CS70: Markov Chains.
CS70: Markov Chains.

1. Examples
2. Definition
3. Hitting Time.
4. Here before there.
5. Stationary Distribution
6. Peridoicity.
Two-State Markov Chain

Here is a symmetric two-state Markov chain.
Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in \{0, 1\}.
Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in \(\{0, 1\} \). Here, \(a \) is the probability that the state changes in the next step.
Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in \(\{0, 1\} \). Here, \(a \) is the probability that the state changes in the next step.

Let’s simulate the Markov chain:
Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in \(\{0, 1\} \). Here, \(a \) is the probability that the state changes in the next step.

Let's simulate the Markov chain:
Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.
Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

Let’s simulate the Markov chain:
Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

Let's simulate the Markov chain:
Finite Markov Chain: Definition

- A finite set of states: \(X = \{1, 2, \ldots, K\} \)
- A probability distribution \(\pi_0 \) on \(X \):
 \[\pi_0(i) \geq 0, \quad \sum_{i} \pi_0(i) = 1 \]
- Transition probabilities: \(P(i, j) \) for \(i, j \in X \):
 \[P(i, j) \geq 0, \quad \forall i, j \in X; \quad \sum_{j} P(i, j) = 1, \quad \forall i \in X \]

- \(\{X_n, n \geq 0\} \) is defined so that
 \[\Pr[X_0 = i] = \pi_0(i), \quad i \in X \] (initial distribution)
 \[\Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i, j), \quad i, j \in X. \]
Finite Markov Chain: Definition

A finite set of states: $X = \{1, 2, \ldots, K\}$

A probability distribution π_0 on X:
$$\pi_0(i) \geq 0, \quad \sum_i \pi_0(i) = 1$$

Transition probabilities: $P(i, j)$ for $i, j \in X$:
$$P(i, j) \geq 0, \quad \forall i, j; \quad \sum_j P(i, j) = 1, \quad \forall i$$

$\{X_n, n \geq 0\}$ is defined so that
$$\Pr[X_0 = i] = \pi_0(i), \quad i \in X$$

$$\Pr[X_{n+1} = j | X_0 = i, \ldots, X_n] = P(i, j)$$
Finite Markov Chain: Definition

- A finite set of states: \(\mathcal{X} = \{1, 2, \ldots, K\} \)
Finite Markov Chain: Definition

- A finite set of states: \(\mathcal{X} = \{1, 2, \ldots, K\} \)
- A probability distribution \(\pi_0 \) on \(\mathcal{X} \):
Finite Markov Chain: Definition

- A finite set of states: \(\mathcal{X} = \{1, 2, \ldots, K\} \)
- A probability distribution \(\pi_0 \) on \(\mathcal{X} \): \(\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1 \)
Finite Markov Chain: Definition

- A finite set of states: $\mathcal{X} = \{1, 2, \ldots, K\}$
- A probability distribution π_0 on \mathcal{X}: $\pi_0(i) \geq 0$, $\sum_i \pi_0(i) = 1$
- Transition probabilities: $P(i,j)$ for $i, j \in \mathcal{X}$
Finite Markov Chain: Definition

- A finite set of states: $\mathcal{X} = \{1, 2, \ldots, K\}$
- A probability distribution π_0 on \mathcal{X}: $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- Transition probabilities: $P(i, j)$ for $i, j \in \mathcal{X}$

$$P(i, j) \geq 0, \forall i, j;$$
Finite Markov Chain: Definition

- A finite set of states: $\mathcal{X} = \{1, 2, \ldots, K\}$
- A probability distribution π_0 on \mathcal{X}: $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- Transition probabilities: $P(i, j)$ for $i, j \in \mathcal{X}$

\[P(i, j) \geq 0, \forall i, j; \sum_j P(i, j) = 1, \forall i \]
A finite set of states: \(\mathcal{X} = \{1, 2, \ldots, K\} \)

A probability distribution \(\pi_0 \) on \(\mathcal{X} : \pi_0(i) \geq 0, \sum_i \pi_0(i) = 1 \)

Transition probabilities: \(P(i, j) \) for \(i, j \in \mathcal{X} \)

\[
P(i, j) \geq 0, \forall i, j; \sum_j P(i, j) = 1, \forall i
\]

\(\{X_n, n \geq 0\} \) is defined so that
Finite Markov Chain: Definition

- A finite set of states: $\mathcal{X} = \{1, 2, \ldots, K\}$
- A probability distribution π_0 on \mathcal{X}: $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- Transition probabilities: $P(i, j)$ for $i, j \in \mathcal{X}$

 $P(i, j) \geq 0, \forall i, j; \sum_j P(i, j) = 1, \forall i$

$\{X_n, n \geq 0\}$ is defined so that

$\Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$
Finite Markov Chain: Definition

- A finite set of states: \(\mathcal{X} = \{1, 2, \ldots, K\} \)
- A probability distribution \(\pi_0 \) on \(\mathcal{X} : \pi_0(i) \geq 0, \sum_i \pi_0(i) = 1 \)
- Transition probabilities: \(P(i, j) \) for \(i, j \in \mathcal{X} \)
 \[P(i, j) \geq 0, \forall i, j; \sum_j P(i, j) = 1, \forall i \]
- \(\{X_n, n \geq 0\} \) is defined so that
 \[Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X} \] (initial distribution)
A finite set of states: $\mathcal{X} = \{1, 2, \ldots, K\}$

A probability distribution π_0 on \mathcal{X}: $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$

Transition probabilities: $P(i, j)$ for $i, j \in \mathcal{X}$

$P(i, j) \geq 0, \forall i, j; \sum_j P(i, j) = 1, \forall i$

$\{X_n, n \geq 0\}$ is defined so that

$\Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$ (initial distribution)

$\Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i, j), i, j \in \mathcal{X}$.
Hitting Time - Example 1

Let's flip a coin with \(P[H] = p \) until we get \(H \). How many flips, on average?

Let's define a Markov chain:

- \(X_0 = S \) (start)
- \(X_n = S \) for \(n \geq 1 \), if last flip was \(T \) and no \(H \) yet
- \(X_n = E \) for \(n \geq 1 \), if we already got \(H \) (end)
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H.
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips,
Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?
Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let's define a Markov chain:

- $X_0 = S$
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?
Let’s define a Markov chain:

- $X_0 = S$ (start)
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let’s define a Markov chain:

- $X_0 = S$ (start)
- $X_n = S$ for $n \geq 1$, if last flip was T and no H yet
Hitting Time - Example 1

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

Let’s define a Markov chain:

- \(X_0 = S \) (start)
- \(X_n = S \) for \(n \geq 1 \), if last flip was \(T \) and no \(H \) yet
- \(X_n = E \) for \(n \geq 1 \), if we already got \(H \)
Hitting Time - Example 1

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let's define a Markov chain:

- $X_0 = S$ (start)
- $X_n = S$ for $n \geq 1$, if last flip was T and no H yet
- $X_n = E$ for $n \geq 1$, if we already got H (end)
Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

Let’s define a Markov chain:

- \(X_0 = S \) (start)
- \(X_n = S \) for \(n \geq 1 \), if last flip was \(T \) and no \(H \) yet
- \(X_n = E \) for \(n \geq 1 \), if we already got \(H \) (end)
Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let’s define a Markov chain:

- $X_0 = S$ (start)
- $X_n = S$ for $n \geq 1$, if last flip was T and no H yet
- $X_n = E$ for $n \geq 1$, if we already got H (end)
First Passage Time - Example 1. Poll

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

What is correct?

(A) $\beta(S)$ is at least 1.

(B) From S, in one step, go to S with prob. $q = 1 - p$.

(C) From S, in one step, go to E with prob. p.

(D) If you go back to S, you are back at S.

(D) $\beta(S) = 1 + q \beta(S) + p 0$.

All are correct. (D) is the “Markov property.” Only know where you are.
First Passage Time - Example 1. Poll

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

Let $\beta(S)$ be the average time until E, starting from S.

\[q = 1 - p \]

\[p \]

\[X_0 \]

\[E \]
First Passage Time - Example 1. Poll

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

What is correct?
First Passage Time - Example 1. Poll

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

What is correct?

(A) $\beta(S)$ is at least 1.
(B) From S, in one step, go to S with prob. $q = 1 - p$
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) $\beta(S) = 1 + q\beta(S) + p0$.
Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

What is correct?

(A) $\beta(S)$ is at least 1.
(B) From S, in one step, go to S with prob. $q = 1 - p$
(C) From S, in one step, go to E with prob. p.
(D) If you go back to S, you are back at S.
(D) $\beta(S) = 1 + q\beta(S) + p0$.

All are correct. (D) is the “Markov property.” Only know where you are.
First Passage Time - Example 1. Poll

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

Let \(\beta(S) \) be the average time until \(E \), starting from \(S \).

What is correct?

(A) \(\beta(S) \) is at least 1.
(B) From \(S \), in one step, go to \(S \) with prob. \(q = 1 - p \)
(C) From \(S \), in one step, go to \(E \) with prob. \(p \).
(D) If you go back to \(S \), you are back at \(S \).
(D) \(\beta(S) = 1 + q\beta(S) + p0. \)

All are correct. (D) is the “Markov property.” Only know where you are.
Hitting Time - Example 1

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q \beta(S) + p \beta_0.$$

(See next slide.)

Hence,

$$\beta(S) = 1 + (1 - p) \beta(S) \Rightarrow \beta(S) = 1,$$

so that $\beta(S) = 1/p$.

Note: Time until E is $G(p)$. The mean of $G(p)$ is $1/p$!!!
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.
Hitting Time - Example 1

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

\[\beta(S) = 1 + q\beta(S) + p0. \]
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

$$q = 1 - p$$

Let $\beta(S)$ be the average time until E, starting from S.

Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.)
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$\beta(S) = 1 + (1 - p)\beta(S) \implies \beta(S) = 1,$$
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$\beta(S) = 1 + (1 - p)\beta(S) \implies \beta(S) = 1, \text{ so that } \beta(S) = 1/p.$$
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$\beta(S) = 1 + (1 - p)\beta(S) \implies \beta(S) = 1, \text{ so that } \beta(S) = 1/p.$$

Note: Time until E is $G(p)$.
Hitting Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S.

Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$\beta(S) = 1 + (1 - p)\beta(S) \implies \beta(S) = 1,$$ so that $\beta(S) = 1/p$.

Note: Time until E is $G(p)$.
The mean of $G(p)$ is $1/p$!!!
First Passage Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$
First Passage Time - Example 1

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E.

Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification:
First Passage Time - Example 1

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

Let \(\beta(S) \) be the average time until \(E \). Then,

\[
\beta(S) = 1 + q \beta(S) + p 0.
\]

Justification: \(N \) – number of steps until \(E \), starting from \(S \).
First Passage Time - Example 1

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

Let \(\beta(S) \) be the average time until \(E \). Then,

\[
\beta(S) = 1 + q\beta(S) + p0.
\]

Justification: \(N \) – number of steps until \(E \), starting from \(S \). \(N' \) – number of steps until \(E \), after the second visit to \(S \).
First Passage Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E.
Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{\text{first flip } = H\}$.
First Passage Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{\text{first flip } = H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$
First Passage Time - Example 1

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

![Diagram of a coin flip with states S and E, and transition probabilities q = 1 - p and p.]

Let \(\beta(S) \) be the average time until \(E \).

Then,

\[
\beta(S) = 1 + q\beta(S) + p0.
\]

Justification: \(N \) – number of steps until \(E \), starting from \(S \). \(N' \) – number of steps until \(E \), after the second visit to \(S \). And \(Z = 1\{\text{first flip } = H\} \). Then,

\[
N = 1 + (1 - Z) \times N' + Z \times 0.
\]

\(Z \) and \(N' \) are “independent.”
First Passage Time - Example 1
Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

\[q = 1 - p \]

\[p \]

Let $\beta(S)$ be the average time until E.
Then,

\[\beta(S) = 1 + q\beta(S) + p0. \]

Justification: N – number of steps until E, starting from S.
N' – number of steps until E, after the second visit to S.
And $Z = 1\{\text{first flip } = H\}$. Then,

\[N = 1 + (1 - Z) \times N' + Z \times 0. \]

Z and N' are “independent.” $E[N'] = E[N] = \beta(S)$.
First Passage Time - Example 1

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification:

N – number of steps until E, starting from S.
N' – number of steps until E, after the second visit to S.
And $Z = 1\{\text{first flip } = H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Z and N' are “independent.” $E[N'] = E[N] = \beta(S)$.
Hence, taking expectation,
First Passage Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E.
Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S. N' – number of steps until E, after the second visit to S. And $Z = 1\{\text{first flip } = H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Z and N' are “independent.” $E[N'] = E[N] = \beta(S)$. Hence, taking expectation,

$$\beta(S) = E[N] = 1 + (1 - p)E[N'] + p0.$$
First Passage Time - Example 1

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \). How many flips, on average?

Let \(\beta(S) \) be the average time until \(E \).
Then,

\[
\beta(S) = 1 + q\beta(S) + p0.
\]

Justification: \(N \) – number of steps until \(E \), starting from \(S \).
\(N' \) – number of steps until \(E \), after the second visit to \(S \).
And \(Z = 1\{\text{first flip } = H\} \). Then,

\[
N = 1 + (1 - Z) \times N' + Z \times 0.
\]

\(Z \) and \(N' \) are “independent.” \(E[N'] = E[N] = \beta(S) \).
Hence, taking expectation,

\[
\beta(S) = E[N] = 1 + (1 - p)E[N'] + p0 = 1 + q\beta(S) + p0.
\]
Let's flip a coin with $P[H] = p$ until we get two consecutive Hs.

How many flips, on average?

Let's define a Markov chain:

- $X_0 = S$ (start)
- $X_n = E$, if we already got two consecutive Hs (end)
- $X_n = T$, if last flip was T and we are not done
- $X_n = H$, if last flip was H and we are not done
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs.
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips,
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

H
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$H T$
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$H \ T \ H$
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

\[H \ T \ H \ T \]
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$$H \ T \ H \ T \ T \ T \ H$$
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$HTHTTTHTH$
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

\[
H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H
\]
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$$H T H T T T H T H T H T T H$$
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$$H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ T$$
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$$H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ T \ H$$
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$H T H T T T H T T T H T H H$
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ T \ H \ H$

Let’s define a Markov chain:

- $X_0 = S$
Hitting Time - Example 2

Let’s flip a coin with \(Pr[H] = p \) until we get two consecutive \(H \)s. How many flips, on average?

\[
\begin{align*}
H & T \\
T & H \\
T & T \\
T & H \\
H & T \\
T & H \\
H & H \\
\end{align*}
\]

Let’s define a Markov chain:

- \(X_0 = S \) (start)
- \(X_n = E \), if we already got two consecutive \(H \)s
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ H \ H$

Let’s define a Markov chain:

- $X_0 = S$ (start)
- $X_n = E$, if we already got two consecutive Hs (end)
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

$$H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ T \ H \ H$$

Let’s define a Markov chain:

- $X_0 = S$ (start)
- $X_n = E$, if we already got two consecutive Hs (end)
- $X_n = T$, if last flip was T and we are not done
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?

Let’s define a Markov chain:

- $X_0 = S$ (start)
- $X_n = E$, if we already got two consecutive Hs (end)
- $X_n = T$, if last flip was T and we are not done
- $X_n = H$, if last flip was H and we are not done
Hitting Time - Example 2

Let’s flip a coin with \(Pr[H] = p \) until we get two consecutive \(H \)s. How many flips, on average?

\[
H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ T \ H \ H
\]

Let’s define a Markov chain:

- \(X_0 = S \) (start)
- \(X_n = E \), if we already got two consecutive \(H \)s (end)
- \(X_n = T \), if last flip was \(T \) and we are not done
- \(X_n = H \), if last flip was \(H \) and we are not done
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?
Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

![Diagram]

Which one is correct?
(A) $\beta(S) = 1 + p\beta(H) + q\beta(T)$
(B) $\beta(S) = p\beta(H) + q\beta(T)$
(C) $\beta(S) = \beta(S) + q\beta(T) + p\beta(H)$.
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Which one is correct?
(A) $\beta(S) = 1 + p\beta(H) + q\beta(T)$
(B) $\beta(S) = p\beta(H) + q\beta(T)$
(C) $\beta(S) = \beta(S) + q\beta(T) + p\beta(H)$.

(A) Expected time from S to E.
\[\beta(S) = Pr[H]E[\beta(S)|H] + Pr[T]E[\beta(S)|T] \]
Let's flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Which one is correct?
(A) $\beta(S) = 1 + p\beta(H) + q\beta(T)$
(B) $\beta(S) = p\beta(H) + q\beta(T)$
(C) $\beta(S) = \beta(S) + q\beta(T) + p\beta(H)$.

(A) Expected time from S to E.
$\beta(S) = Pr[H]E[\beta(S)|H] + Pr[T]E[\beta(S)|T]$
$\beta(S) = p(1 + \beta(H)) + q(1 + \beta(T))$
Hitting Time - Example 2

Let’s flip a coin with \(Pr[H] = p \) until we get two consecutive \(Hs \). How many flips, on average? Here is a picture:

Which one is correct?
(A) \(\beta(S) = 1 + p\beta(H) + q\beta(T) \)
(B) \(\beta(S) = p\beta(H) + q\beta(T) \)
(C) \(\beta(S) = \beta(S) + q\beta(T) + p\beta(H) \).

(A) Expected time from \(S \) to \(E \).
\[
\beta(S) = Pr[H]E[\beta(S)|H] + Pr[T]E[\beta(S)|T]
\]
\[
\beta(S) = p(1 + \beta(H)) + q(1 + \beta(T))
\]
\[
\beta(S) = 1 + p\beta(H) + q\beta(T)
\]
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Which one is correct?
(A) $\beta(S) = 1 + p\beta(H) + q\beta(T)$
(B) $\beta(S) = p\beta(H) + q\beta(T)$
(C) $\beta(S) = \beta(S) + q\beta(T) + p\beta(H)$.

(A) Expected time from S to E.
$\beta(S) = Pr[H]E[\beta(S)|H] + Pr[T]E[\beta(S)|T]$
$\beta(S) = p(1 + \beta(H)) + q(1 + \beta(T))$
$\beta(S) = 1 + p\beta(H) + q\beta(T)$
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average?
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E.

![Diagram of a Markov Chain with states S, H, T, and E, and transitions labeled with p and q](image)

S: Start

H: Last flip = H

T: Last flip = T

E: Done
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$
$$\beta(H) = 1 + p0 + q\beta(T)$$

(E.g., $\beta(S) = 6$ if $p = 1/2$.)
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

\[
\begin{align*}
\beta(S) &= 1 + p\beta(H) + q\beta(T) \\
\beta(H) &= 1 + p0 + q\beta(T) \\
\beta(T) &= 1 + p\beta(H) + q\beta(T).
\end{align*}
\]
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

![Diagram]

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

$$\beta(S) = 1 + p\beta(H) + q\beta(T)$$
$$\beta(H) = 1 + p0 + q\beta(T)$$
$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$

Solving, we find
Hitting Time - Example 2

Let’s flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

$$
\beta(S) = 1 + p\beta(H) + q\beta(T)
$$
$$
\beta(H) = 1 + p0 + q\beta(T)
$$
$$
\beta(T) = 1 + p\beta(H) + q\beta(T).
$$

Solving, we find $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$.
Hitting Time - Example 2

Let's flip a coin with $Pr[H] = p$ until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let $\beta(i)$ be the average time from state i until the MC hits state E. We claim that (these are called the first step equations)

$\beta(S) = 1 + p\beta(H) + q\beta(T)$
$\beta(H) = 1 + p0 + q\beta(T)$
$\beta(T) = 1 + p\beta(H) + q\beta(T)$.

Solving, we find $\beta(S) = 2 + 3qp^{-1} + q^2p^{-2}$. (E.g., $\beta(S) = 6$ if $p = 1/2$.)
Hitting Time - Example 2

Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.

$N(H)$ – be defined similarly.

$N'(T)$ – number of steps after the second visit to T until MC hits E.

$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$.

Since Z and $N(H)$ are independent, and Z and $N'(T)$ are independent, taking expectations, we get

$E[N(T)] = 1 + pE[N(H)] + qE[N'(T)]$,

i.e., $\beta(T) = 1 + p\beta(H) + q\beta(T)$.

Diagram:

- S: Start
- H: Last flip = H
- T: Last flip = T
- E: Done
- X_0
- $q \:= \: 1 - p$
- p
- q
- 1
Hitting Time - Example 2

Let us justify the first step equation for $\beta(T)$.

Let $q := 1 - p$.

S: Start
H: Last flip = H
T: Last flip = T
E: Done
Hitting Time - Example 2

Let us justify the first step equation for $\beta(T)$. The others are similar.
Hitting Time - Example 2

Let us justify the first step equation for \(\beta(T) \). The others are similar.

\(N(T) \) – number of steps, starting from \(T \) until the MC hits \(E \).
Hitting Time - Example 2

Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.

$N(H)$ – be defined similarly.
Hitting Time - Example 2

Let us justify the first step equation for $\beta(T)$. The others are similar.

- $N(T)$ – number of steps, starting from T until the MC hits E.
- $N(H)$ – be defined similarly.
- $N'(T)$ – number of steps after the second visit to T until MC hits E.

$q := 1 - p$

The diagram shows the transitions between states:
- S: Start
- H: Last flip = H
- T: Last flip = T
- E: Done
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.

$N(H)$ – be defined similarly.

$N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$
Hitting Time - Example 2

Let us justify the first step equation for $\beta(T)$. The others are similar.

- $N(T)$ – number of steps, starting from T until the MC hits E.
- $N(H)$ – be defined similarly.
- $N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1 \{\text{first flip in } T \text{ is } H\}$.
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.
$N(H)$ – be defined similarly.
$N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and $N(H)$ are independent,
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.
$N(H)$ – be defined similarly.
$N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and $N(H)$ are independent, and Z and $N'(T)$ are independent,
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.

$N(H)$ – be defined similarly.

$N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and $N(H)$ are independent, and Z and $N'(T)$ are independent, taking expectations, we get
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.
$N(H)$ – be defined similarly.
$N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and $N(H)$ are independent, and Z and $N'(T)$ are independent, taking expectations, we get

$$E[N(T)] = 1 + pE[N(H)] + qE[N'(T)],$$
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.

$N(H)$ – be defined similarly.

$N'(T)$ – number of steps after the second visit to T until MC hits E.

$$N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)$$

where $Z = 1 \{\text{first flip in } T \text{ is } H\}$. Since Z and $N(H)$ are independent, and Z and $N'(T)$ are independent, taking expectations, we get

$$E[N(T)] = 1 + pE[N(H)] + qE[N'(T)],$$

i.e.,

$$\beta(T) = 1 + p\beta(H) + q\beta(T).$$
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

$$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j), \forall i = 2, \ldots, 6.$$

Symmetry: $$\beta(2) = \cdots = \beta(6) =: \gamma.$$ Also, $$\beta(1) = \beta(S).$$ Thus, $$\beta(S) = 1 + \left(\frac{5}{6}\right) \gamma + \beta(S)/6; \gamma = 1 + \left(\frac{4}{6}\right) \gamma + \left(\frac{1}{6}\right) \beta(S).$$

$$\Rightarrow \cdots \beta(S) = 8.4.$$
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8.
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die,
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[
\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \\
\beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \\
\beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6} \beta(j), \quad i = 2,\ldots,6.
\]

Symmetry: \(\beta(2) = \cdots = \beta(6) =: \gamma.\)

Also, \(\beta(1) = \beta(S).\)

Thus, \(\beta(S) = 1 + \left(\frac{5}{6}\right) \gamma + \frac{1}{6} \beta(S).\)

\(\Rightarrow \cdots \beta(S) = 8.4.\)
You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \]

The arrows out of 3, \ldots, 6 (not shown) are similar to those out of 2.
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j);$

$S = \text{Start}; \ E = \text{Done}$
$i = \text{Last roll is } i, \text{ not done}$

$P(S, j) = 1/6, j = 1, \ldots, 6$
$P(1, j) = 1/6, j = 1, \ldots, 6$

$P(i, j) = 1/6, i = 2, \ldots, 6; 8 - i \neq j \in \{1, \ldots, 6\}$
$P(i, E) = 1/6, i = 2, \ldots, 6$

The arrows out of 3, \ldots, 6 (not shown) are similar to those out of 2.
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6; j \neq 8-i}^{6} \beta(j), i = 2, \ldots, 6. \]
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6; j \neq 8-i}^{6} \beta(j), i = 2, \ldots, 6. \]

Symmetry: \(\beta(2) = \cdots = \beta(6) =: \gamma. \)
You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6; j \neq 8-i}^{6} \beta(j), i = 2, \ldots, 6. \]

Symmetry: \(\beta(2) = \cdots = \beta(6) =: \gamma. \) Also, \(\beta(1) = \beta(S). \)
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6;j \neq 8-i}^{6} \beta(j), i = 2,\ldots,6. \]

Symmetry: \(\beta(2) = \cdots = \beta(6) =: \gamma. \) Also, \(\beta(1) = \beta(S). \) Thus,

\[\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \]
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

$\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6:j\neq8-i} \beta(j), i = 2, \ldots, 6.$

Symmetry: $\beta(2) = \cdots = \beta(6) =: \gamma.$ Also, $\beta(1) = \beta(S).$ Thus,

$\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \quad \gamma = 1 + (4/6)\gamma + (1/6)\beta(S).$
Hitting Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

The arrows out of 3, ..., 6 (not shown) are similar to those out of 2.

\[
\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \quad \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \quad \beta(i) = 1 + \frac{1}{6} \sum_{j=1,\ldots,6; j \neq 8-i} \beta(j), \quad i = 2, \ldots, 6.
\]

Symmetry: \(\beta(2) = \cdots = \beta(6) =: \gamma \). Also, \(\beta(1) = \beta(S) \). Thus,

\[
\beta(S) = 1 + (5/6)\gamma + \beta(S)/6; \quad \gamma = 1 + (4/6)\gamma + (1/6)\beta(S).
\]

\[\Rightarrow \cdots \beta(S) = 8.4.\]
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$.

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$

(B) $\alpha(0) = 1$.

(C) $\alpha(100) = 1$.

(D) $\alpha(n) = 1 + p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

(E) $\alpha(n) = p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

(B) is incorrect, 0 is bad.

(D) is incorrect. Confuses expected hitting time with A before B.
Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.

Let \(\alpha(n) \) be the probability of reaching 100 before 0, starting from \(n \), for \(n = 0, 1, \ldots, 100 \).

Which equations are correct?

(A) \(\alpha(0) = 0 \)

(B) \(\alpha(0) = 1 \)

(C) \(\alpha(100) = 1 \)

(D) \(\alpha(n) = 1 + p \alpha(n+1) + q \alpha(n-1), \quad 0 < n < 100 \)

(E) \(\alpha(n) = p \alpha(n+1) + q \alpha(n-1), \quad 0 < n < 100 \).

(B) is incorrect, 0 is bad.

(D) is incorrect. Confuses expected hitting time with A before B.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$.
Start with 10.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1.

What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$

(B) $\alpha(0) = 1$.

(C) $\alpha(100) = 1$.

(D) $\alpha(n) = 1 + p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

(E) $\alpha(n) = p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

(B) is incorrect, 0 is bad.

(D) is incorrect. Confuses expected hitting time with A before B.

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$
(B) $\alpha(0) = 1$.
(C) $\alpha(100) = 1$.
(D) $\alpha(n) = 1 + p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.
(E) $\alpha(n) = p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

(B) is incorrect, 0 is bad.

(D) is incorrect. Confuses expected hitting time with A before B.

$q = 1 - p$
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$.
Start with 10.
What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.
Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$

(B) $\alpha(0) = 1$.

(C) $\alpha(100) =$

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$

(B) $\alpha(0) = 1$.

(C) $\alpha(100) =$
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$
(B) $\alpha(0) = 1$.
(C) $\alpha(100) = 1$.
(D) $\alpha(n) = 1 + p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.
(E) $\alpha(n) =$
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with $10.
What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.
Which equations are correct?

(A) $\alpha(0) = 0$
(B) $\alpha(0) = 1$.
(C) $\alpha(100) = 1$.
(D) $\alpha(n) = 1 + p\alpha(n + 1) + q\alpha(n - 1), 0 < n < 100$.
(E) $\alpha(n) = p\alpha(n + 1) + q\alpha(n - 1), 0 < n < 100$.
Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with $\$10$. Each step, flip yields ‘heads’, earn $\$1$. Otherwise, lose $\$1$. What is the probability that you reach $\$100$ before $\$0$?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

Which equations are correct?

(A) $\alpha(0) = 0$
(B) $\alpha(0) = 1$.
(C) $\alpha(100) = 1$.
(D) $\alpha(n) = 1 + p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.
(E) $\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.

(B) is incorrect, 0 is bad.
(D) is incorrect. Confuses expected hitting time with A before B.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$.
Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.
Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1.

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

$\alpha(0) = 0$; $\alpha(100) = 1$.

$\alpha(n) = p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

$\Rightarrow \alpha(n) = 1 - \rho n^{100} \rho$ with $\rho = \frac{q}{p} - 1$. (See LN 22)
Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$. $\alpha(0) = 0$; $\alpha(100) = 1$. $\alpha(n) = p \alpha(n+1) + q \alpha(n-1)$, $0 < n < 100$.

$\Rightarrow \alpha(n) = 1 - \rho n^{1 - \rho} 100$ with $\rho = qp - 1$. (See LN 22)
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10.
What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

$\alpha(0) = 0$; $\alpha(100) = 1$.

$\alpha(n) = p \alpha(n + 1) + q \alpha(n - 1)$, $0 < n < 100$.

$\Rightarrow \alpha(n) = 1 - \rho n 1 - \rho 100$ with $\rho = qp - 1$.

(See LN 22)
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

\begin{align*}
\alpha(0) &= 0; \\
\alpha(100) &= 1. \\
\alpha(n) &= p\alpha(n+1) + q\alpha(n-1), \\
&\quad 0 < n < 100. \\
\Rightarrow \alpha(n) &= \frac{1}{1 - \rho} - \rho n \\
&\quad with \rho = q/p - 1.
\end{align*}

(See LN 22)
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

$$\alpha(0) =$$
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.
What is the probability that you reach $100 before $0?

Let \(\alpha(n) \) be the probability of reaching 100 before 0, starting from \(n \), for \(n = 0, 1, \ldots, 100 \).

\[
\alpha(0) = 0;
\]
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

\[\alpha(0) = 0; \alpha(100) = \]

\[q = 1 - p \]
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$. Start with $\$10$.
Each step, flip yields ‘heads’, earn $\$1$. Otherwise, lose $\$1$.
What is the probability that you reach $\$100$ before $\$0$?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

$$\alpha(0) = 0; \alpha(100) = 1.$$
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.
What is the probability that you reach $100 before $0?

Let \(\alpha(n) \) be the probability of reaching 100 before 0, starting from \(n \), for \(n = 0, 1, \ldots, 100 \).

\[
\alpha(0) = 0; \alpha(100) = 1.
\]
\[
\alpha(n) = \]

\(q = 1 - p \)
Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$.
Start with 10.
What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

$\alpha(0) = 0; \alpha(100) = 1$.
$\alpha(n) = p\alpha(n+1) + q\alpha(n-1), 0 < n < 100$.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p < 0.5$.
Start with 10.
What is the probability that you reach 100 before 0?

Let $\alpha(n)$ be the probability of reaching 100 before 0, starting from n, for $n = 0, 1, \ldots, 100$.

$\alpha(0) = 0; \alpha(100) = 1$.

$\alpha(n) = p\alpha(n + 1) + q\alpha(n - 1), 0 < n < 100$.

$\Rightarrow \alpha(n) = \frac{1 - \rho^n}{1 - \rho^{100}}$ with $\rho = qp^{-1}$.

Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.
What is the probability that you reach $100 before $0?

Let \(\alpha(n) \) be the probability of reaching 100 before 0, starting from \(n \), for \(n = 0, 1, \ldots, 100 \).

\[
\alpha(0) = 0; \alpha(100) = 1.
\]

\[
\alpha(n) = p \alpha(n + 1) + q \alpha(n - 1), 0 < n < 100.
\]

\[
\Rightarrow \alpha(n) = \frac{1 - \rho^n}{1 - \rho^{100}} \text{ with } \rho = qp^{-1}. \text{ (See LN 22)}
\]
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$.
Start with 10.

Moral of example: Money in Vegas stays in Vegas.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = 0.48$.
Start with 10.

What is the probability that you reach 100 before 0?
Less than 1 in a 1000.

Moral of example: Money in Vegas stays in Vegas.
Game of “heads or tails” using coin with ‘heads’ probability \(p = .48 \).
Start with $10.
What is the probability that you reach $100 before $0?
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Moral of example: Money in Vegas stays in Vegas.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = 0.48$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Less than 1 in a 1000.
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Less than 1 in a 1000. Moral of example:
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Less than 1 in a 1000. Moral of example: Money in Vegas
Here before There - A before B

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$. Start with $10.
What is the probability that you reach $100 before $0?

Less than 1 in a 1000. Moral of example: Money in Vegas stays in Vegas.
First Step Equations

Let X_n be a MC on X and $A, B \subseteq X$ with $A \cap B \neq \emptyset$.

Define $T_A = \min \{ n \geq 0 | X_n \in A \}$ and $T_B = \min \{ n \geq 0 | X_n \in B \}$.

For $\beta(i) = \mathbb{E}[T_A | X_0 = i]$, first step equations are:

$\beta(i) = 0, i \in A$

$\beta(i) = 1 + \sum_j P(i, j) \beta(j), i / \in A$

For $\alpha(i) = \text{Pr}[T_A < T_B | X_0 = i]$, first step equations are:

$\alpha(i) = 1, i \in A$

$\alpha(i) = 0, i \in B$

$\alpha(i) = \sum_j P(i, j) \alpha(j), i \not\in A \cup B$.
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$.

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$.

![Diagram showing a Markov chain with states A and B and transition $P(i, j)$ from i to j.]
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min \{ n \geq 0 \mid X_n \in A \}$$
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \quad \text{and} \quad T_B = \min\{n \geq 0 \mid X_n \in B\}.$$
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:
Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \quad \text{and} \quad T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:

$$\beta(i) = 0, \ i \in A$$
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:

- $\beta(i) = 0, i \in A$
- $\beta(i) = 1 + \sum_j P(i,j)\beta(j), i \notin A$
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:

$$\beta(i) = 0, \; i \in A$$
$$\beta(i) = 1 + \sum_j P(i,j)\beta(j), \; i \notin A$$

For $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], \; i \in \mathcal{X}$, first step equations are:
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:

$$\beta(i) = \begin{cases} 0, & i \in A \\ 1 + \sum_j P(i,j)\beta(j), & i \notin A \end{cases}$$

For $\alpha(i) = \Pr[T_A < T_B \mid X_0 = i], i \in \mathcal{X}$, first step equations are:

$$\alpha(i) = \begin{cases} 1, & i \in A \\ 0, & i \in B \end{cases}$$
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:

$$\beta(i) = 0, \ i \in A$$

$$\beta(i) = 1 + \sum_j P(i,j)\beta(j), \ i \not\in A$$

For $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathcal{X}$, first step equations are:

$$\alpha(i) = 1, \ i \in A$$

$$\alpha(i) = 0, \ i \in B$$
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \quad \text{and} \quad T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

For $\beta(i) = E[T_A \mid X_0 = i]$, first step equations are:

$$\beta(i) = 0, i \in A$$

$$\beta(i) = 1 + \sum_j P(i,j)\beta(j), i \notin A$$

For $\alpha(i) = Pr[T_A < T_B \mid X_0 = i], i \in \mathcal{X}$, first step equations are:

$$\alpha(i) = 1, i \in A$$

$$\alpha(i) = 0, i \in B$$

$$\alpha(i) = \sum_j P(i,j)\alpha(j), i \notin A \cup B.$$
Let X_n be a Markov chain on X with P. Let also $g: X \rightarrow \mathbb{R}$ be some function. Define $\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) \mid X_0 = i\right]$, $i \in X$. Then $\gamma(i) = g(i)$, if $i \in A$ $g(i) + \sum_{j} P(i,j) \gamma(j)$, otherwise.
Let X_n be a Markov chain on \mathcal{X} with P.

Let $A \subset \mathcal{X}$

Let also $g: \mathcal{X} \to \mathbb{R}$ be some function.

Define $\gamma(i) = \mathbb{E}\left[\sum_{n=0}^{\infty} g(X_n) \mid X_0 = i\right]$, $i \in \mathcal{X}$.

Then $\gamma(i) = g(i)$, if $i \in A$.

$g(i) + \sum_{j} P(i, j) \gamma(j)$, otherwise.
Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$
Accumulating Rewards

Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$
Let also $g: \mathcal{X} \to \mathbb{R}$ be some function.
Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$.

Let also $g : \mathcal{X} \rightarrow \mathbb{R}$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i \right], i \in \mathcal{X}.$$
Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$

Let also $g : \mathcal{X} \to \mathbb{R}$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i \right], i \in \mathcal{X}.$$

Then

$$\gamma(i) = \begin{cases} g(i), & \text{if } i \in A \end{cases}$$
Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$

Let also $g : \mathcal{X} \rightarrow \mathbb{R}$ be some function.

Define

$$\gamma(i) = E[\sum_{n=0}^{T_A} g(X_n) | X_0 = i], i \in \mathcal{X}.$$

Then

$$\gamma(i) = \begin{cases}
 g(i), & \text{if } i \in A \\
 g(i) + \sum_j P(i,j) \gamma(j), & \text{otherwise.}
\end{cases}$$
Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$.
Let also $g : \mathcal{X} \rightarrow \mathbb{R}$ be some function.
Define
\[
\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i \right], i \in \mathcal{X}.
\]
Then
\[
\gamma(i) = \begin{cases}
 g(i), & \text{if } i \in A \\
 g(i) + \sum_j P(i,j) \gamma(j), & \text{otherwise.}
\end{cases}
\]
Example
Example

Flip a fair coin until you get two consecutive Hs.
Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?
Example

Flip a fair coin until you get two consecutive Hs. What is the expected number of Ts that you see?

$$g(S) = g(H) = g(HH) = 0 \quad g(T) = 1$$
Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

FSE:

$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)$$
Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

FSE:

\[\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T) \]
\[\gamma(H) = 0 + 0.5\gamma(HH) + 0.5\gamma(T) \]
Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

$$g(S) = g(H) = g(HH) = 0$$
$$g(T) = 1$$

FSE:

$$\gamma(S) = 0 + 0.5\gamma(H) + 0.5\gamma(T)$$
$$\gamma(H) = 0 + 0.5\gamma(HH) + 0.5\gamma(T)$$
$$\gamma(T) = 1 + 0.5\gamma(H) + 0.5\gamma(T)$$
Example

Flip a fair coin until you get two consecutive Hs.
What is the expected number of Ts that you see?

FSE:

\[
\begin{align*}
\gamma(S) &= 0 + 0.5\gamma(H) + 0.5\gamma(T) \\
\gamma(H) &= 0 + 0.5\gamma(HH) + 0.5\gamma(T) \\
\gamma(T) &= 1 + 0.5\gamma(H) + 0.5\gamma(T) \\
\gamma(HH) &= 0.
\end{align*}
\]
Example

Flip a fair coin until you get two consecutive Hs. What is the expected number of Ts that you see?

\[
\begin{align*}
\gamma(S) &= 0 + 0.5\gamma(H) + 0.5\gamma(T) \\
\gamma(H) &= 0 + 0.5\gamma(HH) + 0.5\gamma(T) \\
\gamma(T) &= 1 + 0.5\gamma(H) + 0.5\gamma(T) \\
\gamma(HH) &= 0.
\end{align*}
\]

Solving, we find \(\gamma(S) = 2.5 \).
Recap

Markov Chain:
- Finite set X;
- π_0;
- $P = \{P(i, j), i, j \in X\}$;
- $\Pr[X_0 = i] = \pi_0(i), i \in X$;
- $\Pr[X_n+1 = j | X_0, ..., X_n = i] = P(i, j), i, j \in X, n \geq 0$.

Note:
- $\Pr[X_0 = i_0, X_1 = i_1, ..., X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n)$.

First Passage Time:
- $A \cap B = \emptyset$;
- $\beta(i) = \mathbb{E}[T_A | X_0 = i]$;
- $\alpha(i) = \Pr[T_A < T_B | X_0 = i]$.
- $\beta(i) = 1 + \sum_j P(i, j)\beta(j)$;
- $\alpha(i) = \sum_j P(i, j)\alpha(j)$.
- $\alpha(A) = 1, \alpha(B) = 0$.
Recap

- Markov Chain:

- Finite set X; π_0; $P = \{P(i, j), i, j \in X\}$

- $\Pr[X_0 = i] = \pi_0(i), i \in X$

- $\Pr[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j), i, j \in X, n \geq 0$

- Note: $\Pr[X_0 = i_0, X_1 = i_1, ..., X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n)$

- First Passage Time:

- $A \cap B = \emptyset$; $\beta(i) = E[T_A | X_0 = i]$; $\alpha(i) = \Pr[T_A < T_B | X_0 = i]$

- $\beta(i) = 1 + \sum_j P(i, j)\beta(j)$

- $\alpha(i) = \sum_j P(i, j)\alpha(j)$

- $\alpha(A) = 1, \alpha(B) = 0$.
Recap

Markov Chain:

- Finite set \mathcal{X}; π_0; $P = \{ P(i,j), i, j \in \mathcal{X} \}$;
- $Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$
- $Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i,j), i, j \in \mathcal{X}, n \geq 0$.

Note:
$Pr[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] =$
Recap

- Markov Chain:
 - Finite set \mathcal{X}; π_0; $P = \{P(i,j), i,j \in \mathcal{X}\}$;
 - $Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$
 - $Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i,j), i,j \in \mathcal{X}, n \geq 0$.
 - Note:
 $Pr[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1) \cdots P(i_{n-1}, i_n)$.

- First Passage Time:
Recap

- **Markov Chain:**
 - Finite set \mathcal{X}; π_0; $P = \{P(i,j), i,j \in \mathcal{X}\}$;
 - $Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$
 - $Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i,j), i,j \in \mathcal{X}, n \geq 0$.
 - Note:
 $Pr[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = \pi_0(i_0)P(i_0,i_1)\cdots P(i_{n-1},i_n)$.

- **First Passage Time:**
 - $A \cap B = \emptyset$;
Recap

- **Markov Chain:**
 - Finite set \mathcal{X}; π_0; $P = \{P(i,j), i, j \in \mathcal{X}\}$;
 - $\Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$
 - $\Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i,j), i, j \in \mathcal{X}, n \geq 0$.
 - Note:
 $\Pr[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1)\cdots P(i_{n-1}, i_n)$.

- **First Passage Time:**
 - $A \cap B = \emptyset$; $\beta(i) = E[T_A \mid X_0 = i]$;
Recap

► Markov Chain:

► Finite set $\mathcal{X}; \pi_0; P = \{P(i,j), i,j \in \mathcal{X}\}$;

► $Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$

► $Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i,j), i,j \in \mathcal{X}, n \geq 0$.

► Note:

$Pr[X_0 = i_0, X_1 = i_1, \ldots, X_n = i_n] = \pi_0(i_0)P(i_0, i_1) \cdots P(i_{n-1}, i_n)$.

► First Passage Time:

► $A \cap B = \emptyset; \beta(i) = E[T_A|X_0 = i]; \alpha(i) = P[T_A < T_B|X_0 = i]$;

► $\beta(i) = 1 + \sum_j P(i,j)\beta(j)$;

► $\alpha(i) = \sum_j P(i,j)\alpha(j). \alpha(A) = 1, \alpha(B) = 0.$
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Probability entering i: $\sum_j P(j, i) \pi(j)$.

Probability leaving i: π_i.

Are equal! Distribution same after one step.

Questions?

Does one exist? Is it unique?

If it exists and is unique.

Then what?

Sometimes the distribution as $n \to \infty$
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition. Probability entering i: $\sum_j P(j,i) \pi(j)$. Probability leaving i: $\pi(i)$. Are equal! Distribution same after one step.

Questions? Does one exist? Is it unique? If it exists and is unique, then what? Sometimes the distribution as $n \to \infty$
Recall π_n is a distribution over states for X_n.
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

Probability entering i: $\sum_{i,j} P(j,i)\pi(j)$.
Distribution of X_n

Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

- probability entering i: $\sum_{i,j} P(j, i) \pi(j)$.
- probability leaving i: π_i.
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

- probability entering i: $\sum_{i,j} P(j, i) \pi(j)$.
- probability leaving i: π_j.

are Equal!
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

- probability entering i: $\sum_{j} P(j, i) \pi(j)$.
- probability leaving i: π_i.

are Equal!

Distribution same after one step.
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

- probability entering i: $\sum_{i,j} P(j,i) \pi(j)$.
- probability leaving i: π_j.

are Equal!

Distribution same after one step.

Questions?
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

- probability entering i: $\sum_{i,j} P(j, i) \pi(j)$.
- probability leaving i: π_i.

are Equal!

Distribution same after one step.

Questions? Does one exist? Is it unique?
Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.

Distribution over states is the same before/after transition.

- probability entering i: $\sum_{i,j} P(j, i)\pi(j)$.
- probability leaving i: π_i.

are Equal!

Distribution same after one step.

Questions? Does one exist? Is it unique?
If it exists and is unique.
Distribution of X_n

Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.
 Distribution over states is the same before/after transition.
 - probability entering i: $\sum_{i,j} P(j,i)\pi(j)$.
 - probability leaving i: π_i.
 are Equal!
Distribution same after one step.
Questions? Does one exist? Is it unique?
If it exists and is unique. Then what?
Distribution of X_n

Recall π_n is a distribution over states for X_n.

Stationary distribution: $\pi = \pi P$.
- Distribution over states is the same before/after transition.
- Probability entering i: $\sum_{i,j} P(j, i) \pi(j)$.
- Probability leaving i: π_j.
- Are Equal!

Distribution same after one step.

Questions? Does one exist? Is it unique?
If it exists and is unique. Then what?
Sometimes the distribution as $n \to \infty$
Stationary: Example

Example 1:

Balance Equations.

\[P = \pi \]

\[\pi = \pi \]

\[\pi_1(1), \pi_2(2) \]

\[1 - a \]

\[1 - b \]

\[= \pi_1(1), \pi_2(2) \]

\[\pi_1(1)(1 - a) + \pi_2(2)b = \pi_2(2) \]

\[\pi_1(1)a + \pi_2(2)(1 - b) = \pi_2(2) \]

These equations are redundant!

We have to add an equation:

\[\pi_1 + \pi_2 = 1. \]

Then we find

\[\pi = [b, a + b, a, a + b]. \]
Stationary: Example

Example 1:

\[P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \]
Stationary: Example

Example 1:

Balance Equations.

\[\pi P = \pi \]
Example 1:

Balance Equations.

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)] \]
Stationary: Example

Example 1:

Balance Equations.

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)] \]

\[\iff \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \]

These equations are redundant!

We have to add an equation:

\[\pi(1) + \pi(2) = 1. \]
Example 1:

\[P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \]

Balance Equations.

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} = [\pi(1), \pi(2)] \]

\[\iff \pi(1)(1 - a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1 - b) = \pi(2) \]
Stationary: Example

Example 1:

\[
P = \begin{bmatrix}
1 - a & a \\
b & 1 - b
\end{bmatrix}
\]

Balance Equations.

\[
\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix}
1 - a & a \\
b & 1 - b
\end{bmatrix} = [\pi(1), \pi(2)]
\]

\[
\iff \pi(1)(1 - a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1 - b) = \pi(2)
\]

\[
\iff \pi(1)a = \pi(2)b.
\]
Stationary: Example

Example 1:

![Graph Diagram]

Balance Equations.

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} = [\pi(1), \pi(2)] \]
\[\iff \pi(1)(1 - a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1 - b) = \pi(2) \]
\[\iff \pi(1)a = \pi(2)b. \]

These equations are redundant!
Stationary: Example

Example 1:

\[
P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix}
\]

Balance Equations.

\[
\pi P = \pi \quad \Leftrightarrow \quad [\pi(1), \pi(2)] \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} = [\pi(1), \pi(2)]
\]

\[
\Leftrightarrow \quad \pi(1)(1 - a) + \pi(2)b = \pi(1) \quad \text{and} \quad \pi(1)a + \pi(2)(1 - b) = \pi(2)
\]

\[
\Leftrightarrow \quad \pi(1)a = \pi(2)b.
\]

These equations are redundant! We have to add an equation:
Stationary: Example

Example 1:

\[P = \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} \]

Balance Equations.

\[
\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)]
\]

\[
\iff \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2)
\]

\[
\iff \pi(1)a = \pi(2)b.
\]

These equations are redundant! We have to add an equation:
\[
\pi(1) + \pi(2) = 1.
\]
Balance Equations.

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1-a & a \\ b & 1-b \end{bmatrix} = [\pi(1), \pi(2)] \]

\[\Leftrightarrow \pi(1)(1-a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1-b) = \pi(2) \]

\[\Leftrightarrow \pi(1)a = \pi(2)b. \]

These equations are redundant! We have to add an equation: \[\pi(1) + \pi(2) = 1. \] Then we find
Stationary: Example

Example 1:

\[
1 - a \quad 1 \quad 2 \quad 1 - b
\]

\[
\begin{bmatrix}
1 - a & a \\
\frac{a}{a+b} & \frac{b}{a+b}
\end{bmatrix}
\]

Balance Equations.

\[
\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} = [\pi(1), \pi(2)] \\
\iff \pi(1)(1 - a) + \pi(2)b = \pi(1) \text{ and } \pi(1)a + \pi(2)(1 - b) = \pi(2) \iff \pi(1)a = \pi(2)b.
\]

These equations are redundant! We have to add an equation: \(\pi(1) + \pi(2) = 1 \). Then we find

\[
\pi = \left[\frac{b}{a+b}, \frac{a}{a+b} \right].
\]
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \).

Hence, \(\Pr[X_n = i] = \Pr[X_0 = i], \forall (i, n) \).

Discussion.
We have seen a chain with one stationary, and a chain with many. When is there just one?
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \]

Discussion. We have seen a chain with one stationary, and a chain with many. When is there just one?
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \]

Discussion.
We have seen a chain with one stationary, and a chain with many. When is there just one?
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\(\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and} \]

Discussion.

We have seen a chain with one stationary, and a chain with many. When is there just one?
Stationary distributions: Example 2

\[
\begin{pmatrix}
1 & 1 \\
2 & 1
\end{pmatrix}
\]

\[
P = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

\[
\pi P = \pi \Leftrightarrow [\pi(1), \pi(2)] \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} = [\pi(1), \pi(2)] \Leftrightarrow \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).
\]
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2). \]

Every distribution is invariant for this Markov chain.
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2). \]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \).
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2). \]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \). Hence, \(Pr[X_n = i] = Pr[X_0 = i], \forall (i, n). \)
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2). \]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \). Hence, \(Pr[X_n = i] = Pr[X_0 = i], \forall (i, n) \).

Discussion.
Stationary distributions: Example 2

\[
\begin{align*}
P &= \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\end{align*}
\]

\[
\pi P = \pi \iff \begin{bmatrix} \pi(1), \pi(2) \end{bmatrix} \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix} = \begin{bmatrix} \pi(1), \pi(2) \end{bmatrix} \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).
\]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0\) for all \(n\). Hence, \(Pr[X_n = i] = Pr[X_0 = i], \forall (i, n)\).

Discussion.
We have seen a chain with one stationary,
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2). \]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \). Hence, \(Pr[X_n = i] = Pr[X_0 = i], \forall (i, n) \).

Discussion.

We have seen a chain with one stationary, and a chain with many.
Stationary distributions: Example 2

\[P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2). \]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \). Hence, \(Pr[X_n = i] = Pr[X_0 = i], \forall (i, n) \).

Discussion.

We have seen a chain with one stationary, and a chain with many.
Stationary distributions: Example 2

\[
P = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\[
\pi P = \pi \iff [\pi(1), \pi(2)] \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [\pi(1), \pi(2)] \iff \pi(1) = \pi(1) \text{ and } \pi(2) = \pi(2).
\]

Every distribution is invariant for this Markov chain. Since \(X_n = X_0 \) for all \(n \). Hence, \(Pr[X_n = i] = Pr[X_0 = i], \forall (i, n) \).

Discussion.

We have seen a chain with one stationary, and a chain with many.

When is here just one?
Irreducibility.

Definition A Markov chain is irreducible if it can go from every state \(i\) to every state \(j\).
Irreducibility.

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

\[\begin{array}{ccc}
 1 & 0 & 0.8 \\
 0.8 & 1 & 0 \\
 0.7 & 0.3 & 1
\end{array}\]

[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j. If you consider the graph with arrows when $P(i,j) > 0$, irreducible means that there is a single connected component.
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Examples:
Definition A Markov chain is *irreducible* if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is neither irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j. If you consider the graph with arrows when $P(i, j) > 0$, irreducible means that there is a single connected component.
Irreducibility.

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible. It can go from every i to every j.

If you consider the graph with arrows when $P(i, j) > 0$, irreducible means that there is a single connected component.
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state \(i\) to every state \(j\) (possibly in multiple steps).

Examples:

[A] is not irreducible.
Irreducibility.

Definition A Markov chain is *irreducible* if it can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).

[B] is **not irreducible**. It cannot go from (2) to (1).

[C] is **irreducible**. It can go from every \(i \) to every \(j \).

If you consider the graph with arrows when \(P(i, j) > 0 \), irreducible means that there is a single connected component.
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible.

[C] is irreducible. It can go from every \(i \) to every \(j \).
Irreducibility.

Definition A Markov chain is irreducible if it can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).

[B] is **not irreducible**. It cannot go from (2) to (1).

[C] is irreducible. It can go from every \(i \) to every \(j \).

If you consider the graph with arrows when \(P(i, j) > 0 \), irreducible means that there is a single connected component.
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).

[B] is **not irreducible**. It cannot go from (2) to (1).

[C] is
Irreducibility.

Definition A Markov chain is irreducible if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is not irreducible. It cannot go from (2) to (1).

[B] is not irreducible. It cannot go from (2) to (1).

[C] is irreducible.
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).

[B] is **not irreducible**. It cannot go from (2) to (1).

[C] is **irreducible**. It can go from every i to every j.
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).

[B] is **not irreducible**. It cannot go from (2) to (1).

[C] is **irreducible**. It can go from every i to every j.

If you consider the graph with arrows when $P(i,j) > 0,$
Irreducibility.

Definition A Markov chain is **irreducible** if it can go from every state i to every state j (possibly in multiple steps).

Examples:

[A] is **not irreducible**. It cannot go from (2) to (1).

[B] is **not irreducible**. It cannot go from (2) to (1).

[C] is **irreducible**. It can go from every i to every j.

If you consider the graph with arrows when $P(i,j) > 0$, irreducible means that there is a single connected component.
Existence and uniqueness of Invariant Distribution

A finite irreducible Markov chain has one and only one invariant distribution. That is, there is a unique positive vector \(\pi = [\pi(1), \ldots, \pi(K)] \) such that \(\pi P = \pi \) and \(\sum_k \pi(k) = 1 \).

Ok.

Now.

Only one stationary distribution if irreducible (or connected.)
Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.
Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), \ldots, \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Ok. Now. Only one stationary distribution if irreducible (or connected.)
Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector \(\pi = [\pi(1), \ldots, \pi(K)] \) such that \(\pi P = \pi \) and \(\sum_k \pi(k) = 1 \).
Existence and uniqueness of Invariant Distribution

Theorem A finite irreducible Markov chain has one and only one invariant distribution.
That is, there is a unique positive vector $\pi = [\pi(1), \ldots, \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Ok.
Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), \ldots, \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Ok. Now.
Theorem A finite irreducible Markov chain has one and only one invariant distribution.

That is, there is a unique positive vector $\pi = [\pi(1), \ldots, \pi(K)]$ such that $\pi P = \pi$ and $\sum_k \pi(k) = 1$.

Ok. Now.
Only one stationary distribution if irreducible (or connected.)
Theorem

Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i,

$$\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \rightarrow \pi(i),$$
as $n \rightarrow \infty$.

The left-hand side is the fraction of time that $X_m = i$ during steps $0, 1, \ldots, n-1$.

Thus, this fraction of time approaches $\pi(i)$.

Proof: Lecture note 21 gives a plausibility argument.
Theorem Let X_n be an irreducible Markov chain with invariant distribution π.
Theorem Let X_n be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$
Theorem Let X_n be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps $0, 1, \ldots, n-1$.
Theorem Let X_n be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps $0, 1, \ldots, n-1$. Thus, this fraction of time approaches $\pi(i)$.
Theorem Let X_n be an irreducible Markov chain with invariant distribution π.

Then, for all i,

$$\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

The left-hand side is the fraction of time that $X_m = i$ during steps $0, 1, \ldots, n-1$. Thus, this fraction of time approaches $\pi(i)$.

Proof: Lecture note 21 gives a plausibility argument.
Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $
frac{1}{n} \sum_{m=0}^{n-1} 1 \{ X_m = i \} \rightarrow \pi(i)$, as $n \rightarrow \infty$.

Example 1:

$P = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

$\pi P = \pi$

$\pi = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$

The fraction of time in state 1 converges to $\frac{1}{2}$, which is $\pi(1)$.
Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Example 1:
Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \[\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty. \]

Example 1:

\[P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[\pi P = \pi \Rightarrow \pi = [1/2, 1/2] \]
Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Example 1:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

The fraction of time in state 1
Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \(\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \) as $n \to \infty$.

Example 1:

\[
P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]
\]

The fraction of time in state 1 converges to 1/2,
Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \(\frac{1}{n} \sum_{m=0}^{n-1} 1 \{ X_m = i \} \rightarrow \pi(i) \), as $n \rightarrow \infty$.

Example 1:

The fraction of time in state 1 converges to $1/2$, which is $\pi(1)$.
Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $\frac{1}{n} \sum_{m=0}^{n-1} 1 \{ X_m = i \} \to \pi(i)$, as $n \to \infty$.
Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Example 2:
Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \[\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \quad \text{as} \quad n \to \infty. \]

Example 2:
Long Term Fraction of Time in States

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \[\frac{1}{n} \sum_{m=0}^{n-1} 1 \{ X_m = i \} \to \pi(i), \text{ as } n \to \infty. \]

Example 2:

\[\pi = [0.4, 0.6] \]
Convergence to Invariant Distribution

Question:
Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer:
Not necessarily. Here is an example:

$$
\begin{align*}
P &= \begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix} \\
\pi_0 &= \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \\
\pi_1 &= \begin{pmatrix} 0/2 \\ 1/2 \end{pmatrix} \\
\pi_2 &= \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix} \\
\pi_3 &= \begin{pmatrix} 0/2 \\ 1/2 \end{pmatrix} \\
\end{align*}
$$

Thus, if $\pi_0 = \begin{pmatrix} 1/2 \\ 0 \end{pmatrix}$, $\pi_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\pi_2 = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$, $\pi_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, etc.

Hence, π_n does not converge to $\pi = \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$.

Notice, all cycles or closed walks have even length.
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible.
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

See the image for a mathematical example involving transition probabilities P and distributions π_n.
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

![Diagram of the Markov chain with states 1 and 2.](image)

Assume $X_0 = 1$. Then $X_1 = 2$, $X_2 = 1$, $X_3 = 2$, ...

Hence, π_n does not converge to $\pi = [1/2, 1/2]$. Notice, all cycles or closed walks have even length.
Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$.
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2$,

$$X_n$$

$$n$$
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1$, ...
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$
Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$

Thus, if $\pi_0 = [1, 0]$,
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$

Thus, if $\pi_0 = [1, 0], \pi_1 = [0, 1]$,

\[X_n\]
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$. Thus, if $\pi_0 = [1, 0], \pi_1 = [0, 1], \pi_2 = [1, 0]$,
Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$\pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$.

Thus, if $\pi_0 = [1, 0], \pi_1 = [0, 1], \pi_2 = [1, 0], \pi_3 = [0, 1]$, etc.
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$

Thus, if $\pi_0 = [1, 0], \pi_1 = [0, 1], \pi_2 = [1, 0], \pi_3 = [0, 1], \ldots$
Hence, π_n does not converge to $\pi = [1/2, 1/2]$.
Convergence to Invariant Distribution

Question: Assume that the MC is irreducible. Does π_n approach the unique invariant distribution π?

Answer: Not necessarily. Here is an example:

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \pi P = \pi \Rightarrow \pi = [1/2, 1/2]$$

![Diagram showing transition probabilities and sample paths]

Assume $X_0 = 1$. Then $X_1 = 2, X_2 = 1, X_3 = 2, \ldots$

Thus, if $\pi_0 = [1, 0], \pi_1 = [0, 1], \pi_2 = [1, 0], \pi_3 = [0, 1], \text{ etc.}$

Hence, π_n does not converge to $\pi = [1/2, 1/2]$.

Notice, all cycles or closed walks have even length.
Convergence to stationary distribution.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \[
\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \rightarrow \pi(i), \text{ as } n \rightarrow \infty.
\]
Convergence to stationary distribution.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Example 2:

$\pi = \begin{bmatrix} 0.4 & 0.6 \end{bmatrix}$

As n gets large the probability of being in either state approaches $1/2$. (The stationary distribution.)

Notice cycles of length 1 and 2.
Convergence to stationary distribution.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, \[\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \quad \text{as} \quad n \to \infty. \]

Example 2:

\[\pi = [0.4, 0.6] \]

As n gets large the probability of being in either state approaches 1/2. (The stationary distribution.)
Convergence to stationary distribution.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i,
$$\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i), \text{ as } n \to \infty.$$

Example 2:

As n gets large the probability of being in either state approaches $1/2$. (The stationary distribution.)
Convergence to stationary distribution.

Theorem Let X_n be an irreducible Markov chain with invariant distribution π. Then, for all i, $\frac{1}{n} \sum_{m=0}^{n-1} 1\{X_m = i\} \to \pi(i)$, as $n \to \infty$.

Example 2:

As n gets large the probability of being in either state approaches $1/2$. (The stationary distribution.) Notice cycles of length 1 and 2.
Periodicity

Definition:
Periodicity is gcd of the lengths of all closed walks in irreducible chain.

Previous example: 2.

Definition
If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example
\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{array}
\]
Which one is converges to stationary?

(A) \[A\]
(B) \[B\]
(C) both
(D) neither.

(A).

\[A\]:
Closed walks of length 3 and length 4 ⇒ periodicity = 1.

\[B\]:
All closed walks multiple of 3 ⇒ periodicity = 2.
Periodicity

Definition: Periodicity is \(\text{gcd} \) of the lengths of all closed walks in irreducible chain.

Previous example: 2.

If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{array}
\]

\[
\begin{array}{ccc}
A & & \\
& B & \\
& & \\
\end{array}
\]

Which one is converges to stationary?

(A) \([A]\)

(B) \([B]\)

(C) both

(D) neither.

(A).

\([A]\) : Closed walks of length 3 and length 4 \(\Rightarrow \) periodicity = 1.

\([B]\) : All closed walks multiple of 3 \(\Rightarrow \) periodicity = 2.
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be **aperiodic**.
Periodicity

Definition: Periodicity is \(\text{gcd} \) of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
1 & 2 & 3 \\
4 & 5 & 6 \\
\end{array}
\]

Which one is converges to stationary?

(A) \([A] \)

(B) \([B] \)

(C) both

(D) neither.

(A). [A]: Closed walks of length 3 and length 4 \(\Rightarrow \) periodicity = 1.

[B]: All closed walks multiple of 3 \(\Rightarrow \) periodicity = 2.
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be **aperiodic**. Otherwise, it is periodic.

Example
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) \[A\]

(B) \[B\]

(C) both

(D) neither.

(A).

\[A\]: Closed walks of length 3 and length 4 ⇒ periodicity = 1.

\[B\]: All closed walks multiple of 3 ⇒ periodicity = 2.
Periodicity

Definition: Periodicity is \(\text{gcd} \) of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]
(B) [B]
(C) both
(D) neither.
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]
(B) [B]
(C) both
(D) neither.

(A).

[A]:

\[
\begin{align*}
 1 & \rightarrow 2 & \rightarrow 3 \\
 4 & \rightarrow 5 & \rightarrow 6
\end{align*}
\]

[B]:

\[
\begin{align*}
 1 & \rightarrow 2 & \rightarrow 3 \\
 4 & \rightarrow 5 & \rightarrow 6
\end{align*}
\]
Periodicity

Definition: Periodicity is \(\text{gcd} \) of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]

(B) [B]

(C) both

(D) neither.

(A).

[A]: Closed walks of length 3 and length 4
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]
(B) [B]
(C) both
(D) neither.

(A).

[A]: Closed walks of length 3 and length 4 \(\implies\) periodicity = 1.
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be **aperiodic.** Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]
(B) [B]
(C) both
(D) neither.

(A).

[A]: Closed walks of length 3 and length 4 → periodicity = 1.

[B]:
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]
(B) [B]
(C) both
(D) neither.

(A).

[A]: Closed walks of length 3 and length 4 \Rightarrow periodicity = 1.

[B]: All closed walks multiple of 3
Periodicity

Definition: Periodicity is gcd of the lengths of all closed walks in irreducible chain. Previous example: 2.

Definition If periodicity is 1, Markov chain is said to be aperiodic. Otherwise, it is periodic.

Example

Which one is converges to stationary?

(A) [A]
(B) [B]
(C) both
(D) neither.

(A).

[A]: Closed walks of length 3 and length 4 \implies periodicity = 1.

[B]: All closed walks multiple of 3 \implies periodicity = 2.
Convergence of π_n

Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in X$, $\pi_n(i) \to \pi(i)$, as $n \to \infty$.

Example 1.

<table>
<thead>
<tr>
<th>m</th>
<th>1</th>
<th>0.8</th>
<th>0.7</th>
<th>0.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>0.3</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
</tr>
</tbody>
</table>

$\pi_0 = [1, 0, 0]$ $\pi_0 = [0, 1, 0]$
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π.

Example 1

\[
\begin{array}{c}
p(1) = [1, 0, 0] \\
p(2) = [0, 1, 0] \\
p(3) = m
\end{array}
\]
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathcal{X}$,

$$
\pi_n(i) \to \pi(i), \text{ as } n \to \infty.
$$
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in X$,

$$\pi_n(i) \to \pi(i), \text{ as } n \to \infty.$$

Example

\[
\begin{align*}
\pi_0 &= [0, 1, 0] \\
\pi_m(1) &\approx [0.2, 0.8, 0.0] \\
\pi_m(2) &\approx [0.4, 0.6, 0.0] \\
\pi_m(3) &\approx [0.7, 0.3, 0.0] \\
\end{align*}
\]
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π.

Example

$\pi = \begin{bmatrix} 0.5 & 0.5 \end{bmatrix}$
Convergence of π_n

Theorem Let X_n be an irreducible and aperiodic Markov chain with invariant distribution π. Then, for all $i \in \mathcal{X}$,

$$\pi_n(i) \to \pi(i), \text{ as } n \to \infty.$$

Example

\[\pi = [0.5, 0.5] \]
Summary

Markov Chains

- \[P[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i, j) \]

- \(FSE: \beta(i) = 1 + \sum_j P(i, j) \beta(j); \alpha(i) = \sum_j P(i, j) \alpha(j) \)

- \(\pi_n = \pi_0 P^n \)

- \(\pi \) is invariant iff \(\pi P = \pi \)

- Irreducible \(\Rightarrow \) one and only one invariant distribution \(\pi \)

- Irreducible \(\Rightarrow \) fraction of time in state \(i \) approaches \(\pi(i) \)

- Irreducible + Aperiodic \(\Rightarrow \pi_n \to \pi \)

- Calculating \(\pi \): One finds \(\pi = [0, 0, \ldots, 1] \) where \(Q = \cdots \).
Summary

Markov Chains

Markov Chain: $P_{X_{n+1} \mid X_0, \ldots, X_n} = P(i, j)$

FSE: $
\begin{align*}
\beta(i) &= 1 + \sum_j P(i, j) \beta(j); \\
\alpha(i) &= \sum_j P(i, j) \alpha(j).
\end{align*}$

$\pi_n = \pi_0 P^n$

π is invariant iff $\pi P = \pi$

Irreducible \Rightarrow one and only one invariant distribution π

Irreducible \Rightarrow fraction of time in state i approaches $\pi(i)$

Irreducible + Aperiodic $\Rightarrow \pi_n \rightarrow \pi$.

Calculating π: One finds $\pi = [0, 0, \ldots, 1] Q^{-1}$ where $Q = \cdots$.
Summary

- **Markov Chain:**

 - $P[X_{n+1} = j | X_0, ..., X_n = i] = P(i, j)$

- **FSE:**
 - $\beta(i) = 1 + \sum_j P(i, j) \beta(j)$
 - $\alpha(i) = \sum_j P(i, j) \alpha(j)$

- $\pi_n = \pi_0 P^n$

- π is invariant iff $\pi P = \pi$

- **Irreducible** \Rightarrow one and only one invariant distribution π

- **Irreducible** \Rightarrow fraction of time in state i approaches $\pi(i)$

- **Irreducible + Aperiodic** $\Rightarrow \pi_n \to \pi$.

- **Calculating π:**
 - $\pi = [0, 0, ..., 1] Q^{-1}$ where $Q = \cdots$.
Summary

Markov Chains

Markov Chain: $Pr[X_{n+1} = j|X_0, \ldots, X_n = i] = P(i,j)$
Summary

Markov Chains

- Markov Chain: \(\Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i,j) \)
- FSE: \(\beta(i) = 1 + \sum_j P(i,j)\beta(j) \)
Markov Chains

- Markov Chain: $Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i, j)$
- FSE: $\beta(i) = 1 + \sum_j P(i, j) \beta(j); \alpha(i) = \sum_j P(i, j) \alpha(j)$.

Summary
Summary

Markov Chains

- Markov Chain: \(Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i, j) \)
- FSE: \(\beta(i) = 1 + \sum_j P(i, j) \beta(j) \); \(\alpha(i) = \sum_j P(i, j) \alpha(j) \).
- \(\pi_n = \pi_0 P^n \)
Markov Chains

- Markov Chain: $Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i,j)$
- FSE: $\beta(i) = 1 + \sum_j P(i,j)\beta(j)$; $\alpha(i) = \sum_j P(i,j)\alpha(j)$.
- $\pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$
Markov Chains

- Markov Chain: \(Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i, j) \)
- FSE: \(\beta(i) = 1 + \sum_j P(i, j) \beta(j) \); \(\alpha(i) = \sum_j P(i, j) \alpha(j) \).
- \(\pi_n = \pi_0 P^n \)
- \(\pi \) is invariant iff \(\pi P = \pi \)
- Irreducible \(\Rightarrow \) one and only one invariant distribution \(\pi \)
Markov Chains

- Markov Chain: \(Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i,j) \)
- FSE: \(\beta(i) = 1 + \sum_j P(i,j)\beta(j) \); \(\alpha(i) = \sum_j P(i,j)\alpha(j) \).
- \(\pi_n = \pi_0 P^n \)
- \(\pi \) is invariant iff \(\pi P = \pi \)
- Irreducible \(\Rightarrow \) one and only one invariant distribution \(\pi \)
- Irreducible \(\Rightarrow \) fraction of time in state \(i \) approaches \(\pi(i) \)
Summary

Markov Chains

- Markov Chain: \(Pr[X_{n+1} = j | X_0, \ldots, X_n = i] = P(i, j) \)
- FSE: \(\beta(i) = 1 + \sum_j P(i, j)\beta(j); \alpha(i) = \sum_j P(i, j)\alpha(j). \)
- \(\pi_n = \pi_0 P^n \)
- \(\pi \) is invariant iff \(\pi P = \pi \)
- Irreducible \(\Rightarrow \) one and only one invariant distribution \(\pi \)
- Irreducible \(\Rightarrow \) fraction of time in state \(i \) approaches \(\pi(i) \)
- Irreducible + Aperiodic \(\Rightarrow \pi_n \rightarrow \pi. \)
Markov Chains

- Markov Chain: $Pr[X_{n+1} = j|X_0, \ldots, X_n = i] = P(i, j)$
- FSE: $\beta(i) = 1 + \sum_j P(i, j)\beta(j); \alpha(i) = \sum_j P(i, j)\alpha(j)$.
- $\pi_n = \pi_0 P^n$
- π is invariant iff $\pi P = \pi$
- Irreducible \Rightarrow one and only one invariant distribution π
- Irreducible \Rightarrow fraction of time in state i approaches $\pi(i)$
- Irreducible + Aperiodic \Rightarrow $\pi_n \rightarrow \pi$.
- Calculating π: One finds $\pi = [0, 0, \ldots, 1]Q^{-1}$ where $Q = \cdots$.

Summary