Some quibbles.

The induction principle works on the natural numbers.
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: \(\forall n \in \mathbb{N}, P(n) \).
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: \(\forall n \in \mathbb{N}, P(n) \).

Yes.
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: $\forall n \in \mathbb{N}, P(n)$.

Yes.

What if the statement is only for $n \geq 3$?
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: \(\forall n \in \mathbb{N}, P(n) \).

Yes.

What if the statement is only for \(n \geq 3 \)?

\[\forall n \in \mathbb{N}, (n \geq 3) \implies P(n) \]
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: $\forall n \in \mathbb{N}, P(n)$. Yes.

What if the statement is only for $n \geq 3$?

$\forall n \in \mathbb{N}, (n \geq 3) \implies P(n)$

Restate as:
Some quibbles.

The induction principle works on the natural numbers.

Proves statements of form: \(\forall n \in \mathbb{N}, P(n) \).

Yes.

What if the statement is only for \(n \geq 3 \)?

\[\forall n \in \mathbb{N}, (n \geq 3) \implies P(n) \]

Restate as:

\[\forall n \in \mathbb{N}, Q(n) \text{ where } Q(n) = "(n \geq 3) \implies P(n)". \]
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: \(\forall n \in \mathbb{N}, P(n) \).

Yes.

What if the statement is only for \(n \geq 3 \)?

\[
\forall n \in \mathbb{N}, (n \geq 3) \implies P(n)
\]

Restate as:
\[
\forall n \in \mathbb{N}, Q(n) \text{ where } Q(n) = "(n \geq 3) \implies P(n)".
\]

Base Case: typically start at 3.
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: $\forall n \in \mathbb{N}, P(n)$.

Yes.

What if the statement is only for $n \geq 3$?

$$\forall n \in \mathbb{N}, (n \geq 3) \implies P(n)$$

Restate as:

$$\forall n \in \mathbb{N}, Q(n) \text{ where } Q(n) = "(n \geq 3) \implies P(n)".$$

Base Case: typically start at 3.

Since $\forall n \in \mathbb{N}, Q(n) \implies Q(n+1)$ is trivially true before 3.
Some quibbles.

The induction principle works on the natural numbers.
Proves statements of form: $\forall n \in \mathbb{N}, P(n)$.
Yes.

What if the statement is only for $n \geq 3$?
\[
\forall n \in \mathbb{N}, (n \geq 3) \implies P(n)
\]

Restate as:
\[
\forall n \in \mathbb{N}, Q(n) \text{ where } Q(n) = "(n \geq 3) \implies P(n)".
\]

Base Case: typically start at 3.
Since $\forall n \in \mathbb{N}, Q(n) \implies Q(n + 1)$ is trivially true before 3.

Can you do induction over other things? Yes.
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: $\forall n \in \mathbb{N}, P(n)$.

Yes.

What if the statement is only for $n \geq 3$?

$\forall n \in \mathbb{N}, (n \geq 3) \implies P(n)$

Restate as:

$\forall n \in \mathbb{N}, Q(n)$ where $Q(n) = "(n \geq 3) \implies P(n)"$.

Base Case: typically start at 3.
Since $\forall n \in \mathbb{N}, Q(n) \implies Q(n+1)$ is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.
Some quibbles.

The induction principle works on the natural numbers. Proves statements of form: \(\forall n \in \mathbb{N}, P(n)\).

Yes.

What if the statement is only for \(n \geq 3\)?

\[\forall n \in \mathbb{N}, (n \geq 3) \implies P(n)\]

Restate as:

\[\forall n \in \mathbb{N}, Q(n)\] where \(Q(n) = "(n \geq 3) \implies P(n)"\).

Base Case: typically start at 3.

Since \(\forall n \in \mathbb{N}, Q(n) \implies Q(n + 1)\) is trivially true before 3.

Can you do induction over other things? Yes.

Any set where any subset of the set has a smallest element.

In some sense, the natural numbers.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let's write some code!

```python
def find_x_y(n):
    if n == 12:
        return (3, 0)
    elif n == 13:
        return (2, 1)
    elif n == 14:
        return (1, 2)
    elif n == 15:
        return (0, 3)
    else:
        (x_prime, y_prime) = find_x_y(n - 4)
        return (x_prime + 1, y_prime)
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: $P(12)$, $P(13)$, $P(14)$, $P(15)$.

Yes.

Strong Induction step: Recursive call is correct: $P(n - 4) = \Rightarrow P(n)$.

$n - 4 = 4x' + 5y' = \Rightarrow n = 4(x' + 1) + 5y'$.

Slight differences: showed for all $n \geq 16$ that $\wedge n - 1 = 4P(i) = \Rightarrow P(n)$.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if n == 12:
        return (3, 0)
    elif n == 13:
        return (2, 1)
    elif n == 14:
        return (1, 2)
    elif n == 15:
        return (0, 3)
    else:
        (x', y') = find_x_y(n - 4)
        return (x' + 1, y')
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: $P(12)$, $P(13)$, $P(14)$, $P(15)$.

Yes.

Strong Induction step: Recursive call is correct: $P(n - 4)$ ⇒ $P(n)$.

$n - 4 = 4(x' + 1) + 5y' = \Rightarrow n = 4x + 5y$.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let's write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return(x’+1,y’)

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: $P(12)$, $P(13)$, $P(14)$, $P(15)$.

Yes.

Strong Induction step: Recursive call is correct: $P(n-4) = \Rightarrow P(n)$.

$n-4 = 4x’ + 5y’ = \Rightarrow n = 4(x’+1) + 5y’$.
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find_x_y(n-4)
        return(x'+1,y')
```

Prove: Given \(n \), returns \((x, y)\) where \(n = 4x + 5y \), for \(n \geq 12 \).
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let's write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x’,y’) = find-x-y(n-4)
        return(x’+1,y’)
```

Prove: Given \(n \), returns \((x, y)\) where \(n = 4x + 5y \), for \(n \geq 12 \).

Base cases:
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return (x’+1,y’)

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: P(12)
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return (x’+1,y’)

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.
Base cases: P(12) , P(13)
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return (x'+1,y')
```

Prove: Given \(n \), returns \((x, y)\) where \(n = 4x + 5y \), for \(n \geq 12 \).
Base cases: \(P(12) \), \(P(13) \), \(P(14) \)
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return(x’+1,y’)

Prove: Given \(n \), returns \((x, y)\) where \(n = 4x + 5y \), for \(n \geq 12 \).

Base cases: \(P(12) \), \(P(13) \), \(P(14) \), \(P(15) \).
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x’,y’) = find-x-y(n-4)
        return(x’+1,y’)
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: P(12), P(13), P(14), P(15). Yes.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return (x'+1,y')
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Strong Induction step:
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let's write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return (x'+1,y')
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Strong Induction step:
 Recursive call is correct: $P(n - 4)$
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let's write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Strong Induction step:
 Recursive call is correct: $P(n-4) \implies P(n)$.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if n == 12:
        return (3, 0)
    elif n == 13:
        return (2, 1)
    elif n == 14:
        return (1, 2)
    elif n == 15:
        return (0, 3)
    else:
        (x', y') = find_x_y(n - 4)
        return (x' + 1, y')
```

prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: P(12), P(13), P(14), P(15). Yes.

Strong Induction step:

Recursive call is correct: $P(n - 4) \implies P(n)$.

$n - 4 = 4x' + 5y' \implies n = 4(x' + 1) + 5(y')$
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Prove: Given n, returns (x, y) where $n = 4x + 5y$, for $n \geq 12$.

Base cases: P(12), P(13), P(14), P(15). Yes.

Strong Induction step:

Recursive call is correct: $P(n-4) \implies P(n)$.

$n - 4 = 4x' + 5y' \implies n = 4(x' + 1) + 5(y')$
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Prove: Given \(n \), returns \((x,y)\) where \(n = 4x + 5y \), for \(n \geq 12 \).

Base cases: \(P(12) \), \(P(13) \), \(P(14) \), \(P(15) \). Yes.

Strong Induction step:

Recursive call is correct: \(P(n-4) \implies P(n) \).

\[
 n - 4 = 4x' + 5y' \implies n = 4(x' + 1) + 5(y')
\]

Slight differences: showed for all \(n \geq 16 \) that \(\land_{i=4}^{n-1} P(i) \implies P(n) \).
Stable Matching Problem
Stable Matching Problem

- n candidates and n jobs.
Stable Matching Problem

- \(n \) candidates and \(n \) jobs.
- Each job has a ranked preference list of candidates.
Stable Matching Problem

- \(n \) candidates and \(n \) jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.
Stable Matching Problem

- n candidates and n jobs.
- Each job has a ranked preference list of candidates.
- Each candidate has a ranked preference list of jobs.

How should they be matched?
The best laid plans..

Consider the pairs..

- (Anthony) Davis and Pelicans
- (Lonzo) Ball and Lakers
The best laid plans..

Consider the pairs..

- (Anthony) Davis and Pelicans
- (Lonzo) Ball and Lakers

Davis prefers the Lakers.
The best laid plans..

Consider the pairs..

- (Anthony) Davis and Pelicans
- (Lonzo) Ball and Lakers

Davis prefers the Lakers.
Lakers prefer Davis.
The best laid plans..

Consider the pairs..

▶ (Anthony) Davis and Pelicans
▶ (Lonzo) Ball and Lakers

Davis prefers the Lakers.
Lakers prefer Davis.
Uh..oh.
The best laid plans..

Consider the pairs..

- (Anthony) Davis and Pelicans
- (Lonzo) Ball and Lakers

Davis prefers the Lakers.
Lakers prefer Davis.
Uh..oh. Sad Lonzo and Pelicans.
So..

Produce a matching where there are no crazy moves!
So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.
So..

Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of \(n \) job-candidate pairs.

Example: A matching \(S = \{(Lakers, Ball); (Pelicans, Davis)\} \).
Produce a matching where there are no crazy moves!

Definition: A **matching** is disjoint set of n job-candidate pairs.

Example: A matching $S = \{(\text{Lakers}, \text{Ball}); (\text{Pelicans}, \text{Davis})\}$.

Definition: A **rogue couple** b, g^* for a pairing S: b and g^* prefer each other to their partners in S.
Produce a matching where there are no crazy moves!

Definition: A matching is disjoint set of n job-candidate pairs.
Example: A matching $S = \{(\text{Lakers, Ball}); (\text{Pelicans, Davis})\}$.

Definition: A rogue couple b, g^* for a pairing S: b and g^* prefer each other to their partners in S.
Example: Davis and Lakers are a rogue couple in S.
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 2 3</td>
</tr>
<tr>
<td></td>
<td>C A B</td>
</tr>
<tr>
<td>B</td>
<td>1 2 3</td>
</tr>
<tr>
<td></td>
<td>A B C</td>
</tr>
<tr>
<td>C</td>
<td>2 1 3</td>
</tr>
<tr>
<td></td>
<td>A C B</td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th></th>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 2 3</td>
</tr>
<tr>
<td>B</td>
<td>X 2 3</td>
</tr>
<tr>
<td>C</td>
<td>2 1 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A, B</td>
<td>2 C</td>
<td>3 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 C A B</td>
</tr>
<tr>
<td>X</td>
<td>2 A B C</td>
</tr>
<tr>
<td>2 A 3</td>
<td>3 A C B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td></td>
<td>B, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 2 3</td>
</tr>
<tr>
<td>B</td>
<td>X 2 3</td>
</tr>
<tr>
<td>C</td>
<td>X 2 1 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>A, C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>B, C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 C A B</td>
</tr>
<tr>
<td>B</td>
<td>2 A B C</td>
</tr>
<tr>
<td>C</td>
<td>3 A C B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>X, C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B, C</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 C A B</td>
</tr>
<tr>
<td>B</td>
<td>2 A B C</td>
</tr>
<tr>
<td>C</td>
<td>3 A C B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>X, C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B, C</td>
<td>B</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1 C A B</td>
</tr>
<tr>
<td>B</td>
<td>2 A B C</td>
</tr>
<tr>
<td>C</td>
<td>3 A C B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>A, C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td></td>
<td>B</td>
<td>A, B</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>X, C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B, C</td>
<td>B</td>
<td>A,B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
Example.

<table>
<thead>
<tr>
<th>Jobs</th>
<th>Candidates</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>X, C</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B, C</td>
<td></td>
<td>A, B</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>B</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

6 / 29
The Propose and Reject Algorithm.

Each Day:
1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string).
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.

Does this terminate?

...produce a matching?

...a stable matching?

Do jobs or candidates do "better"?
The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string).
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.

Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do "better"?
The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
The Propose and Reject Algorithm.

Each Day:

1. Each job **proposes** to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a **string**.)
3. Rejected job **crosses** rejecting candidate off its list.
The Propose and Reject Algorithm.

Each Day:

1. Each job **proposes** to its favorite candidate on its list.

2. Each candidate rejects all but their favorite proposer (whom they put on a **string**.)

3. Rejected job **crosses** rejecting candidate off its list.

Stop when each job gets exactly one proposal.
The Propose and Reject Algorithm.

Each Day:

1. Each job **proposes** to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a **string**.)
3. Rejected job **crosses** rejecting candidate off its list.

Stop when each job gets exactly one proposal. Does this terminate?
The Propose and Reject Algorithm.

Each Day:

1. Each job *proposes* to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job *crosses* rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?
The Propose and Reject Algorithm.

Each Day:

1. Each job **proposes** to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a **string**.)
3. Rejected job **crosses** rejecting candidate off its list.

Stop when each job gets exactly one proposal. Does this terminate?

...produce a matching?

....a stable matching?
The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal. Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?
The Propose and Reject Algorithm.

Each Day:

1. Each job proposes to its favorite candidate on its list.
2. Each candidate rejects all but their favorite proposer (whom they put on a string.)
3. Rejected job crosses rejecting candidate off its list.

Stop when each job gets exactly one proposal.
Does this terminate?

...produce a matching?

....a stable matching?

Do jobs or candidates do “better”?
Termination.
Termination.

Every non-terminated day a job crossed an item off the list.
Termination.

Every non-terminated day a job **crossed** an item off the list.

Total size of lists?
Termination.

Every non-terminated day a job crossed an item off the list.
Total size of lists? n jobs, n length list.
Termination.

Every non-terminated day a job **crossed** an item off the list.
Total size of lists? n jobs, n length list. n^2
Every non-terminated day a job crossed an item off the list.
Total size of lists? n jobs, n length list. n^2
Terminates in $\leq n^2$ steps!
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates.

If on day t, a candidate has a job b on a string, any job, b', on candidate g's string for any day t' where $t' > t$ is at least as good as b.

Example: Candidate "Alice" has job "Amalgamated Concrete" on string on day 5. She has job "Amalgamated Asphalt" on string on day 7. Does Alice prefer "Amalgamated Asphalt" or "Amalgamated Concrete"?

g - 'Alice', b - 'Am. Con.', b' - 'Am. Asph.', $t = 5$, $t' = 7$.

Improvement Lemma says she prefers "Amalgamated Asphalt".

Day 10: Can Alice have "Amalgamated Asphalt" on her string? Yes. Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.

Why is lemma true? Proof Idea: She can always keep the previous job on the string.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string,
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g's string for any day $t' > t$ is at least as good as b.

Example: Candidate "Alice" has job "Amalgamated Concrete" on string on day 5. She has job "Amalgamated Asphalt" on string on day 7. Does Alice prefer "Amalgamated Asphalt" or "Amalgamated Concrete"?

g - 'Alice', b - 'Am. Con.', b' - 'Am. Asph.', $t = 5$, $t' = 7$.

Improvement Lemma says she prefers "Amalgamated Asphalt".

Day 10: Can Alice have "Amalgamated Asphalt" on her string?

Yes. Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.
It gets better every day for candidates.

ImprovementLemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g's string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g's string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g's string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Amalgamated Asphalt” or “Amalgamated Concrete”?
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day \(t \) a candidate \(g \) has a job \(b \) on a string, any job, \(b' \), on candidate \(g \)'s string for any day \(t' > t \) is at least as good as \(b \).

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.
She has job “Amalgamated Asphalt” on string on day 7.
Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?
\(g - 'Alice', b - 'Am. Con.', b' - 'Am. Asph.', t = 5, t' = 7. \)
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.
She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string?
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ‘Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Amalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Amalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

g - ‘Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.

Why is lemma true?
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Amalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Amalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.

Why is lemma true?
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates
If on day t a candidate g has a job b on a string, any job, b', on candidate g's string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.
She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

Improvement Lemma says she prefers 'Almalgamated Asphalt'.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.

Why is lemma true?

Proof Idea:
It gets better every day for candidates.

Improvement Lemma: It just gets better for candidates

If on day t a candidate g has a job b on a string, any job, b', on candidate g’s string for any day $t' > t$ is at least as good as b.

Example: Candidate “Alice” has job “Amalgamated Concrete” on string on day 5.

She has job “Amalgamated Asphalt” on string on day 7.

Does Alice prefer “Almalgamated Asphalt” or “Amalgamated Concrete”?

g - ’Alice’, b - ’Am. Con.’, b' - ’Am. Asph.’, $t = 5$, $t' = 7$.

Improvement Lemma says she prefers ’Almalgamated Asphalt’.

Day 10: Can Alice have “Amalgamated Asphalt” on her string? Yes.

Alice prefers day 10 job as much as day 7 job. Here, $b = b'$.

Why is lemma true?

Proof Idea: She can always keep the previous job on the string.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day \(t \) a candidate \(g \) has a job \(b \) on a string, any job, \(b' \), on \(g \)'s string for any day \(t' > t \) is at least as good as \(b \).
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g's string for any day $t' > t$ is at least as good as b.

Proof:
Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:
$P(k)$ - “job on g’s string is at least as good as b on day $t + k$”
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day \(t \) a candidate \(g \) has a job \(b \) on a string, any job, \(b' \), on \(g \)'s string for any day \(t' > t \) is at least as good as \(b \).

Proof:
\(P(k) \)- - “job on \(g \)'s string is at least as good as \(b \) on day \(t + k \)”

\(P(0) \)- true. Candidate has \(b \) on string.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day \(t \) a candidate \(g \) has a job \(b \) on a string, any job, \(b' \), on \(g \)'s string for any day \(t' > t \) is at least as good as \(b \).

Proof:

\(P(k) \)- “job on \(g \)'s string is at least as good as \(b \) on day \(t + k \)”

\(P(0) \)- true. Candidate has \(b \) on string.

Assume \(P(k) \). Let \(b' \) be job **on string** on day \(t + k \).
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$- - “job on g’s string is at least as good as b on day $t + k$”

$P(0)$– true. Candidate has b on string.

Assume $P(k)$. Let b' be job **on string** on day $t + k$.

On day $t + k + 1$, job b' comes back.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$- “job on g’s string is at least as good as b on day $t + k$”

$P(0)$– true. Candidate has b on string.

Assume $P(k)$. Let b' be job **on string** on day $t + k$.

On day $t + k + 1$, job b' comes back.

Candidate g can choose b',
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day \(t \) a candidate \(g \) has a job \(b \) on a string, any job, \(b' \), on \(g \)'s string for any day \(t' > t \) is at least as good as \(b \).

Proof:

\(P(k) \)- - “job on \(g \)'s string is at least as good as \(b \) on day \(t + k \)”

\(P(0) \)- true. Candidate has \(b \) on string.

Assume \(P(k) \). Let \(b' \) be job \textbf{on string} on day \(t + k \).

On day \(t + k + 1 \), job \(b' \) comes back.

Candidate \(g \) can choose \(b' \), or do better with another job, \(b'' \)
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$— “job on g’s string is at least as good as b on day $t + k$”

$P(0)$— true. Candidate has b on string.

Assume $P(k)$. Let b' be job **on string** on day $t + k$.

On day $t + k + 1$, job b' comes back.

 Candidate g can choose b', or do better with another job, b''

That is,
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$ - “job on g’s string is at least as good as b on day $t + k$”

$P(0)$ – true. Candidate has b on string.

Assume $P(k)$. Let b' be job on string on day $t + k$.

On day $t + k + 1$, job b' comes back.

Candidate g can choose b', or do better with another job, b''

That is, $b' \geq b$ by induction hypothesis.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$ - “job on g’s string is at least as good as b on day $t + k$”

$P(0)$ – true. Candidate has b on string.

Assume $P(k)$. Let b' be job on string on day $t + k$.

On day $t + k + 1$, job b' comes back.

Candidate g can choose b', or do better with another job, b''

That is, $b' \geq b$ by induction hypothesis.

And b'' is better than b' by algorithm.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$ - “job on g’s string is at least as good as b on day $t + k$”

$P(0)$ – true. Candidate has b on string.

Assume $P(k)$. Let b' be job on string on day $t + k$.

On day $t + k + 1$, job b' comes back.

Candidate g can choose b', or do better with another job, b''

That is, $b' \geq b$ by induction hypothesis.

And b'' is better than b' by algorithm.

\implies Candidate does at least as well as with b.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.
If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:
$P(k)$- - “job on g’s string is at least as good as b on day $t+k$”
$P(0)$– true. Candidate has b on string.

Assume $P(k)$. Let b' be job on string on day $t+k$.

On day $t+k+1$, job b' comes back.
Candidate g can choose b', or do better with another job, b''

That is, $b' \geq b$ by induction hypothesis.
And b'' is better than b' by algorithm.
\[\implies \text{Candidate does at least as well as with } b. \]

$P(k) \implies P(k+1)$.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day t a candidate g has a job b on a string, any job, b', on g’s string for any day $t' > t$ is at least as good as b.

Proof:

$P(k)$ - “job on g’s string is at least as good as b on day $t + k$”

$P(0)$ – true. Candidate has b on string.

Assume $P(k)$. Let b' be job on string on day $t + k$.

On day $t + k + 1$, job b' comes back.

Candidate g can choose b', or do better with another job, b''

That is, $b' \geq b$ by induction hypothesis.

And b'' is better than b' by algorithm.

\implies Candidate does at least as well as with b.

$P(k) \implies P(k + 1)$.

And by principle of induction, lemma holds for every day after t.
Improvement Lemma

Improvement Lemma: It just gets better for candidates.

If on day \(t \) a candidate \(g \) has a job \(b \) on a string, any job, \(b' \), on \(g \)'s string for any day \(t' > t \) is at least as good as \(b \).

Proof:

\(P(k) \) - “job on \(g \)'s string is at least as good as \(b \) on day \(t + k \)”

\(P(0) \) – true. Candidate has \(b \) on string.

Assume \(P(k) \). Let \(b' \) be job on string on day \(t + k \).

On day \(t + k + 1 \), job \(b' \) comes back.

Candidate \(g \) can choose \(b' \), or do better with another job, \(b'' \)

That is, \(b' \geq b \) by induction hypothesis.

And \(b'' \) is better than \(b' \) by algorithm.

\(\implies \) Candidate does at least as well as with \(b \).

\(P(k) \implies P(k + 1) \).

And by principle of induction, lemma holds for every day after \(t \).
Poll

Question: It just gets better for candidates, because?

(A) Induction on days.
(B) When the economy is good.
(C) The candidate can always keep the job on the string.
Matching when done.

Lemma: Every job is matched at end.
Lemma: Every job is matched at end.

Proof:
Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.
Every candidate has been proposed to by b, ...
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b, and Improvement lemma
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.
Every candidate has been proposed to by b, and Improvement lemma

\implies each candidate has a job on a string.
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times. Every candidate has been proposed to by b, and Improvement lemma

\implies each candidate has a job on a string.

and each job is on at most one string.
Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b, and Improvement lemma

$$\implies \text{each candidate has a job on a string.}$$

and each job is on at most one string.

n candidates and n jobs.
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.
Every candidate has been proposed to by b, and Improvement lemma

\implies each candidate has a job on a string.
and each job is on at most one string.

n candidates and n jobs. Same number of each.
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b, and Improvement lemma

$$\implies \text{ each candidate has a job on a string.}$$

and each job is on at most one string.

n candidates and n jobs. Same number of each.
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.
Every candidate has been proposed to by b, and Improvement lemma

\implies each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

\implies b must be on some candidate’s string!
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b, and Improvement lemma

$$\implies \text{each candidate has a job on a string.}$$

and each job is on at most one string.

n candidates and n jobs. Same number of each.

$$\implies b \text{ must be on some candidate’s string!}$$
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.

Every candidate has been proposed to by b, and Improvement lemma

\implies each candidate has a job on a string.

and each job is on at most one string.

n candidates and n jobs. Same number of each.

\implies b must be on some candidate’s string!

Contradiction.
Matching when done.

Lemma: Every job is matched at end.

Proof:
If not, a job b must have been rejected n times.
Every candidate has been proposed to by b,
and Improvement lemma

$$\Rightarrow \text{ each candidate has a job on a string.}$$

and each job is on at most one string.

n candidates and n jobs. Same number of each.

$$\Rightarrow b \text{ must be on some candidate’s string!}$$

Contradiction.
Question: The argument for termination uses.

(A) Implies: no unmatched job at end.

(B) Improvement Lemma: every candidate matched.

(C) Algorithm: unmatched job would ask everyone.

(D) Implies: every one gets their favorite job.
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
 b^* & \quad \quad g^* \\
 b & \quad \quad g
\end{align*}
\]

Job \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
By improvement lemma, \(g^*\) prefers \(b^*\) to \(b\).

Contradiction!
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{array}{c}
 b^* \\
\hline
 g^* \\
\hline
 b \\
\hline
 g
\end{array}
\]

Job \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)

By improvement lemma, \(g^*\) prefers \(b^*\) to \(b\).

Contradiction!
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
 b^* & \quad g^* \quad b \text{ prefers } g^* \text{ to } g. \\
 b & \quad g
\end{align*}
\]

Job \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
By improvement lemma, \(g^*\) prefers \(b^*\) to \(b\).

Contradiction!
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
 b^* & \quad \cdashline \quad g^* \\
 b & \quad \cdashline \quad g \\
\end{align*}
\]

\(b\) prefers \(g^*\) to \(g\).

\(g^*\) prefers \(b\) to \(b^*\).
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
 b^* & \quad \quad \quad g^* \\
 b & \quad \quad \quad g
\end{align*}
\]

- \(b^*\) prefers \(g^*\) to \(g\).
- \(g^*\) prefers \(b\) to \(b^*\).
- Job \(b\) proposes to \(g^*\) before proposing to \(g\).
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
 b^* & \quad \vdash \quad g^* \\
 b & \quad \vdash \quad g
\end{align*}
\]

- \(b^*\) prefers \(g^*\) to \(g\).
- \(g^*\) prefers \(b\) to \(b^*\).

Job \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; (b, g^*)

\[
\begin{align*}
\text{b}^* & \quad \quad \quad \text{g}^* \\
\text{b} & \quad \quad \quad \text{g}
\end{align*}
\]

b prefers g^* to g.

g^* prefers b to b^*.

Job b proposes to g^* before proposing to g.

So g^* rejected b (since he moved on)

By improvement lemma, g^* prefers b^* to b.
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
 b^* & \rightarrow g^* & b & \text{prefers } g^* \text{ to } g. \\
 b & \rightarrow g & g^* & \text{prefers } b \text{ to } b^*.
\end{align*}
\]

Job \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
By improvement lemma, \(g^*\) prefers \(b^*\) to \(b\).
Contradiction!
Matching is Stable.

Lemma: There is no rogue couple for the matching formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{array}{c}
 b^* & \rightarrow & g^* \\
 b & \rightarrow & g
\end{array}
\]

- \(b^*\) prefers \(g^*\) to \(g\).
- \(g^*\) prefers \(b\) to \(b^*\).

Job \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
By improvement lemma, \(g^*\) prefers \(b^*\) to \(b\).

Contradiction!
Good for jobs? candidates?

Is the Job-Proposes better for jobs?
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x''s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x''s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list. True? False?

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching? Is it possible: b-optimal pairing different from the b'-optimal matching! Yes? No?
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is **x-optimal** if x’s partner is its best partner in any **stable** pairing.

Claim: The optimal partner for a job must be first in its preference list.
True?
False!
Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Is it possible:
b-optimal pairing different from the b′-optimal matching!
Yes?
No?

15 / 29
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is *x-optimal* if *x*'s partner is its best partner in any stable pairing.

Definition: A matching is *x-pessimal* if *x*'s partner is its worst partner in any stable pairing.

Claim: The optimal partner for a job must be first in its preference list.

True? False!

Subtlety here: Best partner in any stable matching.

As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?

Is it possible:

b-optimal pairing different from the b′-optimal matching!

Yes? No?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is *x-optimal* if *x*’s partner is its best partner in any *stable* pairing.

Definition: A matching is *x-pessimal* if *x*’s partner is its worst partner in any *stable* pairing.

Definition: A matching is *job optimal* if it is *x-optimal* for all jobs *x*.

Claim: The optimal partner for a job must be first in its preference list.

True? False!

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x's partner is its worst partner in any stable pairing.

Definition: A matching is **job optimal** if it is x-optimal for all jobs x.

.. and so on for job pessimal, candidate optimal, candidate pessimal.
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is **x-optimal** if x’s partner is its best partner in any stable pairing.

Definition: A matching is **x-pessimal** if x’s partner is its worst partner in any stable pairing.

Definition: A matching is **job optimal** if it is x-optimal for all jobs x. ..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True?
Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is \(x \)-optimal if \(x \)'s partner is its best partner in any stable pairing.

Definition: A matching is \(x \)-pessimal if \(x \)'s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is \(x \)-optimal for all jobs \(x \).

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False?
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x's partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x's partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is *x-optimal* if *x*'s partner is its best partner in any stable pairing.

Definition: A matching is *x-pessimal* if *x*'s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is *x-optimal* for all jobs *x*.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.

As well as you can be in a globally stable solution!
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is **x-optimal** if x’s partner is its best partner in any stable pairing.

Definition: A matching is **x-pessimal** if x’s partner is its worst partner in any stable pairing.

Definition: A matching is **job optimal** if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.

As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?

Is it possible:
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?

Is it possible:

b-optimal pairing different from the b'-optimal matching!
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching? Is it possible:

- b-optimal pairing different from the b'-optimal matching!

Yes?
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching. As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?

Is it possible:

b-optimal pairing different from the b'-optimal matching!

Yes? No?
Good for jobs? candidates?

Is the Job-Proposes better for jobs? for candidates?

Definition: A matching is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A matching is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A matching is job optimal if it is x-optimal for all jobs x.

..and so on for job pessimal, candidate optimal, candidate pessimal.

Claim: The optimal partner for a job must be first in its preference list.

True? False? False!

Subtlety here: Best partner in any stable matching.

As well as you can be in a globally stable solution!

Question: Is there a job or candidate optimal matching?

Is it possible:

b-optimal pairing different from the b'-optimal matching!

Yes? No?
Question: The SMA produces a stable pairing is a proof by?

(A) Contradiction.
(B) Uses the improvement lemma.
(C) Induction.
(D) Direct.
Understanding Optimality: by example.

A: 1,2
1: A,B
B: 1,2
2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.
Optimal for B? Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.
Also optimal for A, 1 and 2.

Also pessimal for A, B, 1 and 2.

Pairing S: (A, 1), (B, 2).
Stable? Yes.

Pairing T: (A, 2), (B, 1).
Also Stable.
Which is optimal for A? S
Which is optimal for B? S
Which is optimal for 1? T
Which is optimal for 2? T
Understanding Optimality: by example.

A: 1,2
B: 1,2

1: A,B
2: B,A

Consider pairing: \((A, 1), (B, 2)\).
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable?
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.
Understanding Optimality: by example.

A: 1,2
1: A,B

B: 1,2
2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Understanding Optimality: by example.

A: 1,2
B: 1,2

Consider pairing: \((A, 1), (B, 2)\).

Stable? Yes.

Optimal for \(B\)?
Notice: only one stable pairing.
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: \((A, 1), (B, 2)\).

Stable? Yes.

Optimal for \(B\)?
Notice: only one stable pairing.
So this is the best \(B\) can do in a stable pairing.
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.
Understanding Optimality: by example.

A: 1,2
B: 1,2

Consider pairing: (A,1), (B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2.
Understanding Optimality: by example.

A: 1,2
1: A,B

B: 1,2
2: B,A

Consider pairing: (A,1), (B,2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B
Understanding Optimality: by example.

A: 1,2
B: 1,2

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B, 1 and 2.

A: 1,2
B: 2,1

Pairing S: (A, 1), (B, 2).
Understanding Optimality: by example.

A: 1,2
B: 1,2

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2
B: 2,1

Pairing S: (A, 1), (B, 2). Stable?
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B, 1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Understanding Optimality: by example.

A: 1,2
B: 1,2

Consider pairing: \((A, 1), (B, 2)\).

Stable? Yes.

Optimal for \(B\)?
Notice: only one stable pairing.
So this is the best \(B\) can do in a stable pairing.
So optimal for \(B\).

Also optimal for \(A\), 1 and 2. Also pessimal for \(A, B, 1\) and 2.

A: 1,2
B: 2,1

Pairing \(S\): \((A, 1), (B, 2)\). Stable? Yes.
Understanding Optimality: by example.

A: 1,2
B: 1,2

1: A,B
2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B, 1 and 2.

A: 1,2
B: 2,1

1: B,A
2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Pairing T: (A, 2), (B, 1).
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B, 1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Pairing T: (A, 2), (B, 1). Also Stable.
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A, B, 1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Pairing T: (A, 2), (B, 1). Also Stable.
Which is optimal for A?
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?

Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B, 1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.

Pairing T: (A, 2), (B, 1). Also Stable.

Which is optimal for A? S
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Pairing T: (A, 2), (B, 1). Also Stable.

Which is optimal for A? S
Which is optimal for B?
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: \((A, 1), (B, 2)\).

Stable? Yes.

Optimal for \(B\)?
Notice: only one stable pairing.
So this is the best \(B\) can do in a stable pairing.
So optimal for \(B\).

Also optimal for \(A\), 1 and 2. Also pessimal for \(A,B,1\) and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing \(S\): \((A, 1), (B, 2)\). Stable? Yes.

Pairing \(T\): \((A, 2), (B, 1)\). Also Stable.

Which is optimal for \(A\)? \(S\) Which is optimal for \(B\)? \(S\)
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B, 1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Pairing T: (A, 2), (B, 1). Also Stable.

Which is optimal for A? S
Which is optimal for B? S
Which is optimal for 1?
Understanding Optimality: by example.

A: 1,2
B: 1,2

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B? Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2
B: 2,1

Pairing S: (A, 1), (B, 2). Stable? Yes.

Pairing T: (A, 2), (B, 1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.
Pairing T: (A, 2), (B, 1). Also Stable.

Which is optimal for A? S
Which is optimal for B? S
Which is optimal for 1? T
Which is optimal for 2?
Understanding Optimality: by example.

A: 1,2 1: A,B
B: 1,2 2: B,A

Consider pairing: (A, 1), (B, 2).

Stable? Yes.

Optimal for B?
Notice: only one stable pairing.
So this is the best B can do in a stable pairing.
So optimal for B.

Also optimal for A, 1 and 2. Also pessimal for A,B,1 and 2.

A: 1,2 1: B,A
B: 2,1 2: A,B

Pairing S: (A, 1), (B, 2). Stable? Yes.

Pairing T: (A, 2), (B, 1). Also Stable.

Which is optimal for A? S Which is optimal for B? S
Which is optimal for 1? T Which is optimal for 2? T
Job Propose and Candidate Reject is optimal!

For jobs?

Theorem:
Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.
There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected by its optimal candidate g who it is paired with in stable pairing S.

$b^* -$ knocks b off of g's string on day t.

By choice of t, b^* prefers g to b.

By choice of t, b^* likes g at least as much as optimal candidate.

b^* prefers g to its partner g^* in S.

Rogue couple for S.

So S is not a stable pairing.

Notes:
S - stable.
$(b^*, g^*) \in S$.

But (b^*, g) is rogue couple!

Used Well-Ordering principle...

Induction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem:
Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).
There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected by its optimal candidate \(g \) who it is paired with in stable pairing \(S \).

\(b^* \) knocks \(b \) off of \(g \)'s string on day \(t \) \(\Rightarrow \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) likes \(g \) at least as much as optimal candidate.

\(\Rightarrow \) \(b^* \) prefers \(g \) to its partner \(g^* \) in \(S \).

Rogue couple for \(S \).

So \(S \) is not a stable pairing.

Contradiction.

Notes:
\(S \) - stable.
\((b^*, g^*) \) \(\in \) \(S \).

But \((b^*, g) \) is rogue couple!

Used Well-Ordering principle...

Induction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not:

There is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected by its optimal candidate g who it is paired with in stable pairing S.

b^* knocks b off of g's string on day t.

By choice of t, b^* prefers g to b.

b^* prefers g to its partner g^* in S.

Rogue couple for S.

So S is not a stable pairing.

Contradiction.

Notes:
S - stable.
S - stable.
$(b^*, g^*) \in S$.
But (b^*, g^*) is rogue couple!

Used Well-Ordering principle...
Induction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

Notes:
- S - stable.
- $(b^*, g^*) \in S$.
- But (b^*, g^*) is rogue couple!
- Used Well-Ordering principle...
- Induction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).

There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected
 by its optimal candidate \(g \) who it is paired with
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b^* - knocks b off of g’s string on day t
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected by its optimal candidate g who it is paired with in stable pairing S.

b^* - knocks b off of g’s string on day $t \implies g$ prefers b^* to b
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).

There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected by its optimal candidate \(g \) who it is paired with in stable pairing \(S \).

\(b^* \) - knocks \(b \) off of \(g \)'s string on day \(t \) \(\implies \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) likes \(g \) at least as much as optimal candidate.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected by its optimal candidate g who it is paired with in stable pairing S.

b^* - knocks b off of g’s string on day t \implies g prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Notes:
S - stable.
$(b^*, g^*) \in S$.
But (b^*, g) is rogue couple!

Used Well-Ordering principle...
Induction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b^* - knocks b off of g’s string on day t $\implies g$ prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Rogue couple for S.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b^* - knocks b off of g’s string on day t \implies g prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Rogue couple for S.
So S is not a stable pairing.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b^* - knocks b off of g's string on day $t \implies g$ prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
 by its optimal candidate g who it is paired with
 in stable pairing S.

b^* - knocks b off of g’s string on day $t \implies g$ prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).

There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected
by its optimal candidate \(g \) who it is paired with
in stable pairing \(S \).

\(b^* \) - knocks \(b \) off of \(g \)'s string on day \(t \) \(\implies \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) likes \(g \) at least as much as optimal candidate.

\(\implies \) \(b^* \) prefers \(g \) to its partner \(g^* \) in \(S \).

Rogue couple for \(S \).
So \(S \) is not a stable pairing. Contradiction.

Notes:
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).

There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected by its optimal candidate \(g \) who it is paired with in stable pairing \(S \).

\(b^* \) - knocks \(b \) off of \(g \)'s string on day \(t \) \(\implies \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) likes \(g \) at least as much as optimal candidate.

\(\implies \) \(b^* \) prefers \(g \) to its partner \(g^* \) in \(S \).

Rogue couple for \(S \).
So \(S \) is not a stable pairing. Contradiction.

Notes: \(S \) - stable.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b^* - knocks b off of g’s string on day t \implies g prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$.
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).

There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected
 by its optimal candidate \(g \) who it is paired with
 in stable pairing \(S \).

\(b^* \) - knocks \(b \) off of \(g \)'s string on day \(t \) \(\implies \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) likes \(g \) at least as much as optimal candidate.

\(\implies \) \(b^* \) prefers \(g \) to its partner \(g^* \) in \(S \).

Rogue couple for \(S \).
So \(S \) is not a stable pairing. Contradiction. \(\square \)

Notes: \(S \) - stable. \((b^*, g^*) \in S\). But \((b^*, g)\)
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected by its optimal candidate g who it is paired with in stable pairing S.

b^\ast - knocks b off of g’s string on day $t \implies g$ prefers b^\ast to b

By choice of t, b^\ast likes g at least as much as optimal candidate.

$\implies b^\ast$ prefers g to its partner g^\ast in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. $(b^\ast, g^\ast) \in S$. But (b^\ast, g) is rogue couple!
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job b does not get optimal candidate, g.

There is a stable pairing S where b and g are paired.

Let t be first day job b gets rejected
by its optimal candidate g who it is paired with
in stable pairing S.

b^* - knocks b off of g’s string on day t \implies g prefers b^* to b

By choice of t, b^* likes g at least as much as optimal candidate.

$\implies b^*$ prefers g to its partner g^* in S.

Rogue couple for S.
So S is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...
Job Propose and Candidate Reject is optimal!

For jobs? For candidates?

Theorem: Job Propose and Reject produces a job-optimal pairing.

Proof:
Assume not: there is a job \(b \) does not get optimal candidate, \(g \).

There is a stable pairing \(S \) where \(b \) and \(g \) are paired.

Let \(t \) be first day job \(b \) gets rejected
by its optimal candidate \(g \) who it is paired with
in stable pairing \(S \).

\(b^* \) - knocks \(b \) off of \(g \)'s string on day \(t \) \(\implies \) \(g \) prefers \(b^* \) to \(b \)

By choice of \(t \), \(b^* \) likes \(g \) at least as much as optimal candidate.

\(\implies b^* \) prefers \(g \) to its partner \(g^* \) in \(S \).

Rogue couple for \(S \).
So \(S \) is not a stable pairing. Contradiction.

Notes: \(S \) - stable. \((b^*, g^*) \in S \). But \((b^*, g) \) is rogue couple!

Used Well-Ordering principle...Induction.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

\(T \) – pairing produced by JPR.
\(S \) – worse stable pairing for candidate \(g \).

In \(T \), \((g, b)\) is pair.
In \(S \), \((g, b^*)\) is pair.
\(g \) prefers \(b \) to \(b^* \).

\(T \) is job optimal, so \(b \) prefers \(g \) to its partner in \(S \).
\((g, b) \) is Rogue couple for \(S \).
\(S \) is not stable.
Contradiction.

Notes: Not really induction.
Structural statement: Job optimality \(\Rightarrow \) Candidate pessimality.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

- \(T \) – pairing produced by JPR.
- \(S \) – worse stable pairing for candidate \(g \).
 - In \(T \), \((g, b)\) is pair.
 - In \(S \), \((g, b^∗)\) is pair.
 - \(g \) prefers \(b \) to \(b^∗ \).
 - \(T \) is job optimal, so \(b \) prefers \(g \) to its partner in \(S \).
 - \((g, b)\) is Rogue couple for \(S \).
 - \(S \) is not stable.

Contradiction.

Notes:
- Not really induction.
- Structural statement: Job optimality \(\implies \) Candidate pessimality.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

Notes:
- Not really induction.
- Structural statement: Job optimality \Rightarrow Candidate pessimality.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

- T – pairing produced by JPR.
- S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

Notes:

- Not really induction.
- Structural statement: Job optimality \Rightarrow Candidate pessimality.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

- T – pairing produced by JPR.
- S – worse stable pairing for candidate g.

In T, (g, b) is pair.
In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g, b) is Rogue couple for S
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g,b) is pair.

In S, (g,b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S.

S is not stable.

Notes:

- Not really induction.
- Structural statement: Job optimality \Rightarrow Candidate pessimality.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g, b) is Rogue couple for S.

S is not stable.

Contradiction.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g, b) is Rogue couple for S

S is not stable.

Contradiction.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g, b) is Rogue couple for S.

S is not stable.

Contradiction.

Notes:
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

* T – pairing produced by JPR.
* S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g, b) is Rogue couple for S.

S is not stable.

Contradiction.

Notes: Not really induction.
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g,b) is pair.

In S, (g,b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g,b) is Rogue couple for S.

S is not stable.

Contradiction.

Notes: Not really induction.

 Structural statement: Job optimality
How about for candidates?

Theorem: Job Propose and Reject produces candidate-pessimal pairing.

T – pairing produced by JPR.

S – worse stable pairing for candidate g.

In T, (g, b) is pair.

In S, (g, b^*) is pair.

g prefers b to b^*.

T is job optimal, so b prefers g to its partner in S.

(g, b) is Rogue couple for S.

S is not stable.

Contradiction.

Notes: Not really induction.

Structural statement: Job optimality \implies Candidate pessimality.
Quick Questions.

How does one make it better for candidates?
Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side proposes.
Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side proposes.

Jobs Propose \implies job optimal.
Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side proposes.
Jobs Propose \implies job optimal.
Candidates propose.
Quick Questions.

How does one make it better for candidates?

Propose and Reject - stable matching algorithm. One side proposes.
- Jobs Propose \implies job optimal.
- Candidates propose. \implies optimal for candidates.
Residency Matching..
Residency Matching..

The method was used to match residents to hospitals.
The method was used to match residents to hospitals.

Hospital optimal....
Residency Matching..

The method was used to match residents to hospitals.
Hospital optimal....
..until 1990’s...
The method was used to match residents to hospitals.
Hospital optimal....
..until 1990’s...Resident optimal.
Residency Matching..

The method was used to match residents to hospitals. Hospital optimal.... ..until 1990’s...Resident optimal. Another variation: couples.
Residency Matching...

The method was used to match residents to hospitals.

Hospital optimal....

..until 1990’s...Resident optimal.

Another variation: couples.
Takeaways.

Analysis of cool algorithm with interesting goal: stability.
Takeaways.

Analysis of cool algorithm with interesting goal: stability.
“Economic”: different utilities.
Analysis of cool algorithm with interesting goal: stability.

“Economic”: different utilities.

Definition of optimality: best utility in stable world.
Takeaways.

Analysis of cool algorithm with interesting goal: stability.
“Economic”: different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability.
Takeaways.

Analysis of cool algorithm with interesting goal: stability.
“Economic”: different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability.
Induction over steps of algorithm.
Takeaways.

Analysis of cool algorithm with interesting goal: stability.
“Economic”: different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability.
Induction over steps of algorithm.
Proofs carefully use definition:
Takeaways.

Analysis of cool algorithm with interesting goal: stability.
“Economic”: different utilities.
Definition of optimality: best utility in stable world.
Action gives better results for individuals but gives instability.
Induction over steps of algorithm.
Proofs carefully use definition:
 Optimality proof:
 contradiction of the existence of a better pairing.