \mid b \) means “a divides b”.

2\mid4? Yes!

7\mid23? No!
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a | b \) means “a divides b”.

2|4? Yes!

7|23? No!

4|2?
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a \mid b \) means “a divides b”.

2\|4? Yes!

7\|23? No!

4\|2? No!
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a | b \) means “a divides b”.

2|4? Yes!

7|23? No!

4|2? No!

Formally: \(a | b \iff \exists q \in \mathbb{Z} \text{ where } b = aq \).
Quick Background and Notation.

Integers closed under addition.
\[a, b \in Z \implies a + b \in Z \]

\(a \mid b \) means “\(a \) divides \(b \)”.

\(2 \mid 4 \)？ Yes!

\(7 \mid 23 \)？ No!

\(4 \mid 2 \)？ No!

Formally: \(a \mid b \iff \exists q \in Z \) where \(b = aq \).

\(3 \mid 15 \)
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a|b \) means “\(a \) divides \(b \)”.\

2|4? Yes!\
7|23? No!\
4|2? No!\

Formally: \(a|b \iff \exists q \in \mathbb{Z} \text{ where } b = aq \).\

3|15 since for \(q = 5 \),
Quick Background and Notation.

Integers closed under addition.

\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]

\(a \mid b \) means “a divides b”.

2\(\mid \)4? Yes!

7\(\mid \)23? No!

4\(\mid \)2? No!

Formally: \(a \mid b \iff \exists q \in \mathbb{Z} \text{ where } b = aq \).

3\(\mid \)15 since for \(q = 5 \), \(15 = 3(5) \).
Quick Background and Notation.

Integers closed under addition.
\[a, b \in \mathbb{Z} \implies a + b \in \mathbb{Z} \]
a\,|\,\,b \text{ means “a divides b”.}

2\,|\,\,4? Yes!
7\,|\,\,23? No!
4\,|\,\,2? No!

Formally: \[a\,|\,\,b \iff \exists q \in \mathbb{Z} \text{ where } b = aq. \]

3\,|\,\,15 since for \,q = 5, \,15 = 3(5).

A natural number \,p > 1, is **prime** if it is divisible only by 1 and itself.
Direct Proof (Forward Reasoning).

Theorem: For any \(a, b, c \in \mathbb{Z} \), if \(a \mid b \) and \(a \mid c \) then \(a \mid b - c \).

Proof: Assume \(a \mid b \) and \(a \mid c \)
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

\[b = aq \]
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

\[b = aq \quad \text{and} \quad c = aq' \]
Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$
Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

\[b = aq \text{ and } c = aq' \text{ where } q, q' \in \mathbb{Z} \]

\[b - c = aq - aq' \]
Direct Proof (Forward Reasoning).

Theorem: For any \(a, b, c \in \mathbb{Z}\), if \(a|b\) and \(a|c\) then \(a|b - c\).

Proof: Assume \(a|b\) and \(a|c\)

\[
b = aq \quad \text{and} \quad c = aq' \quad \text{where} \quad q, q' \in \mathbb{Z}
\]

\[
b - c = aq - aq' = a(q - q')
\]

Done?
Direct Proof (Forward Reasoning).

Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

$$b = aq \text{ and } c = aq' \text{ where } q, q' \in \mathbb{Z}$$

$$b - c = aq - aq' = a(q - q')$$

Done?
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ Done?

$(b - c) = a(q - q')$
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a | b$ and $a | c$ then $a | b - c$.

Proof: Assume $a | b$ and $a | c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ Done?

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a \mid b$ and $a \mid c$ then $a \mid b - c$.

Proof: Assume $a \mid b$ and $a \mid c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ Done?

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so

$a \mid (b - c)$
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a | b$ and $a | c$ then $a | b - c$.

Proof: Assume $a | b$ and $a | c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ Done?

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so

$a | (b - c)$
Theorem: For any $a, b, c \in \mathbb{Z}$, if $a|b$ and $a|c$ then $a|b - c$.

Proof: Assume $a|b$ and $a|c$

$b = aq$ and $c = aq'$ where $q, q' \in \mathbb{Z}$

$b - c = aq - aq' = a(q - q')$ Done?

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so

$a|(b - c)$

Works for $\forall a, b, c$?
Direct Proof (Forward Reasoning).

Theorem: For any \(a, b, c \in \mathbb{Z} \), if \(a|b \) and \(a|c \) then \(a|b - c \).

Proof: Assume \(a|b \) and \(a|c \)

\[b = aq \text{ and } c = aq' \text{ where } q, q' \in \mathbb{Z} \]

\[b - c = aq - aq' = a(q - q') \text{ Done?} \]

\((b - c) = a(q - q') \) and \((q - q') \) is an integer so

\[a|(b - c) \]

Works for \(\forall a, b, c \)?

Argument applies to every \(a, b, c \in \mathbb{Z} \).
Direct Proof (Forward Reasoning).

Theorem: For any \(a, b, c \in \mathbb{Z} \), if \(a|b \) and \(a|c \) then \(a|b − c \).

Proof: Assume \(a|b \) and \(a|c \)

\[
b = aq \quad \text{and} \quad c = aq' \quad \text{where} \quad q, q' \in \mathbb{Z}
\]

\[
b − c = aq − aq' = a(q − q') \quad \text{Done?}
\]

\[
(b − c) = a(q − q') \quad \text{and} \quad (q − q') \text{ is an integer so}
\]

\[
a| (b − c)
\]

Works for \(\forall a, b, c \)?

Argument applies to every \(a, b, c \in \mathbb{Z} \).

Direct Proof Form:
Direct Proof (Forward Reasoning).

Theorem: For any \(a, b, c \in \mathbb{Z}\), if \(a|b\) and \(a|c\) then \(a|b - c\).

Proof: Assume \(a|b\) and \(a|c\)

\[
b = aq \quad \text{and} \quad c = aq' \quad \text{where} \quad q, q' \in \mathbb{Z}
\]

\[
b - c = aq - aq' = a(q - q') \quad \text{Done?}
\]

\((b - c) = a(q - q')\) and \((q - q')\) is an integer so

\[a|(b - c)\]

Works for \(\forall a, b, c\)?

Argument applies to every \(a, b, c \in \mathbb{Z}\).

Direct Proof Form:

Goal: \(P \implies Q\)
Direct Proof (Forward Reasoning).

Theorem: For any \(a, b, c \in \mathbb{Z} \), if \(a \mid b \) and \(a \mid c \) then \(a \mid b - c \).

Proof: Assume \(a \mid b \) and \(a \mid c \)

\[
b = aq \quad \text{and} \quad c = aq'
\] where \(q, q' \in \mathbb{Z} \)

\[
b - c = aq - aq' = a(q - q')
\]

Done?

\[(b - c) = a(q - q') \] and \((q - q') \) is an integer so

\[a \mid (b - c) \]

Works for \(\forall a, b, c \)?

Argument applies to every \(a, b, c \in \mathbb{Z} \).

Direct Proof Form:

Goal: \(P \implies Q \)

Assume \(P \).
Theorem: For any \(a, b, c \in \mathbb{Z} \), if \(a | b \) and \(a | c \) then \(a | b - c \).

Proof: Assume \(a | b \) and \(a | c \)
 \(b = aq \) and \(c = aq' \) where \(q, q' \in \mathbb{Z} \)
\(b - c = aq - aq' = a(q - q') \) Done?
\((b - c) = a(q - q') \) and \((q - q') \) is an integer so \(a | (b - c) \)

Works for \(\forall a, b, c \)?
 Argument applies to every \(a, b, c \in \mathbb{Z} \).

Direct Proof Form:
 Goal: \(P \implies Q \)
 Assume \(P \).
 ...

Theorem: For any $a, b, c \in \mathbb{Z}$, if $a | b$ and $a | c$ then $a | b - c$.

Proof: Assume $a | b$ and $a | c$

\[b = aq \text{ and } c = aq' \text{ where } q, q' \in \mathbb{Z} \]

\[b - c = aq - aq' = a(q - q') \]

Done?

$(b - c) = a(q - q')$ and $(q - q')$ is an integer so $a | (b - c)$

Works for $\forall a, b, c$?

Argument applies to every $a, b, c \in \mathbb{Z}$.

Direct Proof Form:

Goal: $P \implies Q$

Assume P.

\[\ldots \]

Therefore Q.

\[\square \]
Another direct proof.

Let D_3 be the 3 digit natural numbers.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11 | n$.

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alternating sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$100a + 10b + c = 11k + 99a + 11b$

Left hand side is n, $k + 9a + b$ is integer.

$\Rightarrow 11 | n$.

Direct proof of $P \Rightarrow Q$: Assumed P: $11 | a - b + c$.

Proved Q: $11 | n$.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

- $n = 121$, Alt Sum: $1 - 2 + 1 = 0$, Divis. by 11.
- $n = 605$, Alt Sum: $6 - 0 + 5 = 11$, Divis. by 11.

Proof:

For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$100a + 10b + c = 11k + 99a + 11b$

Left hand side is n, $k + 9a + b$ is integer.

$\implies 11|n$.

Direct proof of $P \implies Q$: Assumed P: $11|a - b + c$.

Proved Q: $11|n$.

Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

\[\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n \]

Examples:
\[n = 121 \]
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11|n$.

\[\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n \]

Examples:
\[n = 121 \quad \text{Alt Sum: } 1 - 2 + 1 = 0. \]
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11 \mid n$.

$$\forall n \in D_3, (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11 \mid n$.

\[
\forall n \in D_3, \ (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n
\]

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:
- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11 \mid n$.

$$\forall n \in D_3, (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is 605
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11 | n$.

$\forall n \in D_3, (11 | \text{alt. sum of digits of } n) \implies 11 | n$

Examples:

- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$,
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:
$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum:
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

\[\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n \]

Examples:
- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c$
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:
$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.
Assume: Alt. sum: $a - b + c = 11k$ for some integer k.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11 | n$.

$$\forall n \in D_3, (11 | \text{alt. sum of digits of } n) \implies 11 | n$$

Examples:
- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.
Assume: Alt. sum: $a - b + c = 11k$ for some integer k.
Add $99a + 11b$ to both sides.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:
- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$$100a + 10b + c = 11k + 99a + 11b$$
Another direct proof.

Let \(D_3 \) be the 3 digit natural numbers.

Theorem: For \(n \in D_3 \), if the alternating sum of digits of \(n \) is divisible by 11, than \(11 | n \).

\[\forall n \in D_3, (11 | \text{alt. sum of digits of } n) \implies 11 | n \]

Examples:
\[n = 121 \quad \text{Alt Sum: } 1 - 2 + 1 = 0. \text{ Divis. by 11. As is 121.} \]
\[n = 605 \quad \text{Alt Sum: } 6 - 0 + 5 = 11 \text{ Divis. by 11. As is } 605 = 11(55) \]

Proof: For \(n \in D_3 \), \(n = 100a + 10b + c \), for some \(a, b, c \).

Assume: Alt. sum: \(a - b + c = 11k \) for some integer \(k \).

Add \(99a + 11b \) to both sides.

\[100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b) \]
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11 \mid n$.

\[\forall n \in D_3, (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n \]

Examples:

$n = 121$ \quad \text{Alt Sum: } 1 - 2 + 1 = 0. \text{ Divis. by 11. As is 121.}$

$n = 605$ \quad \text{Alt Sum: } 6 - 0 + 5 = 11 \text{ Divis. by 11. As is } 605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

\[100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b) \]

Left hand side is n,
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

\[
\forall n \in D_3, (11 | \text{alt. sum of digits of } n) \implies 11|n
\]

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

\[100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)\]

Left hand side is n, $k + 9a + b$ is integer.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11 \mid n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Left hand side is n, $k + 9a + b$ is integer. $\implies 11|n$.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11|n$.

$$\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n$$

Examples:

$n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.

$n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$$

Left hand side is n, $k + 9a + b$ is integer. $\implies 11|n$. \blacksquare
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, then $11|n$.

$$\forall n \in D_3, (11|\text{alternating sum of digits of } n) \implies 11|n$$

Examples:
- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divisible by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divisible by 11. As is $605 = 11(55)$

Proof: For $n \in D_3$, $n = 100a + 10b + c$, for some a, b, c.

Assume: Alternating sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

$100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b)$

Left hand side is n, $k + 9a + b$ is integer. $\implies 11|n$.

\square Direct proof of $P \implies Q$: Assumed P: $11|a - b + c$.
Another direct proof.

Let D_3 be the 3 digit natural numbers.

Theorem: For $n \in D_3$, if the alternating sum of digits of n is divisible by 11, than $11|n$.

\[\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n \]

Examples:
- $n = 121$ Alt Sum: $1 - 2 + 1 = 0$. Divis. by 11. As is 121.
- $n = 605$ Alt Sum: $6 - 0 + 5 = 11$ Divis. by 11. As is $605 = 11(55)$

Proof: For $n \in D_3, n = 100a + 10b + c$, for some a, b, c.

Assume: Alt. sum: $a - b + c = 11k$ for some integer k.

Add $99a + 11b$ to both sides.

\[100a + 10b + c = 11k + 99a + 11b = 11(k + 9a + b) \]

Left hand side is n, $k + 9a + b$ is integer. \(\implies 11|n\).

\[\square \] Direct proof of $P \implies Q$: Assumed P: $11|a - b + c$. Proved Q: $11|n$.

The Converse

Thm: \(\forall n \in D_3, (11|\text{alt. sum of digits of } n) \implies 11|n \)
The Converse

Thm: \(\forall n \in D_3, (11 | \text{alt. sum of digits of } n) \implies 11 | n \)

Is converse a theorem?

\(\forall n \in D_3, (11 | n) \implies (11 | \text{alt. sum of digits of } n) \)
The Converse

Thm: $\forall n \in D_3, (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n$

Is converse a theorem?
$\forall n \in D_3, (11 \mid n) \implies (11 \mid \text{alt. sum of digits of } n)$

Example: $n = 264$.
The Converse

Thm: $\forall n \in D_3, (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n$

Is converse a theorem?

$\forall n \in D_3, (11 \mid n) \implies (11 \mid \text{alt. sum of digits of } n)$

Example: $n = 264$. $11 \mid n$?
The Converse

Thm: \(\forall n \in D_3, (11 \mid \text{alt. sum of digits of } n) \implies 11 \mid n \)

Is converse a theorem?
\(\forall n \in D_3, (11 \mid n) \implies (11 \mid \text{alt. sum of digits of } n) \)

Example: \(n = 264 \). Is \(11 \mid n \)? Is \(11 \mid 2 - 6 + 4 \)?
Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n)$
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n) \)

Proof:

Assume \(11|n \). \(n = 100a + 10b + c = 11k \) \(\implies 99a + 11b + (a - b + c) = 11k \) \(\implies a - b + c = 11\ell \) where \(\ell = (k - 9a - b) \in \mathbb{Z} \)

That is \(11|\text{alternating sum of digits}. \)

Note: Similar proof to other. In this case every \(= \implies \iff \) Often works with arithmetic properties except when multiplying by 0.

We have.
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n) \)

Proof: Assume \(11|n \).
Another Direct Proof.

Theorem: $\forall n \in D_3, (11 \mid n) \iff (11 \mid \text{alt. sum of digits of } n)$

Proof: Assume $11 \mid n$.

$n = 100a + 10b + c = 11k$
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n) \)

Proof: Assume 11|\(n\).

\[
n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k
\]
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n) \)

Proof: Assume \(11|n\).

\[
\begin{align*}
n &= 100a + 10b + c = 11k
\quad \implies \\
99a + 11b + (a - b + c) &= 11k
\quad \implies \\
\quad a - b + c &= 11k - 99a - 11b
\end{align*}
\]
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

Proof: Assume \(11|n\).

\[
n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b)
\]
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

Proof: Assume 11|n.

\[
n = 100a + 10b + c = 11k \implies 99a + 11b + (a - b + c) = 11k \implies a - b + c = 11k - 99a - 11b \implies a - b + c = 11(k - 9a - b) \implies a - b + c = 11\ell
\]
Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n)$

Proof: Assume $11|n$.

$n = 100a + 10b + c = 11k \implies$

$99a + 11b + (a - b + c) = 11k \implies$

$a - b + c = 11k - 99a - 11b \implies$

$a - b + c = 11(k - 9a - b) \implies$

$a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in \mathbb{Z}$
Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Proof: Assume $11|n$.

$n = 100a + 10b + c = 11k \implies$
$99a + 11b + (a - b + c) = 11k \implies$
$a - b + c = 11k - 99a - 11b \implies$
$a - b + c = 11(k - 9a - b) \implies$
$a - b + c = 11\ell$ where $\ell = (k - 9a - b) \in \mathbb{Z}$

That is $11|\text{alternating sum of digits.}$
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

Proof: Assume \(11|n \).

\[
n = 100a + 10b + c = 11k \implies \\
99a + 11b + (a - b + c) = 11k \implies \\
a - b + c = 11k - 99a - 11b \implies \\
a - b + c = 11(k - 9a - b) \implies \\
a - b + c = 11\ell \text{ where } \ell = (k - 9a - b) \in \mathbb{Z}
\]

That is \(11|\text{alternating sum of digits}. \)

Note: similar proof to other. In this case every \(\implies \) is \(\iff \).
Another Direct Proof.

Theorem: \(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

Proof: Assume \(11|n \).

\[
\begin{align*}
n &= 100a + 10b + c = 11k \\ 99a + 11b + (a - b + c) &= 11k \\ a - b + c &= 11k - 99a - 11b \\ a - b + c &= 11(k - 9a - b) \\ a - b + c &= 11\ell \text{ where } \ell = (k - 9a - b) \in \mathbb{Z}
\end{align*}
\]

That is \(11|\text{alternating sum of digits} \).

Note: similar proof to other. In this case every \(\implies \) is \(\iff \).

Often works with arithmetic properties except when multiplying by 0.
Theorem: \(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

Proof: Assume \(11|n \).

\[
\begin{align*}
n = 100a + 10b + c &= 11k \\
99a + 11b + (a - b + c) &= 11k \\
a - b + c &= 11k - 99a - 11b \\
a - b + c &= 11(k - 9a - b) \\
a - b + c &= 11 \ell \text{ where } \ell = (k - 9a - b) \in \mathbb{Z}
\end{align*}
\]

That is \(11|\text{alternating sum of digits.} \)

Note: similar proof to other. In this case every \(\implies \) is \(\iff \)

Often works with arithmetic properties except when multiplying by 0.

We have.
Another Direct Proof.

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

Proof: Assume $11|n$.

$n = 100a + 10b + c = 11k$ \implies
$99a + 11b + (a - b + c) = 11k$ \implies
$a - b + c = 11k - 99a - 11b$ \implies
$a - b + c = 11(k - 9a - b)$ \implies
$a - b + c = 11\ell$ where $\ell = (k - 9a - b) \in \mathbb{Z}$

That is $11|\text{alternating sum of digits}$.

Note: similar proof to other. In this case every \implies is \iff

Often works with arithmetic properties except when multiplying by 0.

We have.

Theorem: $\forall n \in D_3, (11|\text{alt. sum of digits of } n) \iff (11|n)$
Another Proof?

Theorem: \(\forall n \in D_3, (11|n) \iff (11|\text{alt. sum of digits of } n) \)
Another Proof?

Theorem: \(\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n) \)

"Proof":

Another Proof?

Theorem: $\forall n \in D_3, (11|n) \implies (11|\text{alt. sum of digits of } n)$

“Proof”:
Let $n = abc$, where a, b, and c are the hundreds, tens, and units digits of n, respectively.

If 11 divides n, then there exists an integer k such that: $n = 11k$

Now, let’s calculate the alternating sum of digits:
Alternating sum $= a - b + c$

Since $n = 11k$, we have: $a - b + c = 11k$

This shows that the alternating sum of digits is equal to 11 times some integer k, and therefore, it is divisible by 11.
Proof by Contraposition

Thm: For \(n \in \mathbb{Z}^+ \) and \(d \mid n \). If \(n \) is odd then \(d \) is odd.

\(n = 2k + 1 \)

what do we know about \(d \)?

What to do?

Goal: Prove \(P \Rightarrow Q \).

Assume \(\neg Q \) ... and prove \(\neg P \).

Conclusion: \(\neg Q \Rightarrow \neg P \) equivalent to \(P \Rightarrow Q \).

Proof: Assume \(\neg Q \): \(d \) is even. \(d = 2k \).

\(d \mid n \) so we have

\(n = qd = q(2k) = 2(kq) \)

\(n \) is even. \(\neg P \)
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.
Thm: For $n \in Z^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$
Thm: For $n \in Z^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?
Thm: For \(n \in Z^+ \) and \(d | n \). If \(n \) is odd then \(d \) is odd.

\[
n = 2k + 1 \text{ what do we know about } d?\]

What to do?
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.
Proof by Contraposition

Thm: For $n \in Z^+$ and $d | n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$
...and prove $\neg P$.

Conclusion: $\neg Q = \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$:

d is even.

$d = 2k$.

$d|n$ so we have $n = qd = q(2k) = 2(kq)$

n is even.

$\neg P$
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.
Proof by Contraposition

Thm: For $n \in Z^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even.
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even. $d = 2k$.
Thm: For \(n \in \mathbb{Z}^+ \) and \(d|n \). If \(n \) is odd then \(d \) is odd.

\[n = 2k + 1 \] what do we know about \(d \)?

What to do?

Goal: Prove \(P \implies Q \).

Assume \(\neg Q \)

...and prove \(\neg P \).

Conclusion: \(\neg Q \implies \neg P \) equivalent to \(P \implies Q \).

Proof: Assume \(\neg Q \): \(d \) is even. \(d = 2k \).

\(d|n \) so we have
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even. $d = 2k$.

d|n so we have

$n = qd$
Proof by Contraposition

Thm: For \(n \in \mathbb{Z}^+ \) and \(d|n \). If \(n \) is odd then \(d \) is odd.

\[n = 2k + 1 \] what do we know about \(d \)?

What to do?

Goal: Prove \(P \implies Q \).

Assume \(\neg Q \)

...and prove \(\neg P \).

Conclusion: \(\neg Q \implies \neg P \) equivalent to \(P \implies Q \).

Proof: Assume \(\neg Q \): \(d \) is even. \(d = 2k \).

\(d|n \) so we have

\[n = qd = q(2k) \]
Proof by Contraposition

Thm: For \(n \in \mathbb{Z}^+ \) and \(d|n \). If \(n \) is odd then \(d \) is odd.

\[n = 2k + 1 \] what do we know about \(d \)?

What to do?

Goal: Prove \(P \implies Q \).

Assume \(\neg Q \)

...and prove \(\neg P \).

Conclusion: \(\neg Q \implies \neg P \) equivalent to \(P \implies Q \).

Proof: Assume \(\neg Q \): \(d \) is even. \(d = 2k \).

\(d|n \) so we have

\[n = qd = q(2k) = 2(kq) \]
Proof by Contraposition

Thm: For $n \in \mathbb{Z}^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.
Assume $\neg Q$
...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even. $d = 2k$.

$d|n$ so we have

$n = qd = q(2k) = 2(kq)$

n is even.
Thm: For $n \in Z^+$ and $d|n$. If n is odd then d is odd.

$n = 2k + 1$ what do we know about d?

What to do?

Goal: Prove $P \implies Q$.

Assume $\neg Q$

...and prove $\neg P$.

Conclusion: $\neg Q \implies \neg P$ equivalent to $P \implies Q$.

Proof: Assume $\neg Q$: d is even. $d = 2k$.

$d|n$ so we have

$n = qd = q(2k) = 2(kq)$

n is even. $\neg P$
Lemma:
For every n in \mathbb{N}, n^2 is even $\Rightarrow n$ is even. ($P \Rightarrow Q$)

Proof by contraposition: ($P \Rightarrow Q$) \equiv ($\neg Q = \Rightarrow \neg P$)

P = 'If n^2 is even, then n is even.'

$\neg P$ = 'If n^2 is odd, then n is even.'

Q = 'If n is odd, then n^2 is odd.'

Prove $\neg Q = \Rightarrow \neg P$:

n is odd $\Rightarrow n^2$ is odd.

$n = 2k + 1$ where k is a natural number.

$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

$n^2 = 2l + 1$ where l is a natural number.

And n^2 is odd!
Another Contrapostion...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q$) \equiv ($\neg Q = \implies \neg P$)

$P = \text{'}n^2$ is even.'

$\neg P = \text{'}n^2$ is odd.'

$Q = \text{'}n$ is even.'

$\neg Q = \text{'}n$ is odd.'

Prove $\neg Q = \implies \neg P$:

n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

$n^2 = 2l + 1$ where l is a natural number.

...and n^2 is odd!

$\neg Q = \implies \neg P$ so $P = \implies Q$ and ...
Another Contraposition...

Lemma: For every n in N, n^2 is even $\iff n$ is even. ($P \iff Q$)

n^2 is even, $n^2 = 2k$, ...
Another Contrapostion...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

n^2 is even, $n^2 = 2k$, ... $\sqrt{2k}$ even?
Another Contraposition...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q) \equiv (\neg Q \implies \neg P$)
Another Contraposition...

Lemma: For every n in N, n^2 is even \implies n is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q$) \equiv ($\neg Q \implies \neg P$)

$P = \text{'}n^2 \text{ is even.}' \quad \text{............}$

$\neg P = \text{'}n^2 \text{ is odd.'} \quad \text{............}$

$\neg Q = \text{'}n \text{ is odd.'} \quad \text{............}$
Another Contrapostion...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q) \equiv (\neg Q \implies \neg P$)

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'
Lemma: For every \(n \) in \(\mathbb{N} \), \(n^2 \) is even \(\implies \) \(n \) is even. \((P \implies Q)\)

Proof by contraposition: \((P \implies Q) \equiv (\neg Q \implies \neg P)\)

\(P = \) ’\(n^2 \) is even.’ \(\neg P = \) ’\(n^2 \) is odd’

\(Q = \) ’\(n \) is even’
Another Contrapostion...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

$Q = 'n$ is even' $\neg Q = 'n$ is odd'
Another Contraposition...

Lemma: For every n in N, n^2 is even \implies n is even. ($P \implies Q$)

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

$Q = 'n$ is even' $\neg Q = 'n$ is odd'

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.
Another Contrapostion...

Lemma: For every \(n \) in \(N \), \(n^2 \) is even \(\implies n \) is even. \((P \implies Q)\)

Proof by contraposition: \((P \implies Q) \equiv (\neg Q \implies \neg P)\)

\(P = 'n^2 \text{ is even}' \) \ \(\neg P = 'n^2 \text{ is odd}' \)

\(Q = 'n \text{ is even}' \) \ \(\neg Q = 'n \text{ is odd}' \)

Prove \(\neg Q \implies \neg P \): \(n \text{ is odd} \implies n^2 \text{ is odd}.\)

\(n = 2k + 1 \)
Another Contrapostion...

Lemma: For every n in N, n^2 is even $\iff n$ is even. $(P \implies Q)$

Proof by contraposition: $(P \implies Q) \equiv (\neg Q \implies \neg P)$

$P = 'n^2$ is even.’ $\neg P = 'n^2$ is odd’

$Q = 'n$ is even’ $\neg Q = 'n$ is odd’

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.
Another Contraposition...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q$) \equiv ($\neg Q \implies \neg P$)

$P = \text{'}n^2$ is even.' $\neg P = \text{'}n^2$ is odd'

$Q = \text{'}n$ is even' $\neg Q = \text{'}n$ is odd'

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

$n^2 = 2l + 1$ where l is a natural number..
Another Contrapostion...

Lemma: For every \(n \) in \(N \), \(n^2 \) is even \(\iff \) \(n \) is even. \((P \iff Q)\)

Proof by contraposition: \((P \iff Q) \equiv (\neg Q \iff \neg P)\)

\(P = 'n^2 \) is even.’ \(\neg P = 'n^2 \) is odd’

\(Q = 'n \) is even’ \(\neg Q = 'n \) is odd’

Prove \(\neg Q \iff \neg P\): \(n \) is odd \(\iff \) \(n^2 \) is odd.

\(n = 2k + 1 \)

\(n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1. \)

\(n^2 = 2l + 1 \) where \(l \) is a natural number..

... and \(n^2 \) is odd!
Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q$) \equiv ($\neg Q \implies \neg P$)

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

$Q = 'n$ is even' $\neg Q = 'n$ is odd'

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

$n^2 = 2l + 1$ where l is a natural number..

... and n^2 is odd!

$\neg Q \implies \neg P$
Lemma: For every \(n \) in \(N \), \(n^2 \) is even \(\implies \) \(n \) is even. \((P \implies Q)\)

Proof by contraposition: \((P \implies Q) \equiv (\neg Q \implies \neg P)\)

\(P = 'n^2 \) is even.' \(\neg P = 'n^2 \) is odd'

\(Q = 'n \) is even' \(\neg Q = 'n \) is odd'

Prove \(\neg Q \implies \neg P: \) \(n \) is odd \(\implies \) \(n^2 \) is odd.

\(n = 2k + 1 \)

\(n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1. \)

\(n^2 = 2l + 1 \) where \(l \) is a natural number..

... and \(n^2 \) is odd!

\(\neg Q \implies \neg P \) so \(P \implies Q \) and ...
Another Contrapostion...

Lemma: For every n in N, n^2 is even $\implies n$ is even. ($P \implies Q$)

Proof by contraposition: ($P \implies Q) \equiv (\neg Q \implies \neg P$)

$P = 'n^2$ is even.' $\neg P = 'n^2$ is odd'

$Q = 'n$ is even' $\neg Q = 'n$ is odd'

Prove $\neg Q \implies \neg P$: n is odd $\implies n^2$ is odd.

$n = 2k + 1$

$n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

$n^2 = 2l + 1$ where l is a natural number..

... and n^2 is odd!

$\neg Q \implies \neg P$ so $P \implies Q$ and ...
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Must show:
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$,
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.
Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Must show: For every \(a, b \in \mathbb{Z} \), \(\left(\frac{a}{b} \right)^2 \neq 2 \).

A simple property (equality) should always “not” hold.
Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.
Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P$
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $\left(\frac{a}{b}\right)^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1$
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Must show: For every \(a, b \in Z \), \(\left(\frac{a}{b} \right)^2 \neq 2 \).

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: \(P \).

\[\neg P \implies P_1 \ldots \]
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Must show: For every \(a, b \in \mathbb{Z} \), \(\left(\frac{a}{b} \right)^2 \neq 2 \).

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: \(P \).

\(\neg P \implies P_1 \cdots \implies R \)
Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $\left(\frac{a}{b}\right)^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \cdots \implies R \implies \neg P$
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \implies R$

$\neg P \implies P_1$
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \cdots \implies R$

$\neg P \implies P_1 \cdots$
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Must show: For every \(a, b \in \mathbb{Z} \), \(\left(\frac{a}{b} \right)^2 \neq 2 \).

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: \(P \).

\[\neg P \implies P_1 \cdots \implies R \]

\[\neg P \implies P_1 \cdots \implies \neg R \]
Proof by Contradiction

Theorem: \(\sqrt{2} \) is irrational.

Must show: For every \(a, b \in \mathbb{Z} \), \(\left(\frac{a}{b} \right)^2 \neq 2 \).

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: \(P \).

\[\neg P \implies P_1 \cdots \implies R \]

\[\neg P \implies P_1 \cdots \implies \neg R \]

\[\neg P \implies \text{False} \]
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \cdots \implies R$

$\neg P \implies P_1 \cdots \implies \neg R$

$\neg P \implies \text{False}$

Contrapositive: True $\implies P$.
Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in Z$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \cdots \implies R$

$\neg P \implies P_1 \cdots \implies \neg R$

$\neg P \implies \text{False}$

Contrapositive: True $\implies P$. Theorem P is proven.
Theorem: $\sqrt{2}$ is irrational.

Must show: For every $a, b \in \mathbb{Z}$, $(\frac{a}{b})^2 \neq 2$.

A simple property (equality) should always “not” hold.

Proof by contradiction:

Theorem: P.

$\neg P \implies P_1 \cdots \implies R$

$\neg P \implies P_1 \cdots \implies \neg R$

$\neg P \implies \text{False}$

Contrapositive: True $\implies P$. Theorem P is proven.
Contradiction

Theorem: \(\sqrt{2} \) is irrational.
Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$:

Reduced form: a and b have no common factors.

$\sqrt{2}b = \frac{a}{b^2} = \frac{a^2}{b^2} = 4k^2$

a^2 is even $\Rightarrow a$ is even.

$a = 2k$ for some integer k.

$b^2 = 2k^2$

b^2 is even $\Rightarrow b$ is even.

a and b have a common factor. Contradiction.
Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

$$\sqrt{2} \cdot b = a^2 = 2k^2$$

a^2 is even $\Rightarrow a$ is even.

$$a = 2k$$

For some integer k.

$$b^2 = 2k^2$$

b^2 is even $\Rightarrow b$ is even.

a and b have a common factor. Contradiction.
Theorem: $\sqrt{2}$ is irrational.
Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.
Reduced form: a and b have no common factors.
Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

\[\sqrt{2}b = a \]
Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$
Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

\[\sqrt{2}b = a \]

\[2b^2 = a^2 \]

a^2 is even $\implies a$ is even.
Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2$$

a^2 is even \implies a is even.

$a = 2k$ for some integer k.
Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

$$\sqrt{2}b = a$$

$$2b^2 = a^2 = 4k^2$$

a^2 is even \implies a is even.

$a = 2k$ for some integer k
Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

a^2 is even \implies a is even.

$a = 2k$ for some integer k

\[
b^2 = 2k^2
\]
Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

a^2 is even \implies a is even.

$a = 2k$ for some integer k

\[
b^2 = 2k^2
\]

b^2 is even \implies b is even.
Contradiction

Theorem: $\sqrt{2}$ is irrational.

Assume $\neg P$: $\sqrt{2} = a/b$ for $a, b \in \mathbb{Z}$.

Reduced form: a and b have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

a^2 is even \implies a is even.

$a = 2k$ for some integer k

\[
b^2 = 2k^2
\]

b^2 is even \implies b is even.

a and b have a common factor. Contradiction.
Theorem: \(\sqrt{2} \) is irrational.

Assume \(\neg P: \sqrt{2} = a/b \) for \(a, b \in \mathbb{Z} \).

Reduced form: \(a \) and \(b \) have no common factors.

\[
\sqrt{2}b = a
\]

\[
2b^2 = a^2 = 4k^2
\]

\(a^2 \) is even \(\Rightarrow \) \(a \) is even.

\(a = 2k \) for some integer \(k \)

\[
b^2 = 2k^2
\]

\(b^2 \) is even \(\Rightarrow \) \(b \) is even.

\(a \) and \(b \) have a common factor. Contradiction.
Proof by contradiction: example

Theorem: There are infinitely many primes.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

Assume finitely many primes: p_1, \ldots, p_k.

Consider $q = p_1 \times p_2 \times \cdots \times p_k + 1$.

q cannot be one of the primes as it is larger than any p_i.

q has prime divisor p, which is one of p_i.

p divides both $x = p_1 \times p_2 \times \cdots \times p_k$ and q, and divides $q - x$.

$p | q - x = q - 1$.

$p \leq q - 1$.

So $p \leq 1$.

(Contradicts the original assumption.)

The original assumption that "the theorem is false" is false, thus the theorem is proven.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:
- Assume finitely many primes: p_1, \ldots, p_k.

Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider
 \[q = p_1 \times p_2 \times \cdots p_k + 1. \]
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:
- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider
 \[
 q = p_1 \times p_2 \times \cdots p_k + 1.
 \]
- \(q \) cannot be one of the primes as it is larger than any \(p_i \).

\(q \) is a number larger than all primes, yet not a prime itself, leading to a contradiction. The original assumption is thus false, proving the theorem.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider \(q = p_1 \times p_2 \times \cdots p_k + 1 \).

- \(q \) cannot be one of the primes as it is larger than any \(p_i \).
- \(q \) has prime divisor \(p \) ("\(p > 1 \) = R") which is one of \(p_i \).
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider $q = p_1 \times p_2 \times \cdots p_k + 1$.

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("$p > 1$" = R) which is one of p_i.
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q.

Thus, the original assumption that "the theorem is false" is false, thus the theorem is proven.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: \(p_1, \ldots, p_k. \)
- Consider \(q = p_1 \times p_2 \times \cdots p_k + 1. \)
- \(q \) cannot be one of the primes as it is larger than any \(p_i. \)
- \(q \) has prime divisor \(p \) ("\(p > 1 \) = R") which is one of \(p_i. \)
- \(p \) divides both \(x = p_1 \cdot p_2 \cdots p_k \) and \(q, \) and divides \(q - x, \)
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider \(q = p_1 \times p_2 \times \cdots \times p_k + 1 \).

- \(q \) cannot be one of the primes as it is larger than any \(p_i \).
- \(q \) has prime divisor \(p \) (”\(p > 1 \)” = R) which is one of \(p_i \).
- \(p \) divides both \(x = p_1 \cdot p_2 \cdot \cdots p_k \) and \(q \), and divides \(q - x \),

\[\implies p \mid q - x \]
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider

 $$q = p_1 \times p_2 \times \cdots p_k + 1.$$

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("$p > 1$" $= R$) which is one of p_i.
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides $q - x$,

 $\implies p | q - x \implies p \leq q - x$.

The original assumption that "the theorem is false" is false, thus the theorem is proven.
Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider \(q = p_1 \times p_2 \times \cdots p_k + 1 \).

- \(q \) cannot be one of the primes as it is larger than any \(p_i \).
- \(q \) has prime divisor \(p \) ("\(p > 1 \)" = R) which is one of \(p_i \).
- \(p \) divides both \(x = p_1 \cdot p_2 \cdots p_k \) and \(q \), and divides \(q - x \),
 \[p \mid q - x \implies p \leq q - x = 1. \]
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider
 \[q = p_1 \times p_2 \times \cdots p_k + 1. \]

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("$p > 1$" = R) which is one of p_i.
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides $q - x$,
 \[\implies p | q - x \implies p \leq q - x = 1. \]
- so $p \leq 1$.

The original assumption that "the theorem is false" is false, thus the theorem is proven.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider

 \[q = p_1 \times p_2 \times \cdots p_k + 1. \]

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p (”$p > 1$” = R) which is one of p_i.
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides $q - x$,

 \[\Rightarrow p \mid q - x \Rightarrow p \leq q - x = 1. \]
- so $p \leq 1$. (Contradicts R.)

The original assumption that “the theorem is false” is false, thus the theorem is proven.
Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: p_1, \ldots, p_k.
- Consider $q = p_1 \times p_2 \times \cdots p_k + 1$.

- q cannot be one of the primes as it is larger than any p_i.
- q has prime divisor p ("$p > 1$" = R) which is one of p_i.
- p divides both $x = p_1 \cdot p_2 \cdots p_k$ and q, and divides $q - x$.
- $p|q - x \implies p \leq q - x = 1$.
- so $p \leq 1$. (Contradicts R.)

The original assumption that “the theorem is false” is false, thus the theorem is proven.
Proof by contradiction: example

Theorem: There are infinitely many primes.

Proof:

- Assume finitely many primes: \(p_1, \ldots, p_k \).
- Consider \(q = p_1 \times p_2 \times \cdots p_k + 1 \).

- \(q \) cannot be one of the primes as it is larger than any \(p_i \).
- \(q \) has prime divisor \(p \) ("\(p > 1 \)" = R) which is one of \(p_i \).
- \(p \) divides both \(x = p_1 \cdot p_2 \cdot \cdots p_k \) and \(q \), and divides \(q - x \),

\[\implies p \mid q - x \implies p \leq q - x = 1. \]

- so \(p \leq 1 \). (Contradicts R.)

The original assumption that “the theorem is false” is false, thus the theorem is proven.
Did we prove?

- “The product of the first k primes plus 1 is prime.”
Product of first k primes.

Did we prove?
- “The product of the first k primes plus 1 is prime.”
- No.

Consider example.

$2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$

There is a prime in between 13 and $q = 30031$ that divides q.

Proof assumed no primes in between.
Did we prove?

- “The product of the first k primes plus 1 is prime.”
- No.
- The chain of reasoning started with a false statement.
Product of first k primes..

Did we prove?

- “The product of the first k primes plus 1 is prime.”
- No.
- The chain of reasoning started with a false statement.

Consider example..
Product of first k primes..

Did we prove?
- “The product of the first k primes plus 1 is prime.”
- No.
- The chain of reasoning started with a false statement.

Consider example..
- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
Did we prove?

- “The product of the first \(k \) primes plus 1 is prime.”
- No.
- The chain of reasoning started with a false statement.

Consider example..

- \(2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509 \)
- There is a prime \textit{in between} 13 and \(q = 30031 \) that divides \(q \).
Did we prove?

- “The product of the first k primes plus 1 is prime.”
- No.
- The chain of reasoning started with a false statement.

Consider example..

- $2 \times 3 \times 5 \times 7 \times 11 \times 13 + 1 = 30031 = 59 \times 509$
- There is a prime *in between* 13 and $q = 30031$ that divides q.
- Proof assumed no primes *in between*.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and $x = a/b$ for $a, b \in \mathbb{Z}$, then both a and b are even.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and $x = a/b$ for $a, b \in \mathbb{Z}$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can’t both be even!
Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and $x = a/b$ for $a, b \in \mathbb{Z}$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can’t both be even! + Lemma
Proof by cases. (“divide-and-conquer” strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma

\[\implies \text{ no rational solution.} \]
Proof by cases. (“divide-and-conquer” strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and $x = a/b$ for $a, b \in \mathbb{Z}$, *then both a and b are even.*

Reduced form $\frac{a}{b}$: a and b can’t both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0\) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x\) is a solution to \(x^5 - x + 1 = 0\) and \(x = a/b\) for \(a, b \in \mathbb{Z}\), then both \(a\) and \(b\) are even.

Reduced form \(\frac{a}{b}\): \(a\) and \(b\) can’t both be even! + Lemma \(\implies\) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b\).

\[
\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0
\]
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = \frac{a}{b} \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(\frac{a}{b} \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - a/b + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd + odd = even.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - a/b + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd + odd = even. Not possible.
Proof by cases. (“divide-and-conquer” strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd + odd = even. Not possible.

Case 2: \(a \) even, \(b \) odd: even - even + odd = even.
Proof by cases. (“divide-and-conquer” strategy)

Theorem: \(x^5 - x + 1 = 0\) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x\) is a solution to \(x^5 - x + 1 = 0\) and \(x = a/b\) for \(a, b \in \mathbb{Z}\), then both \(a\) and \(b\) are even.

Reduced form \(\frac{a}{b}\): \(a\) and \(b\) can’t both be even! + Lemma \(\implies\) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b\).

\[\left(\frac{a}{b}\right)^5 - \frac{a}{b} + 1 = 0\]

multiply by \(b^5\),

\[a^5 - ab^4 + b^5 = 0\]

Case 1: \(a\) odd, \(b\) odd: odd - odd + odd = even. Not possible.
Case 2: \(a\) even, \(b\) odd: even - even + odd = even. Not possible.
Proof by cases. (“divide-and-conquer” strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\iff \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd + odd = even. Not possible.

Case 2: \(a \) even, \(b \) odd: even - even + odd = even. Not possible.

Case 3: \(a \) odd, \(b \) even: odd - even + even = even.
Proof by cases. (“divide-and-conquer” strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and $x = a/b$ for $a, b \in \mathbb{Z}$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can’t both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

\[
\left(\frac{a}{b} \right)^5 - a/b + 1 = 0
\]

multiply by b^5,

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: a odd, b odd: odd - odd + odd = even. Not possible.

Case 2: a even, b odd: even - even + odd = even. Not possible.

Case 3: a odd, b even: odd - even + even = even. Not possible.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - a/b + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd +odd = even. Not possible.
Case 2: \(a \) even, \(b \) odd: even - even +odd = even. Not possible.
Case 3: \(a \) odd, \(b \) even: odd - even +even = even. Not possible.
Case 4: \(a \) even, \(b \) even: even - even +even = even.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can't both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd + odd = even. Not possible.
Case 2: \(a \) even, \(b \) odd: even - even + odd = even. Not possible.
Case 3: \(a \) odd, \(b \) even: odd - even + even = even. Not possible.
Case 4: \(a \) even, \(b \) even: even - even + even = even. Possible.
Proof by cases. ("divide-and-conquer" strategy)

Theorem: \(x^5 - x + 1 = 0 \) has no solution in the rationals.

Proof: First a lemma...

Lemma: If \(x \) is a solution to \(x^5 - x + 1 = 0 \) and \(x = a/b \) for \(a, b \in \mathbb{Z} \), then both \(a \) and \(b \) are even.

Reduced form \(\frac{a}{b} \): \(a \) and \(b \) can’t both be even! + Lemma \(\implies \) no rational solution.

Proof of lemma: Assume a solution of the form \(a/b \).

\[
\left(\frac{a}{b} \right)^5 - \frac{a}{b} + 1 = 0
\]

multiply by \(b^5 \),

\[
a^5 - ab^4 + b^5 = 0
\]

Case 1: \(a \) odd, \(b \) odd: odd - odd +odd = even. Not possible.
Case 2: \(a \) even, \(b \) odd: even - even +odd = even. Not possible.
Case 3: \(a \) odd, \(b \) even: odd - even +even = even. Not possible.
Case 4: \(a \) even, \(b \) even: even - even +even = even. Possible.

The fourth case is the only one possible,
Proof by cases. ("divide-and-conquer" strategy)

Theorem: $x^5 - x + 1 = 0$ has no solution in the rationals.

Proof: First a lemma...

Lemma: If x is a solution to $x^5 - x + 1 = 0$ and $x = a/b$ for $a, b \in \mathbb{Z}$, then both a and b are even.

Reduced form $\frac{a}{b}$: a and b can't both be even! + Lemma \implies no rational solution.

Proof of lemma: Assume a solution of the form a/b.

$$
\left(\frac{a}{b}\right)^5 - a/b + 1 = 0
$$

multiply by b^5,

$$
a^5 - ab^4 + b^5 = 0
$$

Case 1: a odd, b odd: odd - odd +odd = even. Not possible.

Case 2: a even, b odd: even - even +odd = even. Not possible.

Case 3: a odd, b even: odd - even +even = even. Not possible.

Case 4: a even, b even: even - even +even = even. Possible.

The fourth case is the only one possible, so the lemma follows.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational. Let $x = y = \sqrt{2}$.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^\sqrt{2}$ is rational.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!
Proof by cases.

Theorem: There exist irrational \(x \) and \(y \) such that \(x^y \) is rational.

Let \(x = y = \sqrt{2} \).

Case 1: \(x^y = \sqrt{2} \sqrt{2} \) is rational. Done!

Case 2: \(\sqrt{2} \sqrt{2} \) is irrational.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.
Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?
Don't know!!
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^2$ is rational. Done!

Case 2: $\sqrt{2}^2$ is irrational.

 - New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

 $x^y =$
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$$
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^\sqrt{2}$ is rational. Done!

Case 2: $\sqrt{2}^\sqrt{2}$ is irrational.

- New values: $x = \sqrt{2}^\sqrt{2}$, $y = \sqrt{2}$.

\[
x^y = \left(\sqrt{2}^\sqrt{2}\right)^{\sqrt{2}} = \sqrt{2}^\sqrt{2*\sqrt{2}}
\]
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^\sqrt{2}$ is rational. Done!

Case 2: $\sqrt{2}^\sqrt{2}$ is irrational.

▶ New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

▶

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \times \sqrt{2}} = \sqrt{2}^2 = 2.$$
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.
Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^\sqrt{2}$ is rational. Done!

Case 2: $\sqrt{2}^\sqrt{2}$ is irrational.

▶ New values: $x = \sqrt{2}^\sqrt{2}$, $y = \sqrt{2}$.

$$x^y = \left(\sqrt{2}^\sqrt{2}\right)^\sqrt{2} = \sqrt{2}^{\sqrt{2}\cdot\sqrt{2}} = \sqrt{2}^2 = 2.$$

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$.

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

$$
x^y = \left(\sqrt{2}^{\sqrt{2}} \right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2.
$$

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds. \square
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

- New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds?
Proof by cases.

Theorem: There exist irrational x and y such that x^y is rational.

Let $x = y = \sqrt{2}$.

Case 1: $x^y = \sqrt{2}^{\sqrt{2}}$ is rational. Done!

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational.

▶ New values: $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$.

▶

$$x^y = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2.$$

Thus, in this case, we have irrational x and y with a rational x^y (i.e., 2).

One of the cases is true so theorem holds.

Question: Which case holds? Don’t know!!!
Be careful.

Theorem: $3 = 4$
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$.

Don't assume what you want to prove!
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$.

Dividing one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds.

Don't assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

$$x^2 - xy = x^2 - y^2$$

$$x(x - y) = (x + y)(x - y)$$

$x = (x + y)$

$x = 2$

Dividing by zero is no good.

Also: Multiplying inequalities by a negative. $P \Rightarrow Q$ does not mean $Q \Rightarrow P$.
Be careful.

Theorem: \(3 = 4 \)

Proof: Assume \(3 = 4 \). Start with \(12 = 12 \). Divide one side by 3 and the other by 4 to get \(4 = 3 \).
Be careful.

Theorem: \(3 = 4\)

Proof: Assume \(3 = 4\). Start with \(12 = 12\). Divide one side by 3 and the other by 4 to get \(4 = 3\). By commutativity
Theorem: 3 = 4

Theorem: $3 = 4$

Theorem: $3 = 4$

Don’t assume what you want to prove!
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds. □

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof:
Be careful.

Theorem: \(3 = 4\)

Proof: Assume \(3 = 4\). Start with \(12 = 12\). Divide one side by 3 and the other by 4 to get \(4 = 3\). By commutativity theorem holds.

Don’t assume what you want to prove!

Theorem: \(1 = 2\)

Proof: For \(x = y\), we have
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds.

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

$$(x^2 - xy) = x^2 - y^2$$
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds. □

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

- $(x^2 - xy) = x^2 - y^2$
- $x(x - y) = (x + y)(x - y)$
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds. □

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

\[
(x^2 - xy) = x^2 - y^2
\]

\[
x(x - y) = (x + y)(x - y)
\]

\[
x = (x + y)
\]
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds. □

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

$(x^2 - xy) = x^2 - y^2$

$x(x - y) = (x + y)(x - y)$

$x = (x + y)$

$x = 2x$
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds.

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

\begin{align*}
(x^2 - xy) &= x^2 - y^2 \\
x(x - y) &= (x + y)(x - y) \\
x &= (x + y) \\
x &= 2x \\
1 &= 2
\end{align*}
Be careful.

Theorem: \(3 = 4\)

Proof: Assume \(3 = 4\). Start with \(12 = 12\). Divide one side by 3 and the other by 4 to get \(4 = 3\). By commutativity theorem holds. \(\square\)

Don’t assume what you want to prove!

Theorem: \(1 = 2\)

Proof: For \(x = y\), we have

\[
\begin{align*}
(x^2 - xy) &= x^2 - y^2 \\
x(x - y) &= (x + y)(x - y) \\
x &= (x + y) \\
x &= 2x \\
1 &= 2
\end{align*}
\]

\(\square\)
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds.

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

\[(x^2 - xy) = x^2 - y^2\]
\[x(x - y) = (x + y)(x - y)\]
\[x = (x + y)\]
\[x = 2x\]

\[1 = 2\]

Dividing by zero is no good.
Be careful.

Theorem: \(3 = 4\)

Proof: Assume \(3 = 4\). Start with \(12 = 12\). Divide one side by 3 and the other by 4 to get \(4 = 3\). By commutativity theorem holds. \(\square\)

Don’t assume what you want to prove!

Theorem: \(1 = 2\)

Proof: For \(x = y\), we have

\[
(x^2 - xy) = x^2 - y^2 \\
x(x - y) = (x + y)(x - y) \\
x = (x + y) \\
x = 2x \\
1 = 2
\]

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.
Be careful.

Theorem: $3 = 4$

Proof: Assume $3 = 4$. Start with $12 = 12$. Divide one side by 3 and the other by 4 to get $4 = 3$. By commutativity theorem holds. \[\square\]

Don’t assume what you want to prove!

Theorem: $1 = 2$

Proof: For $x = y$, we have

\[
\begin{align*}
(x^2 - xy) &= x^2 - y^2 \\
x(x - y) &= (x + y)(x - y) \\
x &= (x + y) \\
x &= 2x
\end{align*}
\]

\[x = 2x\]

\[1 = 2\] \[\square\]

Dividing by zero is no good.

Also: Multiplying inequalities by a negative.

$P \implies Q$ does not mean $Q \implies P$.
Summary

Direct Proof:
To Prove: $P \implies Q$. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: $P \implies Q$. Assume $\neg Q$. Prove $\neg P$.

By Contradiction:

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked.
or $\sqrt{2}$ and $\sqrt{2}$ worked.

Careful when proving!
Don't assume the theorem. Divide by zero. Watch converse. ...
Summary

Direct Proof:
To Prove: \(P \implies Q \). Assume \(P \). reason forward, Prove \(Q \).

By Contraposition:
To Prove: \(P \implies Q \) Assume \(\neg Q \). Prove \(\neg P \).

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.

Either \(\sqrt{2} \) and \(\sqrt{2} \) worked.
or \(\sqrt{2} \) and \(\sqrt{2} \).

Careful when proving!
Don't assume the theorem. Divide by zero. Watch converse. ...
Summary

Direct Proof:
To Prove: \(P \implies Q \). Assume \(P \). reason forward, Prove \(Q \).

By Contraposition:
To Prove: \(P \implies Q \)\, Assume \(\neg Q \). Prove \(\neg P \).

By Contradiction:
To Prove: \(P \)\, Assume \(\neg P \). Prove \text{False} .
Direct Proof:
To Prove: $P \implies Q$. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: $P \implies Q$. Assume $\neg Q$. Prove $\neg P$.

By Contradiction:
To Prove: P. Assume $\neg P$. Prove False.

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
Either $\sqrt{2}$ and $\sqrt{2}$ worked.
 or $\sqrt{2}$ and $\sqrt{2\sqrt{2}}$ worked.
Summary

Direct Proof:
To Prove: $P \implies Q$. Assume P. reason forward, Prove Q.

By Contraposition:
To Prove: $P \implies Q$ Assume $\neg Q$. Prove $\neg P$.

By Contradiction:
To Prove: P Assume $\neg P$. Prove False.

By Cases: informal.
Universal: show that statement holds in all cases.
Existence: used cases where one is true.
 Either $\sqrt{2}$ and $\sqrt{2}$ worked.
 or $\sqrt{2}$ and $\sqrt{2} \sqrt{2}$ worked.

Careful when proving!
Don’t assume the theorem. Divide by zero. Watch converse. ...