Summary of Last Lecture

- **Markov's inequality** (for non-neg. r.v.'s)
 \[\Pr \{ X \geq c \} \leq \frac{1}{c} E[X] \]

- **Chebyshev's inequality** (for all r.v.'s)
 \[\Pr \{ |X - E[X]| \geq c \} \leq \frac{1}{c^2} \text{Var}(X) \]
 \[\Pr \{ |X - E[X]| \geq c \sigma(X) \} \leq \frac{1}{c^2} \]
Summary of Last Lecture (cont.)

- **Statistical estimation:**

 \[X_1, X_2, \ldots, X_N \] are i.i.d. r.v.'s with expectation \(E[X_i] = \mu \), variance \(\text{Var}(X_i) = \sigma^2 \).

 Estimate of \(\mu \) is: \(\hat{\mu} = \frac{1}{N} (X_1 + \ldots + X_N) \)

 Thm: If we take \(N \geq \frac{\sigma^2}{\mu^2} \cdot \frac{1}{\varepsilon^2} \) samples, then

 \[
 \Pr \left[\left| \hat{\mu} - \mu \right| \geq \varepsilon \mu \right] \leq \delta
 \]

- This is (a quantitative version of) the **Law of Large Numbers**
Continuous Probability

Up to now all our probability spaces were discrete i.e., finite or countably infinite

- Specify $\Pr[\omega]$ for each $\omega \in \Omega$
- $0 \leq \Pr[\omega] \leq 1$
- $\sum_{\omega \in \Omega} \Pr[\omega] = 1$

Note: This implies all random variables are also discrete (i.e., take on at most countably many values, e.g., 0, 1, 2, 3, ...)
What if our prob. space is uncountable?

E.g. “wheel of fortune”

Pointer can end up at any position in \([0, \ell]\), where
\(\ell = \) circumference of wheel
(or, equivalently, at any angle in \([0, 2\pi]\) \(\rightarrow\) uncountably many outcomes

Compare roulette wheel: only 38 outcomes
How do we assign probabilities to outcomes?

- For each \(\omega \in [0,1] \),
 \(\Pr[\omega] = ?? \)
- \(\sum_{\omega \in [0,1]} \Pr[\omega] = 1 \) ??

Solution: Instead assign probabilities to intervals:

for \(0 \leq a < b \leq 1 \),

\[
\Pr[[a,b]] = \frac{\text{length of } [a,b]}{\text{length of } [0,1]} = \frac{b-a}{l}
\]
Solution: Instead assign probabilities to intervals:

for \(0 \leq a < b \leq l\),

\[
\Pr([a, b]) = \frac{\text{length of } [a, b]}{\text{length of } [0, l]} = \frac{b - a}{l}
\]

These intervals are now our atomic/basic events (replacing sample points \(\omega\) before).

Note that \(\Pr([0, l]) = 1\) and \(\Pr(a) = \Pr([a, a]) = 0\).

We can then compute the probability of any event that can be expressed in terms of intervals — e.g. \(\Pr(U I_i) = \sum_i \Pr[I_i]\) for disjoint intervals \(I_i\).

General theory of continuous probability spaces \(\longrightarrow\) measure theory.
Continuous Random Variables

E.g. let \(X = \) position of pointer in wheel of fortune

Range of \(X \) is the continuous interval \([0, l]\)

Again, \(\Pr [X = a] = 0 \quad \forall a \)

But we can define \(\Pr [a \leq X \leq b] = \frac{b-a}{l} \)

To make this more general, we need the idea of probability density
Definition: A probability density function (p.d.f.) for a continuous r.v. X is a function $f : \mathbb{R} \to \mathbb{R}$ satisfying:

- $f(x) \geq 0 \quad \forall x \in \mathbb{R}$

- $\int_{-\infty}^{\infty} f(x) \, dx = 1$

Then the distribution of X is defined by

$$ \Pr [a \leq X \leq b] = \int_{a}^{b} f(x) \, dx \quad \forall a < b $$

Total area under $f(x)$

$$ = \int_{-\infty}^{\infty} f(x) \, dx = 1 $$
Example: Wheel of fortune

Here X is uniform on $[0, l]$, i.e., $\Pr[a \leq X \leq b] = \frac{b-a}{l}$

P.d.f.:

\[
f(x) = \begin{cases}
0 & x < 0 \\
0 & x > l \\
c & 0 \leq x \leq l
\end{cases}
\]

\[
\int_{-\infty}^{\infty} f(x) \, dx = c l = 1 \quad \Rightarrow \quad c = \frac{1}{l}
\]

For $0 \leq a < b \leq l$:

\[
\Pr[a \leq X \leq b] = \int_{a}^{b} f(x) \, dx = c x \bigg|_{a}^{b} = \frac{b-a}{l}
\]
Comparison with discrete distributions

Histogram

\[P(a \leq X \leq b) = \sum_{a \leq i \leq b} P(X = i) \]

p.d.f.

\[P(a \leq X \leq b) = \int_{a}^{b} f(x) \, dx \]

BUT NOTE: \(f(x) \) is NOT a probability \(\forall \)

E.g. can have \(f(x) > 1 \)

Instead, \(f(x) \) is the **probability density** at \(x \)
Probability Density

$Pr \{ x \leq X \leq x + dx \} = \int_x^{x+dx} f(x) \, dx \approx f(x) \, dx$

$f(x) = \text{"probability per unit length" at } x$ (density)
Definition: The cumulative distribution function (c.d.f.) of a continuous r.v. X is defined by

$$F(x) := \Pr \{ X \leq x \} = \int_{-\infty}^{x} f(z) \, dz$$

Note:
- $F(x)$ increases monotonically to 1 as $x \to \infty$
- $f(x) = \frac{dF(x)}{dx}$
- Can use either $f(x)$ or $F(x)$ to define r.v. X
Example: Wheel of fortune

\[f(x) = \begin{cases}
0 & x < 0 \\
\frac{1}{l} & 0 \leq x \leq l \\
0 & x > l
\end{cases} \]

\[F(x) = \begin{cases}
0 & x < 0 \\
\frac{x}{l} & 0 \leq x \leq l \\
1 & x > l
\end{cases} \]
Expectation and Variance

Defn: The **expectation** of a continuous r.v. X with pdf f is

$$E[X] = \int_{-\infty}^{\infty} x f(x) \, dx$$

[Compare: $E[X] = \sum_a a \cdot Pr[X=a]$]

Defn: The **variance** of X is

$$\text{Var}(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

$$= \int_{-\infty}^{\infty} x^2 f(x) \, dx - E[X]^2$$

Generally: For a function $G: \mathbb{R} \to \mathbb{R}$,

$$E[G(X)] = \int_{-\infty}^{\infty} G(x) f(x) \, dx$$
Example: Wheel of fortune

\[
f(x) = \begin{cases} \frac{1}{l} & 0 < x \leq l \\ 0 & x < 0 \text{ or } x > l \end{cases}
\]

\[
E[X] = \int_{-\infty}^{\infty} x f(x) \, dx = \int_{0}^{l} \frac{x}{l} \, dx = \frac{x^2}{2l} \bigg|_{0}^{l} = \frac{l}{2}
\]

\[
\text{Var}(X) = \int_{-\infty}^{\infty} x^2 f(x) \, dx - E[X]^2
\]

\[
= \int_{0}^{l} \frac{x^2}{l} \, dx = \frac{x^3}{3l} \bigg|_{0}^{l} = \frac{l^2}{3}
\]

\[
\Rightarrow \text{Var}(X) = E[X^2] - E[X]^2 = \frac{l^2}{3} - \frac{l^2}{4} = \frac{l^2}{12}
\]
Compare: discrete uniform distribution on \([0, \ell-1]\) (assuming \(\ell\) integer)

i.e., \(\Pr [X=i] = \frac{1}{\ell}\) for \(i = 0, 1, \ldots, \ell-1\)

\[
E[X] = \frac{1}{\ell} \left[0 + 1 + 2 + \cdots + \ell - 1 \right] = \frac{1}{\ell} \cdot \frac{\ell(\ell-1)}{2} = \frac{\ell-1}{2}
\]

\[
\text{Var}(X) = E[X^2] - E[X]^2
\]

\[
E[X^2] = \frac{1}{\ell} \left[0 + 1^2 + 2^2 + \cdots + (\ell-1)^2 \right]
\]

\[
= \frac{1}{\ell} \cdot \frac{(\ell-1)\ell(2\ell-1)}{6} = \frac{(\ell-1)(2\ell-1)}{6}
\]

\[
\Rightarrow \text{Var}(X) = \frac{(\ell-1)(2\ell-1)}{12} - \frac{(\ell-1)^2}{4} = \frac{\ell^2-1}{12}
\]
Markov’s Inequality

Thm: For a continuous r.v. with p.d.f. \(f \) satisfying \(f(x) = 0 \) for \(x < 0 \):

\[
\Pr [X \geq c] \leq \frac{E[X]}{c}
\]

Chebyshev’s Inequality

Thm: For a continuous r.v. \(X \):

\[
\Pr [|X - E[X]| \geq c] \leq \frac{\text{Var}(X)}{c^2}
\]
Joint Distributions

Defn: A joint density function for two r.v.'s X, Y is a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfying:

- $f(x,y) \geq 0 \ \forall x, y \in \mathbb{R}$
- $\iint_{-\infty}^{\infty} \iint_{-\infty}^{\infty} f(x,y) \, dx \, dy = 1$

The joint distribution of X, Y is then

$$P \{a \leq X \leq b, \ c \leq Y \leq d\} = \int_c^d \int_a^b f(x,y) \, dx \, dy$$

Interpretation of $f(x,y)$:
prob. density per unit area at (x,y)
Example: Two-round game

- **Round 1:** You stake ℓ and win amount X uniform in $[0, \ell]$
- **Round 2:** You stake ℓX and win amount Y uniform in $[0, X]$

- $f(x, y) = 0$ outside red triangle
- Density of x is uniform on $[0, \ell]$
- Given x, density of y is uniform on $[0, x]$

$$f(x, y) = \begin{cases} \frac{1}{\ell}x & \text{for } (x, y) \in \Delta \\ 0 & \text{otherwise} \end{cases}$$
• $f(x, y) = 0$ outside red

• Density of x is uniform on $[0, l]$

• Given x, density of y is uniform on $[0, x]$

• $f(x, y) = \begin{cases} \frac{1}{lx} & \text{for } (x, y) \in \triangle \\ 0 & \text{otherwise} \end{cases}$

Check: $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \, dx \, dy = \int_{0}^{l} \left(\int_{0}^{x} \frac{1}{lx} \, dy \right) \, dx$

$= \int_{0}^{l} \left(\frac{y}{lx} \bigg|_{0}^{x} \right) \, dx$

$= \int_{0}^{l} \frac{1}{lx} \, dx = \frac{x}{lx} \bigg|_{0}^{l} = 1$
\[f(x, y) = \begin{cases} \frac{1}{2}x & \text{for } (x, y) \in \Delta \\ 0 & \text{otherwise} \end{cases} \]

\[
E[Y] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) \, dx \, dy = \int_{0}^{l} \int_{0}^{x} \frac{y}{t_{2x}} \, dy \, dx
\]

\[
= \int_{0}^{l} \left. \left(\frac{y^2}{2t_{2x}} \right) \right|_{0}^{x} \, dx
\]

\[
= \int_{0}^{l} \frac{x}{2l} \, dx
\]

\[
= \frac{x^2}{4l} \bigg|_{0}^{l} = \frac{l}{4}
\]
Independence

Defn: Continuous r.v.'s X, Y are **independent** if

$$
Pr[a \leq X \leq b, c \leq Y \leq d] = Pr[a \leq X \leq b] \cdot Pr[c \leq Y \leq d]
$$

\forall a < b, c < d

Thm: If X, Y are independent with pdf's $f(x)$, $g(y)$ respectively, then their joint density $h(x, y)$ is given by

$$
h(x, y) = f(x)g(y) \quad \forall x, y \in \mathbb{R}
$$
Application: Buffon's Needle

- Board with lines dist. \(l \) apart
- Needle length \(l \)
- Throw needle randomly onto board
- Let \(X = \begin{cases} 1 & \text{if needle hits a line} \\ 0 & \text{otherwise} \end{cases} \)

Claim: \(E[X] = \frac{2}{\pi} \)
\[X = \begin{cases} 1 & \text{if needle hits a line} \\ 0 & \text{otherwise} \end{cases} \]

Claim: \(E[X] = \frac{2}{\pi} \)

If Claim is true then we can estimate \(\pi \) as in previous lecture!

Perform experiment \(N \) times \(\rightarrow X_1, \ldots, X_N \) (i.i.d.)

Output \(\hat{\rho} = \frac{1}{N} (X_1 + \ldots + X_N) \)

Then \(E[\hat{\rho}] = \frac{2}{\pi} \Rightarrow \frac{2}{\hat{\rho}} \) estimates \(\pi \)

Number of trials needed for accuracy \((1 \pm \varepsilon)\pi\) with confidence \(1 - \delta \) is (by Chebyshev) \(\leq \frac{\pi}{2} \cdot \frac{1}{\varepsilon^2 \delta} \leq \frac{2}{\varepsilon^2 \delta} \)
Outcome of throw described by 2 random variables:

\[Y := \text{dist. between needle midpoint & closest line} \quad 0 \leq Y \leq \frac{\pi}{2} \]

\[\Theta := \text{angle between needle & vertical} \quad -\frac{\pi}{2} \leq \Theta \leq \frac{\pi}{2} \]
Outcome of throw described by 2 random variables:

\[Y := \text{dist. between needle midpoint & closest line} \quad 0 \leq X \leq \frac{\pi}{2} \]

\[\Theta := \text{angle between needle & vertical} \quad -\frac{\pi}{2} \leq Y \leq \frac{\pi}{2} \]

Joint density \(f(y, \theta) \) uniform over rectangle \([0, \frac{\pi}{2}] \times [-\frac{\pi}{2}, \frac{\pi}{2}]\)

\[\Rightarrow f(y, \theta) = \begin{cases} \frac{2\pi}{\ell} & (y, \theta) \in \square \\ 0 & \text{otherwise} \end{cases} \]

\[\frac{\pi \ell}{2} = \text{area of } \square \]
\[f(y, \theta) = \begin{cases} \frac{2}{\pi} & (y, \theta) \in \square \\ 0 & \text{otherwise} \end{cases} \]

\[X = \begin{cases} 1 & \text{if needle hits a line} \\ 0 & \text{otherwise} \end{cases} \]

Claim: \(E[X] = \frac{2}{\pi} \)

Note that \(E[X] = \Pr[E] \) where \(E \) is event “needle hits line”

Q: When does \(E \) happen?

A: When \(y \leq \frac{t}{2} \cos \theta \)
\[f(y, \theta) = \begin{cases} \frac{2\pi}{\ell} & (y, \theta) \in \square \\ 0 & \text{otherwise} \end{cases} \]

\[X = \begin{cases} 1 & \text{if needle hits a line} \\ 0 & \text{otherwise} \end{cases} \]

Claim: \(E[X] = \frac{2}{\pi} \)

Note that \(E[X] = \Pr[E] \) where \(E \) is event "needle hits line".

Q: When does \(E \) happen?

A: When \(Y \leq \frac{l}{2} \cos \theta \)

So \(\Pr[E] = \Pr[Y \leq \frac{l}{2} \cos \theta] = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{0}^{\frac{l}{2} \cos \theta} f(y, \theta) \, dy \, d\theta \)

\[= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{2y}{\pi^2} \right) \left. \frac{1}{2} \cos \theta \right|_{0}^{\frac{l}{2} \cos \theta} \, d\theta = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos \theta \, d\theta = \frac{1}{\pi} \left[\sin \theta \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{2}{\pi} \]