Time to collect coupons

- X-time to get n coupons.
- X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
- X_2 - time to get second coupon after getting first.
- $Pr[\text{"get second coupon"|"got milk first coupon"]] = \frac{n-1}{n}$
- $E[X_2] = \frac{1}{n} \Rightarrow E[X_2] = n$.
- $Pr[\text{"getting ith coupon"|"got $i-1$st coupons"]] = \frac{n-i+1}{n}$
- $E[X_i] = \frac{1}{n} \Rightarrow E[X_i] = n$.
- $E[X] = E[X_1] + \cdots + E[X_n] = n \ln(n) + \gamma$.

Review: Harmonic sum

$H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n)$.

A good approximation is $H(n) \approx \ln(n) + \gamma$ where $\gamma \approx 0.58$ (Euler-Mascheroni constant).

Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!
Stacking

The cards have width 2. Induction shows that the center of gravity after \(n \) cards is \(H(n) \) away from the right-most edge.

Geometric Distribution.

Experiment: flip a coin with heads prob. \(p \) until Heads. Random Variable \(X \): number of flips.

And distribution is:

(A) \(X \sim G(p) : \text{Pr}[X = i] = (1 - p)^{i-1}p \).
(B) \(X \sim B(p,n) : \text{Pr}[X = i] = \binom{n}{i}p^i(1-p)^{n-i} \).

(A) Distribution of \(X \sim G(p) : \text{Pr}[X = i] = (1 - p)^{i-1}p \).

Calculating \(E[g(X)] \): LOTUS

Let \(Y = g(X) \). Assume that we know the distribution of \(X \).
We want to calculate \(E[Y] \).

Method 1: We calculate the distribution of \(Y \):
\[
\text{Pr}[Y = y] = \text{Pr}[X \in g^{-1}(y)] \quad \text{where} \quad g^{-1}(x) = \{ x \in \mathbb{R} : g(x) = y \}.
\]
This is typically rather tedious!

Method 2: We use the following result.

Called “Law of the unconscious statistician.”

Theorem:
\[
E[g(X)] = \sum g(x)\text{Pr}[X = x].
\]

Proof:
\[
E[g(X)] = \sum_{m \in \text{Range}(X)} g(m)\text{Pr}[X = m] = \sum_{m \in \text{Range}(X)} g(m)\sum_{x \in g^{-1}(m)} \text{Pr}[X = x] = \sum_{x} g(x)\text{Pr}[X = x].
\]

Poll.

Which is LOTUS?

(A) \(E[X] = \sum_{x \in \text{Range}(X)} g(x)\text{Pr}[g(X) = g(x)] \)
(B) \(E[X] = \sum_{x \in \text{Range}(X)} g(x)\text{Pr}[X = x] \)
(C) \(E[X] = \sum_{x} \text{Range}(g) \text{Pr}[g(X) = x] \)

Geometric Distribution: Memoryless - Interpretation

\[
\text{Pr}[X > n + m | X > n] = \text{Pr}[X > m], m, n \geq 0.
\]

A': is \(m \) coin tosses before heads.
A:B: \(m \) 'more' coin tosses before heads.
The coin is memoryless, therefore, so is \(X \).

Independent coin: \(\text{Pr}[H' \text{ any previous set of coin tosses}] = p \)

Geometric Distribution: Memoryless by derivation.

Let \(X \) be \(G(p) \). Then, for \(n \geq 0, \)
\[
\text{Pr}[X > n] = \text{Pr}[\text{first } n \text{ flips are T}] = (1 - p)^n.
\]

Theorem
\[
\text{Pr}[X > n + m | X > n] = \text{Pr}[X > m], m, n \geq 0.
\]

Proof:
\[
\text{Pr}[X > n + m | X > n] = \frac{\text{Pr}[X > n + m \text{ and } X > n]}{\text{Pr}[X > n]} = \frac{\text{Pr}[X > n + m]}{\text{Pr}[X > n]} = \frac{(1 - p)^{n + m}}{(1 - p)^n} = (1 - p)^m = \text{Pr}[X > m].
\]
Variance and Standard Deviation

Fact: \(\text{var}[X] = E[X^2] - E[X]^2. \)

Indeed:

\[
\begin{align*}
\text{var}(X) & = E[(X - E[X])^2] \\
& = E[X^2] - 2E[X]E[X] + E[X]^2 \\
& = E[X^2] - 2E[X]E[X] + E[X]^2, \text{ by linearity} \\
& = E[X^2] - E[X]^2. \\
\end{align*}
\]

Example

Consider the random variable \(X \) such that

\[
X = \begin{cases}
\mu - \sigma, & \text{w. p. } \frac{1}{2} \\
\mu + \sigma, & \text{w. p. } \frac{1}{2}.
\end{cases}
\]

Then, \(E[X] = \mu \) and \((X - E[X])^2 = \sigma^2 \). Hence,

\[
\text{var}(X) = \sigma^2 \text{ and } \sigma(X) = \sigma.
\]

Exercise: How big can you make \(\sigma(X) \) if \(E[|X - E[X]|] \)?

Uniform

Assume that \(P[X = i] = \frac{1}{n} \) for \(i \in \{1, \ldots, n\} \). Then

\[
E[X] = \sum_{i=1}^{n} i \cdot P[X = i] = \frac{1}{n} \sum_{i=1}^{n} i \\
= \frac{1}{n} \left(\frac{n(n+1)}{2} \right) = \frac{n+1}{2}
\]

Also,

\[
E[X^2] = \sum_{i=1}^{n} i^2 \cdot P[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 \\
= \frac{1}{n} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{1+3n+2n^2}{6}, \text{ as you can verify.}
\]

This gives

\[
\text{var}(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.
\]

(Sort of \(\int_0^1 x^2 \, dx = \frac{1}{3} \))

Variance of geometric distribution.

\(X \) is a geometrically distributed RV with parameter \(p \). Thus, \(P[X = n] = (1-p)^{n-1}p \) for \(n \geq 1 \). Recall \(E[X] = 1/p. \)

\[
E[X] = \sum_{i=1}^{n} i \cdot P[X = i] = \frac{1}{p}
\]

\[
E[X^2] = \sum_{i=1}^{n} i^2 \cdot P[X = i] = \frac{1}{p} \sum_{i=1}^{n} i^2 \\
= \frac{1}{p} \left(\frac{n(n+1)(2n+1)}{6} \right) = \frac{1+3n+2n^2}{6}, \text{ as you can verify.}
\]

This gives

\[
\text{var}(X) = \frac{1+3n+2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2-1}{12}.
\]

\[
\text{var}(X) = \frac{n^2-1}{12} \approx E[X] \text{ when } p \text{ is small(ish)}.
\]
Fixed points.

Number of fixed points in a random permutation of n items.

"Number of student that get homework back."

$X = X_1 + X_2 \cdots + X_n$

where X_i is indicator variable for ith student getting hw back.

\[
E(X^2) = \sum_i E(X_i^2) + \sum_{i\neq j} E(X_iX_j).
\]

\[
= n \frac{1}{n} + (n)(n-1) \times \frac{1}{n(n-1)}
\]

\[= 1 + 1 = 2.
\]

\[
E(X^2) = 1 \times Pr[X_i = 1] + 0 \times Pr[X_i = 0]
\]

\[
E(X|X) = 1 \times Pr[X_i = 1 \cap X_j = 1] + 0 \times Pr[\text{"anything else"}]
\]

\[= 1 \times \frac{(n-2)!}{n!} = \frac{1}{n(n-1)}
\]

\[
\text{Var}(X) = E(X^2) - (E(X))^2 = 2 - 1 = 1.
\]

Poll: fixed points.

What's true?

(A) X_i and X_j are independent.

(B) $E[X_i X_j] = Pr[X_i X_j = 1]$.

(C) $Pr[X_i X_j] = \frac{(n-2)!}{n!}$.

(D) $X_i^2 = X_i$.

Variance: binomial.

\[
E[X^2] = \sum \binom{n}{i} p^i (1-p)^{n-i}.
\]

Too hard!

Ok.. fine.

Let's do something else.

Maybe not much easier...but there is a payoff.

Independent random variables.

Independent: $P[X = a, Y = b] = Pr[X = a]Pr[Y = b]$

\[
E[XY] = \sum a \sum b a \times b \times Pr[X = a]Pr[Y = b]
\]

\[= (\sum a \times Pr[X = a]) (\sum b \times Pr[Y = b])
\]

\[= E[X]E[Y]
\]

\[
\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y).
\]

Theorem:

If X and Y are independent, then

\[
\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y).
\]

Proof:

Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

\[
E(XY) = E(X)E(Y) = 0.
\]

Hence,

\[
\text{Var}(X+Y) = \text{Var}(X+Y)^2 = \text{Var}(X^2 + 2XY + Y^2)
\]

\[= \text{Var}(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)
\]

\[= \text{Var}(X) + \text{Var}(Y).
\]
Variance of sum of independent random variables

Theorem: If X, Y, Z, \ldots are pairwise independent, then
$$\text{Var}(X + Y + Z + \cdots) = \text{Var}(X) + \text{Var}(Y) + \text{Var}(Z) + \cdots.$$

Proof: Since shifting the random variables does not change their variance, let us subtract their means. That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence, $E[XY] = E[X]E[Y] = 0$. Also, $E[XZ] = E[YZ] = \cdots = 0$.

Hence,
$$\text{Var}(X + Y + Z + \cdots) = E[(X + Y + Z + \cdots)^2] - E[X + Y + Z + \cdots]^2$$
$$= E[X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots]$$
$$= E[X^2] + E[Y^2] + E[Z^2] + \cdots + 0 + \cdots + 0$$
$$= \text{Var}(X) + \text{Var}(Y) + \text{Var}(Z) + \cdots.$$

Covariance

Definition The covariance of X and Y is
$$\text{cov}(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact
$$\text{cov}(X, Y) = E[XY] - E[X]E[Y].$$

Proof: Think about $E[X] = E[Y] = 0$. Just $E[XY]$. For the sake of completeness.

$$= E[XY] - E[X]E[Y].$$

Correlation

Definition The correlation of X, Y, $\text{Cor}(X, Y)$ is
$$\text{corr}(X, Y) := \frac{\text{cov}(X, Y)}{\sigma(X)\sigma(Y)}.$$

Theorem: $-1 \leq \text{corr}(X, Y) \leq 1$.

Proof: Idea: $(a - b)^2 > 0 \iff a^2 + b^2 \geq 2ab$.

$\text{Cor}(X, Y) = E[XY]/\sqrt{E[X^2]}\sqrt{E[Y^2]}$.

$\Rightarrow E[XY] < 1.

Shifting and scaling doesn’t change correlation.

Variance of Binomial Distribution.

Flip coin with heads probability p.

X - how many heads?

$X_i = \begin{cases} 1 & \text{if } i\text{th flip is heads} \\ 0 & \text{otherwise} \end{cases}$

$E(X_i) = p$ and $\text{Var}(X_i) = p(1-p)$

$E(X) = np$ and $\text{Var}(X) = np(1-p)$

$E(X^2) = E(X) + \text{Var}(X) = np + np(1-p) = np$.

Poisson Distribution: Variance.

Definition Poisson Distribution with parameter $\lambda > 0$

$X \sim \text{Poisson}(\lambda) \iff P[X = m] = \frac{e^{-\lambda} \lambda^m}{m!}, m \geq 0.$

Mean, Variance?

Ugh.

Recall that Poisson is the limit of the Binomial with $p = \lambda/n$ as $n \to \infty$.

Variance: $\text{Var}(X) = E(X^2) - (E(X))^2$

$E(X^2) = \lambda + \lambda^2$.

Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $\text{cov}(X, Y) = E[XY]$.

When $\text{cov}(X, Y) > 0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

When $\text{cov}(X, Y) < 0$, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.

When $\text{cov}(X, Y) = 0$, we say that X and Y are uncorrelated.
Examples of Covariance

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>P(Y=1, X=1)</th>
<th>P(Y=1, X=2)</th>
<th>P(Y=1, X=3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.35</td>
<td>0.25</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.15</td>
<td>0.25</td>
<td>0.15</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.35</td>
<td>0.15</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- `E[X] = 1.5 / 2 + 0.4 / 3 + 0.45 / 3 = 2.3`
- `E[X^2] = 1^2 * 0.15 + 2^2 * 0.4 + 3^2 * 0.45 = 5.8`
- `E[Y] = 1 * 0.2 + 2 * 0.6 + 3 * 0.2 = 2`
- `E[Y^2] = 1 * 0.2 + 4 * 0.6 + 9 * 0.2 = 4.4`
- `E[XY] = 1 * 1 * 0.05 + 1 * 2 * 0.1 + ... = 3 * 0.2 = 4.85`

- `var[X] = E[X^2] - E[X]^2 = 51`
- `corr(X,Y) = 0.55`

Properties of Covariance

- **Fact**
 - (a) `var[X] = cov(X,X)`
 - (b) `X,Y` independent ⇒ `cov(X,Y) = 0`
 - (c) `cov(aX + bY,cU + dV) = ac cov(X,U) + ad cov(X,V)`
 - (d) `cov(aX+bY,cU+dV) = ac cov(X,U) + ad cov(X,V) + bc cov(Y,U) + bd cov(Y,V)`

Proof:
- (a)-(b)-(c) are obvious.
- (d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,
 - `cov(aX+bY,cU+dV) = E[(aX+bY)(cU+dV)]`
 - `= ac E[XU] + ad E[XV] + bc E[YU] + bd E[YV]`
 - `= ac cov(X,U) + ad cov(X,V) + bc cov(Y,U) + bd cov(Y,V).`

Random Variables so far.

- Probability Space: `Ω, Pr : Ω → [0,1], ∑ω∈Ω Pr(w) = 1`.
- Random Variables: `X : Ω → R`.
- Associated event: `Pr[X = a] = ∑ω∈X(a)Pr(ω)`
- X and Y independent if all associated events are independent.
- Expectation: `E[X] = ∑a Pr[X = a] = ∑ω∈Ω X(ω)Pr(ω)`.
- Variance: `Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2`
- For independent `X,Y`, `Var(X+Y) = Var(X) + Var(Y)`.
- Poisson: `X ∼ P(λ) → E(X) = λ, Var(X) = λ`.
- Binomial: `X ∼ B(n,p) → E(X) = np, Var(X) = np(1-p)`.
- Uniform: `X ∼ U[1,...,n] → E(X) = n+1\,2, Var(X) = \frac{n^2-1}{12}`.
- Geometric: `X ∼ G(p) → E(X) = \frac{1}{p}, Var(X) = \frac{1-p}{p^2}`.

Summary

- **Variance**: `var[X] = E[(X - E[X])^2] = E[X^2] - E[X]^2`
- **Fact**: `var[aX+b] = a^2 var[X]`
- **Sum**: `X, Y, Z pairwise ind. ⇒ var[X + Y + Z] = ...`