Conditional Expectation

Definition Let X and Y be RVs on Ω. The conditional expectation of Y given X is defined as

\[E[Y|X] = g(X) \]

where \(g(x) = E[Y|X=x] = \sum_y y \Pr[Y=y|X=x] \).

Fact \(E[Y|X=x] = \sum_y Y(\omega) \Pr[\omega|X=x] \).

Proof: \(E[Y|X=x] = E[Y|A] \) with \(A = \{ \omega : X(\omega) = x \} \).

Properties of CE

\[E[Y|X=x] = \sum_y y \Pr[Y=y|X=x] \]

Theorem
(a) \(X, Y \) independent \(\Rightarrow E[Y|X] = E[Y] \);
(b) \(E[aY + bZ|X] = aE[Y|X] + bE[Z|X] \);
(c) \(E[Yh(X)|X] = h(X)E[Y|X] \), \(\forall h \);
(d) \(E[h(X)E[Y|X]] = E[h(X)Y] \), \(\forall h \);
(e) \(E[E[Y|X]] = E[Y] \).

Proof:
(a), (b) Obvious
(c) \(E[Yh(X)|X=x] = \sum_{\omega} Y(\omega) h(X(\omega)) \Pr[\omega|X=x] \)
\[= \sum_{\omega} Y(\omega) h(X(\omega)) \Pr[\omega|X=x] = h(x)E[Y|X=x] \]
Properties of CE

\[E[Y|X = x] = \sum_y yPr[Y = y|X = x] \]

Theorem

(a) \(X, Y \) independent \(\Rightarrow E[Y|X] = E[Y] \);
(b) \(E[aY + bZ|X] = aE[Y|X] + bE[Z|X] \);
(c) \(E[h(X)|X] = h(X)E[Y|X|Y]h(X) \);
(d) \(E[h(X)]E[Y|X] = E[h(X)Y]\); \(h(X) \)
(e) \(E[Y|X] = E[Y] \).

Proof:

(d) \(E[h(X)|X] = \sum h(x)E[Y|X = x]Pr[X = x] \)
\[= \sum h(x)\sum yPr[y|X = x]Pr[X = x] \]
\[= \sum h(x)\sum yPr[y|X = x,y = y] \]
\[= \sum h(x)yPr[X = x,y = y] = E[h(X)Y]. \]

CE = MMSE (Minimum Mean Squared Estimator)

Theorem

\(E[Y|X] \) is the ‘best’ guess about \(Y \) based on \(X \).
Specifically, it is the function \(g(X) \) of \(X \) that

minimizes \(E[(Y - g(X))^2] \).

CE = MMSE

Theorem

\(g(X) := E[Y|X] \) is the function of \(X \) that minimizes \(E[(Y - g(X))^2] \).

Proof: Recall: Expectation of r.v. minimizes mean squared error.
Sample space \(X = x \): so \(E[Y|X = x] \) minimizes mean squared error.

Proof:

Let \(h(X) \) be any function of \(X \). Then

\[E[(Y - h(X))^2] = E[(Y - g(X) + g(X) - h(X))^2] \]
\[= E[(Y - g(X))^2] + E[(g(X) - h(X))^2] \]
\[+ 2E[(Y - g(X))(g(X) - h(X))]. \]

But,

\[E[(Y - g(X))(g(X) - h(X))] = 0 \]

by the projection property.

Thus, \(E[(Y - h(X))^2] \geq E[(Y - g(X))^2] \).

Application: Going Viral

Consider a social network (e.g., Twitter).
You start a rumor (e.g., Rao is not funny.)
You have friends. Each of your friends retweets w.p. \(p \).
Each of your friends has \(d \) friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, \(d = 4 \).
That is our next topic.

Hence, one has

Number of tweets

Then, the same fact holds.

Application: Going Viral

Application: Going Viral

Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X_1, X_2, \ldots and Z are independent, where Z takes values in $\{0, 1, 2, \ldots\}$ and $E[X_1] = \mu$ for all $n \geq 1$.

Then,

$$E[X_1 + \cdots + X_2] = \mu E[Z].$$

Proof:

$E[X_1 + \cdots + X_2|Z=k] = \mu k.$

Thus, $E[X_1 + \cdots + X_2] = \mu Z$.

Hence, $E[X_1 + \cdots + X_2] = E[\mu Z] = \mu E[Z].$

Summary

Conditional Expectation

- Definition: $E[Y|X] := \sum_y yPr[Y=y|X=x]$
- Applications:
 - Viral Propagation.
 - Wald
- **MMSE:** $E[Y|X]$ minimizes $E[(Y - g(X))^2]$ over all $g(·)$

Linear Estimation: Preamble

Thus, if we want to guess the value of Y, we choose $E[Y].$

Now assume we make some observation X related to Y.

How do we use that observation to improve our guess about Y?

The idea is to use a function $g(X)$ of the observation to estimate Y.

The “right” function is $E[Y|X]$.

A simpler function?

“Simplest” function is linear: $g(X) = a + bX$.

What is the best linear function? That is our next topic.

Linear Regression: Motivation

Example 1: 100 people.

Let $(X_n, Y_n) = (\text{height, weight})$ of person n, for $n = 1, \ldots, 100$:

![Plot](image-url)
Motivation

Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15\):

LLSE

Theorem

Consider two RVs \(X, Y\) with a given distribution \(Pr[X = x, Y = y]\).

Then,

\[
L(Y|X) = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)} (X - E[X]).
\]

Proof 1:

\[
Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var(X)} (X - E[X]), \quad E[Y - \hat{Y}] = 0 \text{ by linearity.}
\]

Also, \(E[Y - \hat{Y}|X] = 0\), after a bit of algebra. (See next slide.)

Combine brown inequalities: \(E[Y - \hat{Y}|X](c + dX) = 0\) for any \(c, d\).

Since: \(\hat{Y} = \alpha + \beta X\) for some \(\alpha, \beta\), so \(\exists c, d\) s.t. \(\hat{Y} - a - bX = c + dX\).

Then, \(E[(Y - \hat{Y})|X] = E[(Y - a - bX)^2] = \frac{cov(X,Y)}{var(X)} + \frac{cov(X,Y)}{var(X)} (X - E[X])\).

This shows that \(E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2]\) for all \((a, b)\).

Thus \(\hat{Y}\) is the LLSE.

A Bit of Algebra

\[
Y - \hat{Y} = (Y - E[Y]) - \frac{cov(X,Y)}{var(X)} (X - E[X]).
\]

Hence, \(E[Y - \hat{Y}] = 0\). We want to show that \(E[(Y - \hat{Y})X] = 0\).

Estimation Error

We saw that the LLSE of \(Y\) given \(X\) is

\[
L(Y|X) = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)} (X - E[X]).
\]

How good is this estimator? Or what is the mean squared estimation error?

We find

\[
E[\hat{Y}^2] = E[Y^2] - \frac{cov^2(X,Y)}{var(X)} + \frac{cov^2(X,Y)}{var(X)} (X - E[X])^2.
\]

Without observations, the estimate is \(E[Y]\). The error is \(var(Y)\). Observing \(X\) reduces the error.
Estimation Error: A Picture
We saw that
\[L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)} (X - E[X]) \]
and
\[E[Y - L[Y|X]]^2 = \text{var}(Y) - \frac{\text{cov}(X,Y)^2}{\text{var}(X)}. \]
Here is a picture when \(E[X] = 0, E[Y] = 0 \):
Dimensions correspond to sample points, uniform sample space.

Vector \(Y \) at dimension \(\omega \) is \(\frac{1}{\sqrt{\Omega}} Y(\omega) \)

Linear Regression Examples
Example 1:
We find:
\[E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2; \]
\[\text{var}[X] = E[X^2] - E[X]^2 = 1/2; \text{cov}(X,Y) = E[XY] - E[X]E[Y] = 1/2; \]
\[\text{LR: } \hat{Y} = E[Y] + \text{cov}(X,Y) \]
\[\text{var}[X] (X - E[X]) = X. \]

Linear Regression Examples
Example 3:
We find:
\[E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2; \]
\[\text{var}[X] = E[X^2] - E[X]^2 = 1/2; \text{cov}(X,Y) = E[XY] - E[X]E[Y] = -1/2; \]
\[\text{LR: } \hat{Y} = E[Y] + \text{cov}(X,Y) \]
\[\text{var}[X] (X - E[X]) = -X. \]

Linear Regression Examples
Example 4:
We find:
\[E[X] = 3; E[Y] = 2.5; E[X^2] = (3/15)(1 + 2^2 + 3^2 + 4^2 + 5^2) = 8.4; \]
\[\text{var}[X] = 11 - 9 = 2; \text{cov}(X,Y) = 8.4 - 3 \times 2.5 = 0.9; \]
\[\text{LR: } \hat{Y} = 2.5 + \frac{0.9}{2} (X - 3) = 1.15 + 0.45X. \]

Linear Regression Examples
Example 2:
We find:
\[E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2; \]
\[\text{var}[X] = E[X^2] - E[X]^2 = 1/2; \text{cov}(X,Y) = E[XY] - E[X]E[Y] = 1/2; \]
\[\text{LR: } \hat{Y} = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}[X]} (X - E[X]) = X. \]

Note that
\[\text{the LR line goes through } (E[X], E[Y]) \]
\[\text{its slope is } \frac{\text{cov}(X,Y)}{\text{var}[X]}. \]
Quadratic Regression

Let \(X, Y \) be two random variables defined on the same probability space.

Definition: The quadratic regression of \(Y \) over \(X \) is the random variable
\[
Q[Y|X] = a + bX + cX^2
\]
where \(a, b, c \) are chosen to minimize \(E[(Y - a - bX - cX^2)^2] \).

Derivation: We set to zero the derivatives w.r.t. \(a, b, c \). We get
\[
\begin{align*}
0 &= E[Y - a - bX - cX^2] - a - bE[X] - cE[X^2] \\
0 &= E[(Y - a - bX - cX^2)X] - a - bE[X^2] - cE[X^3] \\
\end{align*}
\]
We solve these three equations in the three unknowns \(a, b, c \).

Summary

Linear Regression

Mean Squared: \(E[Y] \) is best mean squared estimator for \(Y \).

MMSE: \(E[Y|X] \) is best mean squared estimator for \(Y \) given \(X \).

Linear Regression: \(L[Y|X] = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]) \)

Can do other forms of functions as well, e.g., quadratic.

Warning: assumes you know distribution.

Sample Points “are” distribution in this class.

Statistics: Fix the assumption above.