Today

Estimation.

MMSE: Best Function that predicts X from Y.

Conditional Expectation.

Finish Linear Regression:

Best linear function prediction of *Y* given *X*.

Applications to random processes.

Estimation: Preamble

Thus, best guess, \hat{Y} , for the value of Y, is E[Y].

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?

Estimation: cs70 style

Given distribution for Y.

What is the distribution?

Probability "mass" function: Pr[Y = y].

What should we guess for the value of Y, before hand?

That is what number \hat{Y} should we predict for Y?

Review

Definitions Let X and Y be RVs on Ω .

▶ Distribution: Pr[Y = y]

▶ Joint Distribution: Pr[X = x, Y = y]

▶ Marginal Distribution: $Pr[X = x] = \sum_{v} Pr[X = x, Y = y]$

► Conditional Distribution: $Pr[Y = y | X = x] = \frac{Pr[X = x, Y = y]}{Pr[X = x]}$

What is $\sum_{x,y} Pr[X = x, Y - y]$? 1.

What is $\sum_{X} Pr[X = x]$? 1

What is $\sum_{v} Pr[X = x, Y = y]$? Pr[X = x].

Estimation: Expectation and Mean Squared Error.

Given distribution (probability mass function): Pr[Y = y].

"Best" guess about Y, is E[Y].

If "best" is Mean Squared Error.

More precisely, the value of a that minimizes $E[(Y-a)^2]$ is a=E[Y].

Proof:

Let
$$\hat{Y}:=Y-E[Y]$$
.
Then, $E[\hat{Y}]=E[Y-E[Y]]=E[Y]-E[Y]=0$.
So, $E[\hat{Y}c]=0, \forall c$. Now,

$$\begin{split} E[(Y-a)^2] &= E[(Y-E[Y]+E[Y]-a)^2] \\ &= E[(\hat{Y}+c)^2] \text{ with } c=E[Y]-a \\ &= E[\hat{Y}^2+2\hat{Y}c+c^2]=E[\hat{Y}^2]+2E[\hat{Y}c]+c^2 \\ &= E[\hat{Y}^2]+0+c^2\geq E[\hat{Y}^2]. \end{split}$$

Hence, $E[(Y - a)^2] \ge E[(Y - E[Y])^2], \forall a$.

Conditional Expectation

Definition Let X and Y be RVs on Ω . The conditional expectation of Y given X is defined as

$$E[Y|X] = g(X)$$

where

$$g(x) := E[Y|X = x] := \sum_{y} y \times Pr[Y = y|X = x].$$

Fact

$$E[Y|X=x] = \sum_{\omega} Y(\omega) \times Pr[\omega|X=x].$$

Proof: E[Y|X=x] = E[Y|A] with $A = \{\omega : X(\omega) = x\}$.

What is "X = x"? An event. In the above? The event A = X' = X'.

Note: E[Y|X] is a function on values for X that gives a number.

Today: we view as a predicted value for Y.

Properties of CE

$$E[Y|X=x] = \sum_{y} y \times Pr[Y=y|X=x]$$

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Proof:

- (a) Obvious and Pr[Y = y | X = x] = Pr[Y = y]
-](b)Linearity of expectation in sample space.
- (c) $E[Yh(X)|X = x] = \sum_{\omega} Y(\omega)h(X(\omega))Pr[\omega|X = x]$

$$= \sum_{\omega} Y(\omega) h(x) Pr[\omega | X = x] = h(x) E[Y | X = x]$$

Properties of CE

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Note that (d) says that

$$E[(Y - E[Y|X])h(X)|X] = 0.$$

Note: one view is that the estimation error Y - E[Y|X] is orthogonal to every function h(X) of X.

This the projection property.

It gives that E[Y|X] is best estimator for Y given X.

Properties of CE

$$E[Y|X=x] = \sum_{v} yPr[Y=y|X=x]$$

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Proof: (continued)

(d)
$$E[h(X)E[Y|X]] = \sum_{X} h(x)E[Y|X=x]Pr[X=x]$$

 $= \sum_{X} h(x)\sum_{Y} y \times Pr[Y=y|X=x]Pr[X=x]$
 $= \sum_{X} h(x)\sum_{Y} y \times Pr[X=x,y=y]$
 $= \sum_{X,y} h(x)y \times Pr[X=x,y=y] = E[h(X)Y].$

CE = MMSE (Minimum Mean Squared Estimator)

Theorem

E[Y|X] is the 'best' guess about Y based on X. Specifically, it is the function g(X) of X that

minimizes
$$E[(Y-g(X))^2]$$

Properties of CE

$$E[Y|X=x] = \sum_{y} yPr[Y=y|X=x]$$

Theorem

- (a) X, Y independent $\Rightarrow E[Y|X] = E[Y]$;
- (b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
- (c) $E[Yh(X)|X] = h(X)E[Y|X], \forall h(\cdot);$
- (d) $E[h(X)E[Y|X]] = E[h(X)Y], \forall h(\cdot);$
- (e) E[E[Y|X]] = E[Y].

Proof: (continued)

(e) Let h(X) = 1 in (d).

CE = MMSE

Theorem CE = MMSE

g(X) := E[Y|X] is the function of X that minimizes $E[(Y-g(X))^2]$. **Proof:** Recall: Expectation of r.v. minimizes mean squared error.

Sample space X = x: so E[Y|X = x] minimizes mean squared error.

Proof:

Let h(X) be any function of X. Then

$$\begin{split} E[(Y - h(X))^2] &= E[(Y - g(X) + g(X) - h(X))^2] \\ &= E[(Y - g(X))^2] + E[(g(X) - h(X))^2] \\ &+ 2E[(Y - g(X))(g(X) - h(X))]. \end{split}$$

But,

$$E[(Y-g(X))(g(X)-h(X))]=0$$
 by the projection property.

Thus,
$$E[(Y - h(X))^2] \ge E[(Y - g(X))^2]$$
.

 \Box .

Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is not funny.)

You have d friends. Each of your friend retweets w.p. p.

Each of your friends has d friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, d = 4.

Application: Wald's Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald's Identity

Assume that $X_1, X_2, ...$ and Z are independent, where

Z takes values in $\{0,1,2,\ldots\}$

and
$$E[X_n] = \mu$$
 for all $n \ge 1$.

Then,

$$E[X_1 + \cdots + X_Z] = \mu E[Z].$$

Proof:

$$E[X_1 + \cdots + X_Z | Z = k] = \mu k.$$

Thus,
$$E[X_1 + \cdots + X_Z | Z] = \mu Z$$
.

Hence,
$$E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$$
.

Application: Going Viral

Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff pd < 1.

Proof:

Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1}|X_n = k] = kpd$.

Thus, $E[X_{n+1}|X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \ge 1$.

If pd < 1, then $E[X_1 + \cdots + X_n] \le (1 - pd)^{-1} \Longrightarrow E[X] \le (1 - pd)^{-1}$.

If $pd \ge 1$, then for all C one can find n s.t.

 $E[X] \geq E[X_1 + \cdots + X_n] \geq C.$

In fact, one can show that $pd \ge 1 \implies Pr[X = \infty] > 0$.

Summary

Conditional Expectation

- ▶ Definition: $E[Y|X] := \sum_{y} yPr[Y = y|X = x]$
- ▶ Properties: E[Y E[Y|X]h(X)|X] = 0; E[E[Y|X]] = E[Y]
- Applications:
 - Viral Propagation.
 - Wald
- ▶ MMSE: E[Y|X] minimizes $E[(Y-g(X))^2]$ over all $g(\cdot)$

Application: Going Viral

An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.

To see this, note that given $X_n=k$, and given the numbers of friends $D_1=d_1,\ldots,D_k=d_k$ of these X_n people, one has $X_{n+1}=B(d_1+\cdots+d_k,p)$. Hence,

$$E[X_{n+1}|X_n=k,D_1=d_1,\ldots,D_k=d_k]=p(d_1+\cdots+d_k).$$

Thus,
$$E[X_{n+1}|X_n = k, D_1, ..., D_k] = p(D_1 + ... + D_k)$$
.

Consequently, $E[X_{n+1}|X_n=k]=E[p(D_1+\cdots+D_k)]=pdk$.

Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.

We conclude as before.

Linear Estimation: Preamble

Best MMSE, \hat{Y} , the value of Y, we choose E[Y].

Given some observation X related to Y.

How do we use that observation to improve our guess about *Y*?

The idea is to use a function $\hat{Y}(X) = g(X)$ of the observation to estimate Y.

The "right" function is E[X|Y].

A simpler function?

"Simplest" function is linear: g(X) = a + bX.

What is the best linear function? That is our next topic.

Linear Regression: Motivation

Example 1: 100 people.

Let (X_n, Y_n) = (height, weight) of person n, for n = 1, ..., 100:

The blue line is Y = -114.3 + 106.5X. (X in meters, Y in kg.)

Best linear fit: Linear Regression.

A Bit of Algebra

$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var[X]}(X - E[X]).$$

Hence, $E[Y - \hat{Y}] = 0$. We want to show that $E[(Y - \hat{Y})X] = 0$.

Note that

$$E[(Y - \hat{Y})X] = E[(Y - \hat{Y})(X - E[X])],$$

because $E[(Y - \hat{Y})E[X]] = 0$.

Now,

$$E[(Y - \hat{Y})(X - E[X])]$$

$$= E[(Y - E[Y])(X - E[X])] - \frac{cov(X, Y)}{var[X]} E[(X - E[X])(X - E[X])]$$

$$= {}^{(*)} cov(X, Y) - \frac{cov(X, Y)}{var[X]} \frac{var[X]}{var[X]} = 0. \quad \Box$$

(*) Recall that cov(X, Y) = E[(X - E[X])(Y - E[Y])] and $var[X] = E[(X - E[X])^2]$.

Motivation

Example 2: 15 people.

We look at two attributes: (X_n, Y_n) of person n, for n = 1, ..., 15:

The line Y = a + bX is the linear regression.

Estimation Error

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$\begin{split} & E[|Y - L[Y|X]|^2] = E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ & = E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)} E[(Y - E[Y])(X - E[X])] \\ & + (\frac{cov(X, Y)}{var(X)})^2 E[(X - E[X])^2] \\ & = var(Y) - \frac{cov(X, Y)^2}{var(X)}. \end{split}$$

Without observations, the estimate is E[Y]. The error is var(Y). Observing X reduces the error.

LLSE

LLSE[Y|X] - best guess for Y given X.

Theorem

Consider two RVs X, Y with a given distribution Pr[X = x, Y = y]. Then,

Proof 1:
$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$
$$Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var(X)}(X - E[X]). \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}$$

Also,
$$E[(Y - \hat{Y})X] = 0$$
, after a bit of algebra. (next slide)

Combine brown inequalities: $E[(Y - \hat{Y})(c + dX)] = 0$ for any c, d. Since: $\hat{Y} = \alpha + \beta X$ for some α, β , so $\exists c, d$ s.t. $\hat{Y} - a - bX = c + dX$. Then, $E[(Y - \hat{Y})(\hat{Y} - a - bX)] = 0, \forall a, b$. Now,

$$E[(Y - a - bX)^{2}] = E[(Y - \hat{Y} + \hat{Y} - a - bX)^{2}]$$

$$= E[(Y - \hat{Y})^{2}] + E[(\hat{Y} - a - bX)^{2}] + 0 \ge E[(Y - \hat{Y})^{2}].$$

This shows that $E[(Y-\hat{Y})^2] \le E[(Y-a-bX)^2]$, for all (a,b). Thus \hat{Y} is the LLSE.

Estimation Error: A Picture

We saw tha

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X])$$

and

$$E[|Y - L[Y|X]|^2] = var(Y) - \frac{cov(X, Y)^2}{var(X)}.$$

Here is a picture when E[X] = 0, E[Y] = 0: Dimensions correspond to sample points, uniform sample space.

Vector Y at dimension ω is $\frac{1}{\sqrt{\Omega}}Y(\omega)$

Linear Regression Examples

Example 1:

Linear Regression Examples

Example 4:

We find:

$$\begin{split} E[X] &= 3; E[Y] = 2.5; E[X^2] = (3/15)(1+2^2+3^2+4^2+5^2) = 11; \\ E[XY] &= (1/15)(1\times1+1\times2+\dots+5\times4) = 8.4; \\ var[X] &= 11-9 = 2; cov(X,Y) = 8.4-3\times2.5 = 0.9; \\ \text{LR: } \hat{Y} &= 2.5 + \frac{0.9}{2}(X-3) = 1.15 + 0.45X. \end{split}$$

Linear Regression Examples

Example 2:

We find:

$$\begin{split} E[X] &= 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2; \\ var[X] &= E[X^2] - E[X]^2 = 1/2; cov(X,Y) = E[XY] - E[X]E[Y] = 1/2; \\ \mathsf{LR:} \ \hat{Y} &= E[Y] + \frac{cov(X,Y)}{var[X]} (X - E[X]) = X. \end{split}$$

LR: Another Figure

Note that

- ▶ the LR line goes through (E[X], E[Y])
- ightharpoonup its slope is $\frac{cov(X,Y)}{var(X)}$.

Linear Regression Examples

Example 3:

We find:

$$\begin{split} E[X] &= 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2; \\ var[X] &= E[X^2] - E[X]^2 = 1/2; cov(X,Y) = E[XY] - E[X]E[Y] = -1/2; \\ LR: \ \hat{Y} &= E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]) = -X. \end{split}$$

Quadratic Regression

Let X, Y be two random variables defined on the same probability

Definition: The quadratic regression of *Y* over *X* is the random variable

$$Q[Y|X] = a + bX + cX^2$$

where a, b, c are chosen to minimize $E[(Y - a - bX - cX^2)^2]$.

Derivation: We set to zero the derivatives w.r.t. a, b, c. We get

$$0 = E[Y - a - bX - cX^{2}] = E[Y] - a - bE[X] - cE[X^{2}]$$

$$0 = E[(Y - a - bX - cX^2)X] = E[XY] - a - bE[X^2] - cE[X^3]$$

$$0 = E[(Y - a - bX - cX^{2})X] = E[XY] - a - bE[X^{2}] - cE[X^{3}]$$

$$0 = E[(Y - a - bX - cX^{2})X^{2}] = E[X^{2}Y] - aE[X^{2}] - bE[X^{3}] - cE[X^{4}]$$

We solve these three equations in the three unknowns (a, b, c).

Note on pedagogy.

We used the projection property to verify MMSE and LLSE.

MMSE: E[h(X)(Y-E(Y|X))] = 0 implies E[Y|X] is best predictor given X.

LLSE: E[L(X)(Y-LLSE(Y|X))] = 0 implies LLSE(Y|X) is best linear predictor given X.

We used calculus to do best Quadratic prediction.

Notes: use calculus to prove optimaliaty of E[Y|X] and LLSE[Y|X].

Summary

Linear Regression

Mean Squared: E[Y] is best mean squared estimator for Y. MMSE: E[Y|X] is best mean squared estimator for Y given X. Linear Regression: $L[Y|X] = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X])$

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution. Sample Points "are" distribution in this class. Statistics: Fix the assumption above.