Lecture 27

Markov Chains

and a Few Paradoxes.
Summary of Lecture 26

- A Markov Chain is a process that moves from state to state randomly and only remembers its current state.

 - \(\mathcal{X} \) - Finite state space, usually \(\mathcal{X} = \{1, 2, \ldots, k\} \).
 - \(\pi_0 \) - the initial distribution.
 - \(P(i,j) \) - Prob. to move from state \(i \) to \(j \).

This defines a Markov Chain: sequence of r.v.s \(X_0, X_1, X_2 \ldots \).

\[
\Pr[X_0 = i] = \pi_0(i)
\]

\[
\Pr[X_n = j \mid X_{n-1} = i, \ldots, X_1, X_0] = P(i,j).
\]

\(\Pi_n \) : Prob. dist of \(X_n \).

\(\Pi_n = \pi_0 \cdot P^n \)
Let \(\{X_n\}_{n=0}^{\infty} \) be a MC on \(\mathcal{X} \), \(A \subseteq \mathcal{X} \).

- \(\beta(i) \) is the expected time to reach \(A \) starting from \(i \).
- \(\beta(i) = 0 \) for \(i \in A \).
- \(\beta(i) = 1 + \sum_j P(i,j) \beta(j) \) for \(i \notin A \).
First Step Equations

Let \(\{X_n\}_{n=0}^\infty \) be a MC on \(X \) with \(A, B \subseteq X \) and \(A \cap B \) disjoint.

\[
\alpha(i) = \Pr \left[\text{reaching } A \text{ before } B, \text{starting from } i \right]
\]

\[
\begin{align*}
\alpha(i) &= 0 & \text{for } i \in B \\
\alpha(i) &= 1 & \text{for } i \in A \\
\alpha(i) &= \sum_{j} P(i,j) \cdot \alpha(j) & \text{for } i \notin A \cup B.
\end{align*}
\]
Definition:

A distribution \(\pi \) over \(\mathcal{X} \) is stationary (aka invariant) if \(\pi = \pi P \).

If \(\pi_0 \) is stationary then \(\pi_n = \pi_0 \).
Stationary Distribution - Example

\[\Pi \text{ is stationary iff } \begin{pmatrix} \pi(1) \\ \pi(2) \end{pmatrix} = \begin{pmatrix} \pi(1) \\ \pi(2) \end{pmatrix} \cdot \begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix} \]

\[\pi(1) = \pi(1) \cdot (1-p) + \pi(2) \cdot q \quad \iff \quad \pi(1) \cdot p = \pi(2) \cdot q \]

\[\pi(2) = \pi(1) \cdot p + \pi(2) \cdot (1-q) \quad \iff \quad \pi(1) \cdot p = \pi(2) \cdot q \]

\[\pi(1) + \pi(2) = 1 \]

Solution: \[\Pi = \left[\frac{q}{p+q}, \frac{p}{p+q} \right] \]
Stationary Distributions - Example 2

Which distributions are stationary?

all of them.

\[\forall \pi \quad \pi = \pi \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]
Irreducible Markov Chains

A MC is irreducible if you can go from every state \(i \) to every state \(j \) (possibly in multiple steps).

Which MC are irreducible?

(A)

(B)

(C)

(D)
Theorem: Any finite irreducible MC has one and only one stationary distribution.

Theorem 2: (Long Term Fraction of Time in States)

If \((X_n)_{n=0}^{\infty}\) is an irreducible MC on \(\{1, \ldots, k\}\) with stationary distribution \(\pi\).

Then, for any start dist. \(\pi_0\), for all \(i \in \{1, \ldots, k\}\)

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} 1_{\{X_m = i\}} = \pi(i).
\]
Intuition: Start at a dist. \(x_0 \) and suppose the limits exist. Denote by

\[f(i) = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} 1_{X_m = i} \]

What’s the frac. of times we visit \(i \)?

What’s the frac. of times we visit \(i \) and then move to \(j \)?

In time \(m \), the MC is at state \(i \).
Intuition: Start at a dist. π_0 and suppose the limits exist. Denote by

$$f(i) = \lim_{n \to \infty} \frac{1}{n} \sum_{m=0}^{n-1} 1_{x_m = i}$$

What's the frac. of times we visit i?

What's the frac. of times we visit i and then move to j?

$$f(i) \cdot p(i,j)$$

Frac. of times we're at $j = \sum_{i} f(i) \cdot p(i,j)$$

$$\forall j \quad f(j) = \sum_{i} f(i) \cdot p(i,j)$$

In matrix-vector form $\pi = \pi \cdot \mathbf{P}$.
Let's see a simulation:

Recall this MC from lecture 26.

We'll run it for many steps and count how many times we've been in each step.
Converges to the Stationary Distribution

Example:

\[
\begin{pmatrix}
1 & \uparrow \\
\downarrow & 2
\end{pmatrix}
\]

The MC is irreducible.

It's stationary dist satisfies

\[
\begin{pmatrix}
\pi(1) \\
\pi(2)
\end{pmatrix} =
\begin{pmatrix}
\pi(1) \\
\pi(2)
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

\[
\Rightarrow \pi(1) = \pi(2) = \frac{1}{2}
\]

But starting from 1: \(\pi_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \)

\(\pi_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)

\(\pi_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) ...

\(\pi_{2n} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \)

\(\pi_{2n+1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \)
Periodicity

Defn. The periodicity of a Markov Chain with transition matrix P is the \gcd of lengths of all closed walks in the chain $\gcd(n > 0 \mid \exists i \text{ s.t. } P^n(i,i) > 0)$.

A Markov chain is **aperiodic** if this $\gcd = 1$.
Which Markov Chains are Aperiodic?

A.

B.

period: 2

C.

gcd(2, 2, 1, ...) = 1
Theorem: Let X_n be an irreducible aperiodic Markov chain with stationary dist π. Then, no matter what's the starting dist. To $\forall i: \pi_n(i) \xrightarrow{n \to \infty} \pi(i)$.
Some Paradoxes
St. Petersburg Paradox

A casino is offering you to play the following game:

- Start with a stake of 2 £.
- At each point flip a fair coin

\[\begin{align*}
H &: \text{double the stake.} \\
T &: \text{stop and give stake to player.}
\end{align*} \]

How much are you willing to pay to play this game?

What's the expected winning stake?

\[X \text{ r.v. capturing winning stake} \]

\[\Pr[X=2] = \frac{1}{2}, \quad \Pr[X=4] = \frac{1}{4}, \quad \ldots \quad \Pr[X=2^k] = \frac{1}{2^k}. \]

\[\mathbb{E}X = \sum_{i=1}^{\infty} \Pr[X=2^i] \cdot 2^i = \sum_{i=1}^{\infty} \frac{1}{2^i} \cdot 2^i = \sum_{i=1}^{\infty} 1 = \infty. \]
St. Petersburg Paradox

A casino is offering you to play the following game:

- Start with a stake of 2 £.
- At each point flip a fair coin

\[H: \text{double the stake.} \]
\[T: \text{stop and give stake to player.} \]

How much are you willing to pay to play this game?

If the casino has only \(n=2^k \) dollars. What's the expected win?

\[
E[X] = 2 \cdot \frac{1}{2} + 4 \cdot \frac{1}{4} + \ldots + 2^{k-1} \cdot \frac{1}{2^{k-1}} + 2^k \cdot \frac{1}{2^k} = k+1 = \log_2 n + 1
\]
Double-or-Nothing

Suppose you go to a casino and you want a betting strategy that will guarantee you win 1

They have a simple game. You choose how much to bet x.

They flip a fair coin $\begin{array}{c} H \quad \text{you win } x \text{ dollars} \\ T \quad \text{lose } x \text{ dollars.} \end{array}$

Strategy: Start with betting 1

else, bet 2

else, bet $-v$

$
\cdots$

Eventually a T will be flipped and you will win overall 1

Double-or-Nothing

Bet X dollars; w.p. \(\frac{1}{2} \) win X; w.p. \(\frac{1}{2} \) lose X.

Strategy:

Start with betting $1\$, if successful, stop.
else, bet $2\$, if successful stop.
else, bet $4\$, if " stop.

Eventually a H will be flipped and you will win overall $1\$.

What happens if you have a limited budget, say $1023\$:

You’ll lose $1023\$ with prob. \(\frac{1}{1024} \)
and win $1\$ with prob. \(1 - \frac{1}{1024} \).

On expectation, you’ll even out.

\[
\frac{1}{1024} \cdot (-1023) + \left(-\frac{1}{1024}\right) = 0.
\]
Confusing Statistics:

Simpson's Paradox

Results from real-life medical study:

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Stones</td>
<td>Group 1: 93% (81/87)</td>
<td>Group 2: 87% (234/270)</td>
</tr>
<tr>
<td>Large Stones</td>
<td>Group 3: 73% (192/263)</td>
<td>Group 4: 69% (55/80)</td>
</tr>
<tr>
<td>Both</td>
<td>78% (273/350)</td>
<td>83% (289/350)</td>
</tr>
</tbody>
</table>

Which treatment is better?
What's the best linear predictor of \(Y \) given \(X \)?
What's the best linear predictor of Y given X?

Trend is down: as X increases, we predict that Y decreases.
But if the data is coming from a mixture of two distributions red and blue:

In each subgroup trend is up: as \(X \) increases we predict that \(Y \) increases.
Special Thanks to the CS70 staff:

- Prof. Rao.
- TAS: Alec, Christine, Gavin, Shreyas
 Caroline, Dominic, Evelyn, Hongxun, Josh, Michelle, Nathan, Sriram, Xin, Yinxuo.
- Readers: Allen, Andrew, Arjun, Ashton, Ayush, Bryan, Carolyn, Casey, Charming, Evan, Haroon, James, Jason, Jeff, Jennifer, Matthew, Nathan, Owen, Pranesh, Raymond, Rohan, Sena, Sina, Thomas, Youngmin.

Academic Interns: Gabriel, Michael, Shaswat, Sriram, Tejasv, Yash, Zixun.
Thank you and good luck in the final!