Estimation (from Evidence)

Estimating E[Y] minimizes Mean Squared Error: $E[(Y-a)^2]$ $E[(Y-a)^2] = E[Y^2] - 2aE[Y] + a^2$. Derivative: -2E[Y] + 2a = 0 Minimum at a = E[Y]. Joint Distribution: X, Y Function: P[X = x, Y = y]. View as Table. Row indexed by x, and column indexed by y. $\sum_x \sum_y Pr[X = x, Y = y]$? 1. Conditional expectation: $E[Y|X = x] = \sum_y y \times Pr[Y|X = x]$. Minimize MSE given X = x: Guess E[Y|X = x] when X = x. E[Y|X] denotes a function f(x) = E[Y|X = x]

Poll

If Y=-X, what is Correlation Coefficient? 1

If Y=X/2, what is Correlation Coefficient? 1.

If Y=X+B(n,p), and X=B(n,p), what is Correlation Coefficient? 1/2. Half the variance of Y is explained by X.

Correlation coefficient of 1, what is $E[(Y - L[Y|X])^2]$?

If Y = X, what is Correlation Coefficient? 1

Estimation: linear regression.

Given joint distribution for X, Y.

Predict Y using linear function f(x) = Ax + b.

Assume E[X] = E[Y] = 0. Find best f(x) = Ax.

Minimize
$$E_X[E_Y[(Y - f(x))^2 | X = x]] = E_{X,Y}[(Y - f(X))^2]$$

Also: $\sum_Y Pr[X = x] \times \sum_V (y - f(x))^2 Pr[Y = y | X = x]$.

$$E[Y^2] - 2E[f(X)Y] + E[f(X)^2] = E[Y^2] - 2AE[XY] + A^2E[X^2]$$

Derivative: $-2E[XY] + AE[X^2]$. $A = \frac{E[X,Y]}{F[X^2]}$

Minimizer: $f(x) = \frac{E[XY]}{E[X^2]}x = \frac{Cov(X,Y)}{Var(X)}x$. (for E[X] = E[Y] = 0.

Thus: $LLSE[Y|X] = E[Y] + \frac{Cov(X,Y)}{Var(X)}(X - E(X)).$

Estimation Error: A Picture

We saw that

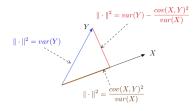
$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X])$$

and

$$E[|Y - L[Y|X]|^2] = var(Y) - \frac{cov(X, Y)^2}{var(X)}.$$

Here is a picture when E[X] = 0, E[Y] = 0:

Dimensions correspond to sample points, uniform sample space.



Vector Y at dimension ω is $\frac{1}{\sqrt{\Omega}}Y(\omega)$

Estimation Error

We saw that the LLSE of Y given X is

$$L[Y|X] = \hat{Y} = E[Y] + \frac{cov(X,Y)}{var(X)}(X - E[X]).$$

How good is estimator? What mean squared estimation error?

$$\begin{split} E[|Y - L[Y|X]|^2] &= E[(Y - E[Y] - (cov(X, Y)/var(X))(X - E[X]))^2] \\ &= E[(Y - E[Y])^2] - 2\frac{cov(X, Y)}{var(X)} E[(Y - E[Y])(X - E[X])) \\ &+ (\frac{cov(X, Y)}{var(X)})^2 E[(X - E[X])^2] \\ &= var(Y) - \frac{cov(X, Y)^2}{var(X)} \\ &= var(Y)(1 - \frac{cov(X, Y)^2}{var(X)var(Y)} \end{split}$$

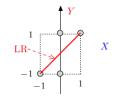
Without observations, the estimate is E[Y]. The error is var(Y).

Observing X reduces variance by fraction of $corr(X,Y) = \frac{cov(X,Y)^2}{var(X)var(Y)}$.

By a factor 1 - corr(X, Y). Correlation Coefficient is fraction of explained variance.

Linear Regression Examples

Example:



We find:

$$\begin{split} E[X] &= 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2; \\ var[X] &= E[X^2] - E[X]^2 = 1/2; cov(X,Y) = E[XY] - E[X]E[Y] = 1/2; \\ \text{LR: } \hat{Y} &= E[Y] + \frac{cov(X,Y)}{var[X]} (X - E[X]) = X. \end{split}$$

Linear Regression Examples

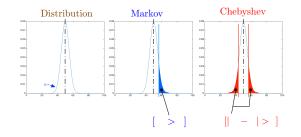
Example:



We find:

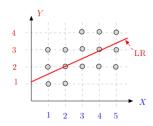
$$\begin{split} E[X] &= 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2; \\ var[X] &= E[X^2] - E[X]^2 = 1/2; cov(X,Y) = E[XY] - E[X]E[Y] = -1/2; \\ LR: \hat{Y} &= E[Y] + \frac{cov(X,Y)}{var[X]}(X - E[X]) = -X. \end{split}$$

Inequalities: An Overview



Linear Regression Examples

Example:



We find:

$$\begin{split} E[X] &= 3; E[Y] = 2.5; E[X^2] = (3/15)(1+2^2+3^2+4^2+5^2) = 11; \\ E[XY] &= (1/15)(1\times1+1\times2+\dots+5\times4) = 8.4; \\ var[X] &= 11-9 = 2; cov(X,Y) = 8.4-3\times2.5 = 0.9; \\ LR: \ \hat{Y} &= 2.5 + \frac{0.9}{2}(X-3) = 1.15 + 0.45X. \end{split}$$

Andrey Markov

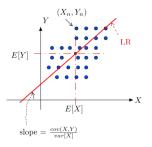
Ryazan, Russian Empire 20 July 1922 (aged 66) Petrograd, Russian SFSR

Markov was an atheist. In 1912 he protested Leo Tolstoy's excommunication from the Russian Orthodox Church by requesting his own excommunication. The Church complied with his request.

Andrey Markov is best known for his work on stochastic processes. A primary subject of his research later became known as Markov chains and Markov processes.

Pafnuty Chebyshev was one of his teachers.

LR: Another Figure



Note that

- ▶ the LR line goes through (E[X], E[Y])
- ▶ its slope is $\frac{cov(X,Y)}{var(X)}$.

Lake Woebegone: Poll

What is true?

- (A) Everyone is above average (on midterm) False. Average would be higher.
- (B) For a random variable, at most half the people can be more than twice the average.
- False. Consider Pr[X = -2] = 1/3 and Pr[X = 1] = 2/3. E[X] = 0.
- (C) For the midterm with no negative scores, at most half the people can be more than twice the average.

True. Otherwise average would be higher.

Markov's inequality

The inequality is named for Andrey Markov, though in work by Pafnuty Chebyshev. (Sometimes) called Chebyshev's first inequality.

Theorem Markov's Inequality

Assume $f: \Re \to [0, \infty)$ is nondecreasing. Then,

$$Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$$
, for all a such that $f(a) > 0$.

Proof: First we claim:

$$1\{X\geq a\}\leq \frac{f(X)}{f(a)}.$$

If X < a, the inequality reads $0 \le f(x)/f(a)$, since $f(\cdot) \ge 0$. If $X \ge a$, it reads $1 \le f(x)/f(a)$, since $f(\cdot)$ is nondecreasing.

Taking the expectation yields the inequality, expectation of an indicator is the probability. and expectation is monotone, e.g., weighted sum of points.

That is,
$$\sum_{v} Pr[X = v] \mathbf{1}\{v \ge a\} \le \sum_{v} Pr[X = v] \frac{f(v)}{f(a)}$$
.

Intuition: $E[f(X)] \ge f(a)Pr[X > a] = f(a)Pr[X > f(a)].$

Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$ and $E[X^2] = \lambda + \lambda^2$.

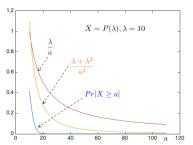
Markov: $Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$.

Choosing f(x) = x, we get

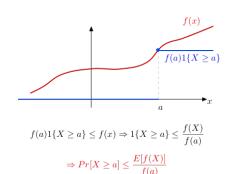
 $Pr[X \ge a] \le \frac{E[X]}{a} = \frac{\lambda}{a}.$

Choosing $f(x) = x^2$, we get

 $Pr[X \ge a] \le \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$



A picture



Chebyshev's Inequality

This is Pafnuty's inequality:

Theorem:

$$Pr[|X - E[X]| > a] \le \frac{var[X]}{a^2}$$
, for all $a > 0$.

Proof: Let Y = |X - E[X]| and $f(y) = y^2$. Then,

$$Pr[Y \ge a] \le \frac{E[f(Y)]}{f(a)} = \frac{var[X]}{a^2}.$$

This result confirms that the variance measures the "deviations from the mean."

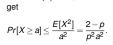
Markov Inequality Example: G(p)

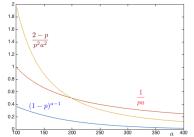
Let X = G(p). Recall that $E[X] = \frac{1}{p}$ and $E[X^2] = \frac{2-p}{p^2}$.

Markov: $Pr[X \ge a] \le \frac{E[f(X)]}{f(a)}$.

 $Pr[X \ge a] \le \frac{E[X]}{a} = \frac{1}{ap}.$

Choose $f(x) = x^2$, we get

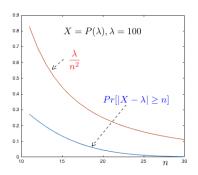




Chebyshev and Poisson

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $var[X] = \lambda$. Thus,

$$Pr[|X-\lambda| \ge n] \le \frac{var[X]}{n^2} = \frac{\lambda}{n^2}.$$



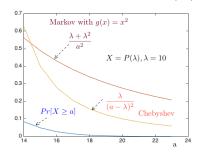
Chebyshev and Poisson (continued)

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $var[X] = \lambda$. By Markov's inequality,

$$Pr[X \ge a] \le \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$

Also, if $a > \lambda$, then $X \ge a \Rightarrow X - \lambda \ge a - \lambda > 0 \Rightarrow |X - \lambda| \ge a - \lambda$.

Hence, for $a > \lambda$, $Pr[X \ge a] \le Pr[|X - \lambda| \ge a - \lambda] \le \frac{\lambda}{(a - \lambda)^2}$.



Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let $X_1, X_2, ...$ be pairwise independent with the same distribution and mean μ . Then, for all $\varepsilon > 0$,

$$Pr[|\frac{X_1+\cdots+X_n}{n}-\mu|\geq \varepsilon]\to 0$$
, as $n\to\infty$.

Proof: Let
$$Y_n = \frac{X_1 + \dots + X_n}{n}$$
. Then

$$Pr[|Y_n - \mu| \ge \varepsilon] \le \frac{var[Y_n]}{\varepsilon^2} = \frac{var[X_1 + \dots + X_n]}{n^2 \varepsilon^2}$$
$$= \frac{nvar[X_1]}{n^2 \varepsilon^2} = \frac{var[X_1]}{n \varepsilon^2} \to 0, \text{ as } n \to \infty.$$

Fraction of H's

Here is a classical application of Chebyshev's inequality.

How likely is it that the fraction of H's differs from 50%?

Let $X_m = 1$ if the *m*-th flip of a fair coin is *H* and $X_m = 0$ otherwise.

Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}$$
, for $n \ge 1$.

We want to estimate

$$Pr[|Y_n - 0.5| \ge 0.1] = Pr[Y_n \le 0.4 \text{ or } Y_n \ge 0.6].$$

By Chebyshev,

$$Pr[|Y_n - 0.5| \ge 0.1] \le \frac{var[Y_n]}{(0.1)^2} = 100 var[Y_n].$$

$$var[Y_n] = \frac{1}{n^2}(var[X_1] + \dots + var[X_n]) = \frac{1}{n}var[X_1] \le \frac{1}{4n}.$$

$$Var(X_i) = p(1-p) \le (.5)(.5) = \frac{1}{4}$$

Summary

Variance; Inequalities; WLLN

- ► Variance: $var[X] := E[(X E[X])^2] = E[X^2] E[X]^2$
- Fact: $var[aX + b] = a^2 var[X]$
- ▶ Sum: X, Y, Z pairwise ind. $\Rightarrow var[X + Y + Z] = \cdots$
- ▶ Markov: $Pr[X \ge a] \le E[f(X)]/f(a)$ where ...
- ▶ Chebyshev: $Pr[|X E[X]| \ge a] \le var[X]/a^2$
- ▶ WLLN: X_m i.i.d. $\Rightarrow \frac{X_1 + \cdots + X_n}{n} \approx E[X]$

Fraction of H's

$$Y_n = \frac{X_1 + \dots + X_n}{n}$$
, for $n \ge 1$.

$$Pr[|Y_n - 0.5| \ge 0.1] \le \frac{25}{n}$$
.

For n = 1,000, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.

In fact, for any $\varepsilon > 0$, as $n \to \infty$, the probability that the fraction of Hs is within $\varepsilon > 0$ of 50% approaches 1:

$$Pr[|Y_n - 0.5| \le \varepsilon] \to 1.$$

This is an example of the Law of Large Numbers.

We look at a general case next.

Confidence?

- ▶ You flip a coin once and get *H*.
 - Do think that Pr[H] = 1?
- You flip a coin 10 times and get 5 Hs.
 - Are you sure that Pr[H] = 0.5?
- You flip a coin 10⁶ times and get 35% of Hs.

How much are you willing to bet that Pr[H] is exactly 0.35?

How much are you willing to bet that $Pr[H] \in [0.3, 0.4]$?

Did different exam rooms perform differently?

More generally, you estimate an unknown quantity θ .

Your estimate is $\hat{\theta}$.

How much confidence do you have in your estimate?

Confidence?

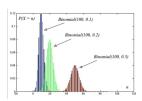
Confidence is essential is many applications:

- ► How effective is a medication?
- ► Are we sure of the mileage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers and voters, be convinced of this fact:

An estimate without confidence level is useless!

Coin Flips: Intuition



Say that you flip a coin n = 100 times and observe 20 Hs.

If p := Pr[H] = 0.5, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n , differs a lot from p := Pr[H].

Thus, it is unlikely that p differs a lot from A_n . Hence, one should be able to build a confidence interval $[A_n - \varepsilon, A_n + \varepsilon]$ for p.

The key idea is that $|A_n - p| \le \varepsilon \Leftrightarrow p \in [A_n - \varepsilon, A_n + \varepsilon]$.

Thus,
$$Pr[|A_n - p| > \varepsilon] \le 5\% \Leftrightarrow Pr[p \in [A_n - \varepsilon, A_n + \varepsilon]] \ge 95\%$$
.

It remains to find ε such that $Pr[|A_n - p| > \varepsilon] \le 5\%$.

One approach: Chebyshev.

Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval [a,b] is a 95%-confidence interval for an unknown quantity θ if

$$Pr[\theta \in [a,b]] \ge 95\%.$$

The interval [a, b] is calculated on the basis of observations.

Here is a typical framework. Assume that X_1, X_2, \ldots, X_n are i.i.d. and have a distribution that depends on some parameter θ .

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ , the random variables X_n are i.i.d. with a known distribution (that depends on θ).

- ightharpoonup We observe X_1, \dots, X_n
- We calculate $a = a(X_1, ..., X_n)$ and $b = b(X_1, ..., X_n)$
- ▶ If we can guarantee that $Pr[\theta \in [a,b]] \ge 95\%$, then [a,b] is a 95%-CI for θ .

Confidence Interval with Chebyshev

- ▶ Flip a coin n times. Let A_n be the fraction of Hs.
- ▶ Can we find ε such that $Pr[|A_n p| > \varepsilon] \le 5\%$?

Using Chebyshev, we will see that $\varepsilon = 2.25 \frac{1}{\sqrt{\rho}}$ works. Thus

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for p .

Example: If n = 1500, then $Pr[p \in [A_n - 0.05, A_n + 0.05]] \ge 95\%$.

In fact, $a = \frac{1}{\sqrt{n}}$ works, so that with n = 1,500 one has

 $Pr[p \in [A_n - 0.02, A_n + 0.02]] \ge 95\%.$

Confidence Interval: Applications

- ▶ We poll 1000 people.
 - ▶ Among those, 48% declare they will vote for Candidate A.
 - We do some calculations
 - ► We conclude that [0.43,0.53] is a 95%-CI for the fraction of all the voters who will vote for Candidate A.
- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients had to be redone.
 - We do some calculations ...
 - We conclude that [1%,5%] is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.
 - ▶ We find that [8%, 12%] is a 95%-CI for Dr. Fred's surgery.
 - What surgeon do you choose?

Confidence Intervals: Result

Theorem:

Let X_n be i.i.d. with mean μ and variance σ^2 .

Define $A_n = \frac{X_1 + \dots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \ge 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ .

Example: Let $X_n = 1\{ \text{ coin } n \text{ yields } H \}$. Then

$$\mu = E[X_n] = p := Pr[H]$$
. Also, $\sigma^2 = var(X_n) = p(1-p) \le \frac{1}{4}$.

Hence, $[A_n - 4.5 \frac{1/2}{\sqrt{n}}, A_n + 4.5 \frac{1/2}{\sqrt{n}}]]$ is a 95%-CI for p.

Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-CI for μ .

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{var(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2} var(A_n).$$

Now,

$$var(A_n) = var(\frac{X_1 + \dots + X_n}{n}) = \frac{1}{n^2} var(X_1 + \dots + X_n)$$

= $\frac{1}{n^2} \times n.var(X_1) = \frac{1}{n} \sigma^2$.

Hence.

$$Pr[|A_n - \mu| \ge 4.5\sigma/\sqrt{n}] \le \frac{n}{20\sigma^2} \times \frac{1}{n}\sigma^2 = 5\%.$$

Thus,

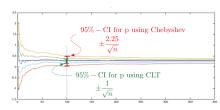
$$Pr[|A_n - \mu| \le 4.5\sigma/\sqrt{n}] \ge 95\%.$$

Hence.

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Confidence interval for p in B(p)

Improved CI: In fact, one can replace 2.25 by 1.



Quite a bit of work to get there: continuous random variables; Gaussian: Central Limit Theorem.

Confidence interval for p in B(p)

Let X_n be i.i.d. B(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$
 is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here, $\mu=p$ and $\sigma^2=p(1-p)$. Thus, $\sigma^2\leq \frac{1}{4}$ and $\sigma\leq \frac{1}{2}$.

$$Pr[\mu \in [A_n - 4.5 \times 0.5 / \sqrt{n}, A_n + 4.5 \times 0.5 / \sqrt{n}]] \ge 95\%.$$

Confidence Interval for 1/p in G(p)

Let X_n be i.i.d. G(p). Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}}]$$
 is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \ge 95\%.$$

Here,
$$\mu = \frac{1}{n}$$
 and $\sigma = \frac{\sqrt{1-p}}{n} \le \frac{1}{n}$. Hence,

$$Pr[\frac{1}{\rho} \in [A_n - 4.5 \frac{1}{\rho \sqrt{n}}, A_n + 4.5 \frac{1}{\rho \sqrt{n}}]] \ge 95\%.$$

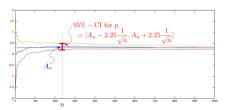
Now, $A_n - 4.5 \frac{1}{p\sqrt{p}} \le \frac{1}{p} \le \frac{1}{p} \le A_n + 4.5 \frac{1}{p\sqrt{p}}$ is equivalent to

$$\frac{A_n}{1+4.5/\sqrt{n}} \le \frac{1}{p} \le \frac{A_n}{1-4.5/\sqrt{n}}$$

Examples: $[0.7A_{100}, 1.8A_{100}]$ and $[0.96A_{10000}, 1.05A_{10000}]$.

Confidence interval for p in B(p)

An illustration:



Good practice: You run your simulation, or experiment. You get an estimate. You indicate your confidence interval.

Which Coin is Better?

Given coins A and B. Which has higher Pr[H]? Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- ► Flip each coin *n* times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume A_n > B_n. It is tempting to think that p_A > p_B. Confidence?

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B$$
 and $var(A_n - B_n) = \frac{1}{n}(p_A(1 - p_A) + p_B(1 - p_B)) \le \frac{1}{2n}$

Thus,
$$Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \le \frac{1}{2n\varepsilon^2}$$
,

$$Pr[p_A - p_B \in [A_n - B_n - \varepsilon, A_n - B_n + \varepsilon]] \ge 1 - \frac{1}{2n\varepsilon^2},$$

or

"p-value" of " $p_A \ge p_B$ " $\le \frac{1}{2n(A_n - B_n)^2}$.

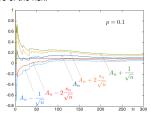
Unknown σ

For B(p), we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^n (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.



Summary

Confidence Intervals

- 1. Estimates without confidence level are useless!
- 2. [a,b] is a 95%-CI for θ if $Pr[\theta \in [a,b]] \ge 95\%$.
- 3. Using Chebyshev: [$A_n 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}$] is a 95%-Cl for μ .
- 4. Using CLT, we will replace 4.5 by 2.
- 5. When σ is not known, one can replace it by an upper bound.
- 6. Examples: B(p), G(p), which coin is better?
- 7. In some cases, one can replace σ by the empirical standard deviation.