
Today.

Variance, covariance.

Discuss expectation as predictor.

How close to expectation? Using expectation, and variance.

What if you predict expectation?

Also, prediction from evidence.

Calculating E [g(X )]: LOTUS
Let Y = g(X ). Assume that we know the distribution of X .

We want to calculate E [Y ].

Method 1: We calculate the distribution of Y :

Pr [Y = y ] = Pr [X ∈ g−1(y)] where g−1(x) = {x ∈ ℜ : g(x) = y}.
This is typically rather tedious!

Method 2: We use the following result.

Called “Law of the unconscious statistician.”
Theorem:

E [g(X )] = ∑
x

g(x)Pr [X = x ].
Proof:

E [g(X )] = ∑
ω

g(X (ω))Pr [ω] = ∑
x

∑
ω∈X−1(x)

g(X (ω))Pr [ω]

= ∑
x

∑
ω∈X−1(x)

g(x)Pr [ω] = ∑
x

g(x) ∑
ω∈X−1(x)

Pr [ω]

= ∑
x

g(x)Pr [X = x ].

Poll.

Which is LOTUS?

(A) E [X ] = ∑x∈Range(X )
g(x)×Pr [g(X ) = g(x)]

No. overcounts Pr [g(X ) = g(x)].

(B) E [X ] = ∑x∈Range(X )
g(x)×Pr [X = x ]

Yes. May count g(x) twice, if g(x) = g(x ′).

(C) E [X ] = ∑x∈Range(g) x ×Pr [g(X ) = x ]
No. g(x) is image, x is pre-image.

Geometric Distribution.

Experiment: flip a coin with heads prob. p. until Heads.
Random Variable X : number of flips.

And distribution is:

(A) X ∼ G(p) : Pr [X = i] = (1−p)i−1p.
(B) X ∼ B(p,n) : Pr [X = i] =

(n
i

)
pi(1−p)n−i .

(A) Distribution of X ∼ G(p): Pr [X = i] = (1−p)i−1p.

Geometric Distribution: Memoryless - Interpretation

Pr [X > n+m|X > n] = Pr [X > m],m,n ≥ 0.

Pr [X > n+m|X > n] = Pr [A|B] = Pr [A′] = Pr [X > m].

A′: is m coin tosses before heads.
A|B: m ’more’ coin tosses before heads.

The coin is memoryless , therefore, so is X .
Independent coin: Pr [H|’any previous set of coin tosses’] = p

Geometric Distribution: Memoryless by derivation.

Let X be G(p). Then, for n ≥ 0,

Pr [X > n] = Pr [ first n flips are T ] = (1−p)n.

Theorem

Pr [X > n+m|X > n] = Pr [X > m],m,n ≥ 0.

Proof:

Pr [X > n+m|X > n] =
Pr [X > n+m and X > n]

Pr [X > n]

=
Pr [X > n+m]

Pr [X > n]

=
(1−p)n+m

(1−p)n = (1−p)m

= Pr [X > m].



Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

σ2(X ) := var [X ] = E [(X −E [X ])2].

σ(X ) is called the standard deviation of X .

Variance and Standard Deviation

Fact:
var [X ] = E [X 2]−E [X ]2.

Indeed:

var(X ) = E [(X −E [X ])2]

= E [X 2 −2XE [X ]+E [X ]2)

= E [X 2]−2E [X ]E [X ]+E [X ]2, by linearity
= E [X 2]−E [X ]2.

A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

X =

{
µ −σ , w.p. 1/2
µ +σ , w.p. 1/2.

Then, E [X ] = µ and (X −E [X ])2 = σ2. Hence,

var(X ) = σ2 and σ(X ) = σ .

Example
Consider X with

X =

{
−1, w. p. 0.99
99, w. p. 0.01.

Then

E [X ] = −1×0.99+99×0.01 = 0.
E [X 2] = 1×0.99+(99)2 ×0.01 ≈ 100.

Var(X ) ≈ 100 =⇒ σ(X )≈ 10.

Also,
E(|X |) = 1×0.99+99×0.01 = 1.98.

Thus, σ(X ) =
√

E [(X −E(X ))2] ̸= E [|X −E [X ]|]!
Exercise: How big can you make σ(X )

E [|X−E [X ]|]?

Roughly square root of max value, M.
Keep expectation small using 1/M.

Yields 2E [X ] for E [|X −E [X ]|], and ≈
√

M for ≈ E [
√

X −E(X )].

Uniform
Assume that Pr [X = i] = 1

n for i ∈ {1, . . . ,n}. Then

E [X ] =
n

∑
i=1

i ×Pr [X = i] =
1
n

n

∑
i=1

i

=
1
n

n(n+1)
2

=
n+1

2
.

Also,

E [X 2] =
n

∑
i=1

i2 ×Pr [X = i] =
1
n

n

∑
i=1

i2

=
1
n
(n)(n+1)(n+2)

6
=

1+3n+2n2

6
, as you can verify.

This gives

var(X ) =
1+3n+2n2

6
− (n+1)2

4
=

n2 −1
12

.

(Sort of
∫ 1/2

0 x2dx = x3

3 .)

Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.
Thus, Pr [X = n] = (1−p)n−1p for n ≥ 1. Recall E [X ] = 1/p.

E [X 2] = p+4p(1−p)+9p(1−p)2 + ...

−(1−p)E [X 2] = −[p(1−p)+4p(1−p)2 + ...]

pE [X 2] = p+3p(1−p)+5p(1−p)2 + ...

= 2(p+2p(1−p)+3p(1−p)2 + ..) E [X ]!
−(p+p(1−p)+p(1−p)2 + ...) Distribution.

pE [X 2] = 2E [X ]−1

= 2(
1
p
)−1 =

2−p
p

=⇒ E [X 2] = (2−p)/p2 and
var [X ] = E [X 2]−E [X ]2 = 2−p

p2 − 1
p2 = 1−p

p2 .

σ(X ) =

√
1−p
p ≈ E [X ] when p is small(ish).



Fixed points.
Number of fixed points in a random permutation of n items.
“Number of student that get homework back.”

X = X1 +X2 · · ·+Xn

where Xi is indicator variable for i th student getting hw back.

E(X 2) = ∑
i

E(X 2
i )+∑

i ̸=j
E(XiXj).

= n× 1
n
+(n)(n−1)× 1

n(n−1)
= 1+1 = 2.

E(X 2
i ) = 1×Pr [Xi = 1]+0×Pr [Xi = 0]

= 1
n

E(XiXj) = 1×Pr [Xi = 1∩Xj = 1]+0×Pr [“anything else’′]
= 1× (n−2)!

n! = 1
n(n−1)

Var(X ) = E(X 2)− (E(X ))2 = 2−1 = 1.

Poll: fixed points.

What’s true?

(A) Xi and Xj are independent.
No. If student i gets student j ’s homework.

(B) E [XiXj ] = Pr [XiXj = 1]
Yes. Indicator random variable.

(C) Pr [XiXj ] =
(n−2)!

n!
Yes. (n−2)! outcomes where XiXj = 1.

(D) X 2
i = Xi .

Yes. 12 = 1 and 02 = 1, Xi ∈ {0,1}.

Variance: binomial.

E [X 2] =
n

∑
i=0

i2 ×
(

n
i

)
pi(1−p)n−i .

= Really???!!##...

Too hard!

Ok.. fine.
Let’s do something else.
Maybe not much easier...but there is a payoff.

Properties of variance.

1. Var(cX ) = c2Var(X ), where c is a constant.
Scales by c2.

2. Var(X +c) = Var(X ), where c is a constant.
Shifts center.

Proof:

Var(cX ) = E((cX )2)− (E(cX ))2

= c2E(X 2)−c2(E(X ))2 = c2(E(X 2)−E(X )2)

= c2Var(X )

Var(X +c) = E((X +c−E(X +c))2)

= E((X +c−E(X )−c)2)

= E((X −E(X ))2) = Var(X )

Independent random variables.

Independent: P[X = a,Y = b] = Pr [X = a]Pr [Y = b]

Fact: E [XY ] = E [X ]E [Y ] for independent random variables.

E [XY ] = ∑
a

∑
b

a×b×Pr [X = a,Y = b]

= ∑
a

∑
b

a×b×Pr [X = a]Pr [Y = b]

= (∑
a

aPr [X = a])(∑
b

bPr [Y = b])

= E [X ]E [Y ]

Variance of sum of two independent random variables
Theorem:
If X and Y are independent, then

Var(X +Y ) = Var(X )+Var(Y ).

Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E(X ) = 0 and E(Y ) = 0.

Then, by independence,

E(XY ) = E(X )E(Y ) = 0.

Hence,

var(X +Y ) = E((X +Y )2) = E(X 2 +2XY +Y 2)

= E(X 2)+2E(XY )+E(Y 2) = E(X 2)+E(Y 2)

= var(X )+var(Y ).



Variance of sum of independent random variables
Theorem:
If X ,Y ,Z , . . . are pairwise independent, then

var(X +Y +Z + · · ·) = var(X )+var(Y )+var(Z )+ · · · .
Proof:
Since shifting the random variables does not change their variance,
let us subtract their means.

That is, we assume that E [X ] = E [Y ] = · · ·= 0.

Then, by independence,

E [XY ] = E [X ]E [Y ] = 0. Also, E [XZ ] = E [YZ ] = · · ·= 0.

Hence,

var(X +Y +Z + · · ·) = E((X +Y +Z + · · ·)2)

= E(X 2 +Y 2 +Z 2 + · · ·+2XY +2XZ +2YZ + · · ·)
= E(X 2)+E(Y 2)+E(Z 2)+ · · ·+0+ · · ·+0
= var(X )+var(Y )+var(Z )+ · · · .

Variance of Binomial Distribution.

Flip coin with heads probability p.
X - how many heads?

Xi =

{
1 if i th flip is heads
0 otherwise

E(X 2
i ) = 12 ×p+02 × (1−p) = p.

Var(Xi) = p− (E(X ))2 = p−p2 = p(1−p).

p = 0 =⇒ Var(Xi) = 0
p = 1 =⇒ Var(Xi) = 0

X = X1 +X2 + . . .Xn.

Xi and Xj are independent: Pr [Xi = 1|Xj = 1] = Pr [Xi = 1].

Var(X ) = Var(X1 + · · ·Xn) = np(1−p).

Poisson Distribution: Variance.

Definition Poisson Distribution with parameter λ > 0

X = P(λ )⇔ Pr [X = m] =
λ m

m!
e−λ ,m ≥ 0.

Mean, Variance?

Ugh.

Recall that Poission is the limit of the Binomial with p = λ/n as n → ∞.

Mean: pn = λ

Variance: p(1−p)n = λ −λ 2/n → λ .

E(X 2)? Var(X ) = E(X 2)− (E(X ))2 or E(X 2) = Var(X )+E(X )2.

E(X 2) = λ +λ 2.

Covariance

Definition The covariance of X and Y is

cov(X ,Y ) := E [(X −E [X ])(Y −E [Y ])].

Fact
cov(X ,Y ) = E [XY ]−E [X ]E [Y ].

Proof:
Think about E [X ] = E [Y ] = 0. Just E [XY ]. ish.

For the sake of completeness.

E [(X −E [X ])(Y −E [Y ])] = E [XY −E [X ]Y −XE [Y ]+E [X ]E [Y ]]

= E [XY ]−E [X ]E [Y ]−E [X ]E [Y ]+E [X ]E [Y ]

= E [XY ]−E [X ]E [Y ].

Correlation

Definition The correlation of X ,Y , Cor(X ,Y ) is

corr(X ,Y ) :
cov(X ,Y )

σ(X )σ(Y )
.

Theorem: −1 ≤ corr(X ,Y )≤ 1.
Proof: Idea: (a−b)2 > 0 → a2 +b2 ≥ 2ab.

Simple case: E [X ] = E [Y ] = 0 and E [X 2] = E [Y 2] = 1.

Cov(X ,Y ) = E [XY ].

E [(X −Y )2] = E [X 2]+E [Y 2]−2E [XY ] = 2(1−E [XY ])≥ 0
→ E [XY ]≤ 1.

E [(X +Y )2] = E [X 2]+E [Y 2]+2E [XY ] = 2(1+E [XY ])≥ 0
→ E [XY ]≥−1.

Shifting and scaling doesn’t change correlation.

Examples of Covariance

Note that E [X ] = 0 and E [Y ] = 0 in these examples. Then
cov(X ,Y ) = E [XY ].

When cov(X ,Y )> 0, the RVs X and Y tend to be large or small
together. X and Y are said to be positively correlated.

When cov(X ,Y )< 0, when X is larger, Y tends to be smaller. X and
Y are said to be negatively correlated.

When cov(X ,Y ) = 0, we say that X and Y are uncorrelated.



Examples of Covariance

E [X ] = 1×0.15+2×0.4+3×0.45 = 2.3
E [X 2] = 12 ×0.15+22 ×0.4+32 ×0.45 = 5.8
E [Y ] = 1×0.2+2×0.6+3×0.2 = 2
E [Y 2] = 1×0.2+4×0.6+9×0.2 = 4.4
E [XY ] = 1×0.05+1×2×0.1+ · · ·+3×3×0.2 = 4.85
cov(X ,Y ) = E [XY ]−E [X ]E [Y ] = .25
var [X ] = E [X 2]−E [X ]2 = .51
var [Y ] = E [Y 2]−E [Y ]2 = .4
corr(X ,Y )≈ 0.55

Properties of Covariance

cov(X ,Y ) = E [(X −E [X ])(Y −E [Y ])] = E [XY ]−E [X ]E [Y ].

Fact
(a) var [X ] = cov(X ,X )
(b) X ,Y independent ⇒ cov(X ,Y ) = 0
(c) cov(a+X ,b+Y ) = cov(X ,Y )
(d) cov(aX +bY ,cU +dV ) = ac ·cov(X ,U)+ad ·cov(X ,V )

+bc ·cov(Y ,U)+bd ·cov(Y ,V ).
Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the
RVs are zero-mean. Then,

cov(aX +bY ,cU +dV ) = E [(aX +bY )(cU +dV )]

= ac ·E [XU]+ad ·E [XV ]+bc ·E [YU]+bd ·E [YV ]

= ac ·cov(X ,U)+ad ·cov(X ,V )+bc ·cov(Y ,U)+bd ·cov(Y ,V ).

Lake Woebegone: Poll

What is true?

(A) Everyone is above average (on midterm)
False. Average would be higher.

(B) For a random variable, at most half the people can be more than
twice the average.

False. Consder Pr [X =−2] = 1/3 and Pr [X = 1] = 2/3. E [X ] = 0.

(C) For the midterm with no negative scores, at most half the people
can be more than twice the average.

True. Otherwise average would be higher.

Markov’s inequality
The inequality is named for Andrey Markov, though in work by Pafnuty
Chebyshev. (Sometimes) called Chebyshev’s first inequality.

Theorem Markov’s Inequality
Assume f : ℜ → [0,∞) is nondecreasing. Then,

Pr [X ≥ a]≤ E [f (X )]

f (a)
, for all a such that f (a)> 0.

Proof:

Claim:
1{X ≥ a} ≤ f (X )

f (a)
.

If X < a, the inequality reads 0 ≤ f (x)/f (a), since f (·)≥ 0.
If X ≥ a, it reads 1 ≤ f (x)/f (a), since f (·) is nondecreasing.

Taking the expectation yields the inequality,
expectation of an indicator is the probability.
and expectation is monotone, e.g., weighted sum of points.

That is, ∑v Pr [X = v ]1{v ≥ a} ≤ ∑v Pr [X = v ] f (v)
f (a) .

Intuition: E [f (X )]≥ f (a)Pr [X > a] = f (a)Pr [X > f (a)].

A picture Markov Inequality Example: G(p)

Let X = G(p). Recall that E [X ] = 1
p and E [X2] = 2−p

p2 .

Choosing f (x) = x , we
get

Pr [X ≥a]≤ E [X ]

a
=

1
ap

.

Choosing f (x) = x2,
we get

Pr [X ≥a]≤ E [X2]

a2 =
2−p
p2a2 .



Markov Inequality Example: P(λ )

Let X = P(λ ). Recall that E [X ] = λ and E [X2] = λ +λ 2.

Choosing f (x) = x , we
get

Pr [X ≥ a]≤ E [X ]

a
=

λ
a
.

Choosing f (x) = x2,
we get

Pr [X ≥a]≤ E [X2]

a2 =
λ +λ 2

a2 .

Chebyshev’s Inequality

This is Pafnuty’s inequality:
Theorem:

Pr [|X −E [X ]|> a]≤ var [X ]

a2 , for all a > 0.

Proof: Let Y = |X −E [X ]| and f (y) = y2. Then,

Pr [Y ≥ a]≤ E [f (Y )]

f (a)
=

var [X ]

a2 .

This result confirms that the variance measures the “deviations from
the mean.”

Chebyshev and Poisson
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . Thus,

Pr [|X −λ | ≥ n]≤ var [X ]

n2 =
λ
n2 .

Chebyshev and Poisson (continued)
Let X = P(λ ). Then, E [X ] = λ and var [X ] = λ . By Markov’s inequality,

Pr [X ≥ a]≤ E [X 2]

a2 =
λ +λ 2

a2 .

Also, if a > λ , then X ≥ a ⇒ X −λ ≥ a−λ > 0 ⇒ |X −λ | ≥ a−λ .

Hence, for a > λ , Pr [X ≥ a]≤ Pr [|X −λ | ≥ a−λ ]≤ λ
(a−λ )2

.

Estimation: Expectation and Mean Squared Error.

“Best” guess about Y , is E [Y ].
If “best” is Mean Squared Error.

More precisely, the value of a that minimizes E [(Y −a)2] is a = E [Y ].

Proof:

Let Ŷ := Y −E [Y ].
Then, E [Ŷ ] = E [Y −E [Y ]] = E [Y ]−E [Y ] = 0.
So, E [Ŷ c] = 0,∀c. Now,

E [(Y −a)2] = E [(Y −E [Y ]+E [Y ]−a)2]

= E [(Ŷ +c)2] with c = E [Y ]−a

= E [Ŷ 2 +2Ŷ c+c2] = E [Ŷ 2]+2E [Ŷ c]+c2

= E [Ŷ 2]+0+c2 ≥ E [Ŷ 2].

Hence, E [(Y −a)2]≥ E [(Y −E [Y ])2],∀a.

Estimation: Preamble
Thus, if we want to guess the value of Y , we choose E [Y ].

Now assume we make some observation X related to Y .

How do we use that observation to improve our guess about Y ?

How? Conditional expectation.

Expectation: for random variable X for event A.

Pr [X = x |A] = Pr [X=x∩A]
Pr [A]

Conditional Expectation: E [X |A] = ∑x x ×Pr [X = x |A].
Conditioned on event A, what prediction minimizes mean squared

error (MMSE)? E [X |A]
For random variable X and Y .

E [X |Y = y ] = ∑x x ×Pr [X = x |Y = y ].

If you know y , what is MMSE prediction? E [X |y ].
Covariance is related to best linear predictor for X .

More on Tuesday.



Summary

Variance

▶ Variance: var [X ] := E [(X −E [X ])2] = E [X 2]−E [X ]2

▶ Fact: var [aX +b]a2var [X ]

▶ Sum: X ,Y ,Z pairwise ind. ⇒ var [X +Y +Z ] = · · ·
▶ Markov (future): Pr [X ≥ a]≤ E [f (X )]/f (a) where ...

▶ Chebyshev (future): Pr [|X −E [X ]| ≥ a]≤ var [X ]/a2

Random Variables so far.

Probability Space: Ω, Pr : Ω→ [0,1], ∑ω∈Ω Pr(w) = 1.
Random Variables: X : Ω→ R.

Associated event: Pr [X = a] = ∑ω:X (ω)=a Pr(ω)
X and Y independent ⇐⇒ all associated events are independent.
Expectation: E [X ] = ∑a aPr [X = a] = ∑ω∈Ω X (ω)Pr(ω).

Linearity: E [X +Y ] = E [X ]+E [Y ].

Variance: Var(X ) = E [(X −E [X ])2] = E [X 2]− (E(X ))2

For independent X ,Y , Var(X +Y ) = Var(X )+Var(Y ).
Also: Var(cX ) = c2Var(X ) and Var(X +b) = Var(X ).

Poisson: X ∼ P(λ ) E(X ) = λ , Var(X ) = λ .
Binomial: X ∼ B(n,p) E(X ) = np, Var(X ) = np(1−p)
Uniform: X ∼ U{1, . . . ,n} E [X ] = n+1

2 , Var(X ) = n2−1
12 .

Geometric: X ∼ G(p) E(X ) = 1
p , Var(X ) = 1−p

p2


