Lecture Outline

Strengthening Induction Hypothesis.
Strengthening Induction Hypothesis.
Strong Induction
Lecture Outline

- Strengthening Induction Hypothesis.
- Strong Induction
- Well ordered principle.
Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

Strengthening Induction Hypothesis.

Base Case 1 (1st odd number) is 1^2.

Induction Hypothesis: Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step: To prove that sum of first $k+1$ odds is $(k+1)^2$.

1. The $(k+1)$st odd number is $2(k+1) - 1 = 2k+1$.
2. Sum of the first $k+1$ odds is $a^2 + 2k + 1 = k^2 + 2k + 1$.
3. $k^2 + 2k + 1 = (k+1)^2$.

... P($k+1$)!
Strengthening Induction Hypothesis.

Theorem: The sum of the first \(n \) odd numbers is a perfect square.

Theorem: The sum of the first \(n \) odd numbers is \(n^2 \).

\(k \)th odd number is \(2k - 1 \) for \(k \geq 1 \).
Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

kth odd number is $2k - 1$ for $k \geq 1$.

Base Case 1 (1st odd number) is 1^2.
Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

The kth odd number is $2k - 1$ for $k \geq 1$.

Base Case 1 (1st odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.
Theorem: The sum of the first \(n \) odd numbers is a perfect square.

Theorem: The sum of the first \(n \) odd numbers is \(n^2 \).

\[k \text{th odd number is } 2k - 1 \text{ for } k \geq 1. \]

Base Case 1 (1st odd number) is \(1^2 \).

Induction Hypothesis Sum of first \(k \) odds is perfect square \(a^2 = k^2 \).

Induction Step To prove that sum of first \(k + 1 \) odds is \((k + 1)^2 \).
Theorem: The sum of the first n odd numbers is a perfect square.\[n^2. \]

Theorem: The sum of the first n odd numbers is n^2.\[k \text{th odd number is } 2k - 1 \text{ for } k \geq 1. \]

Base Case 1 (1st odd number) is 1^2.\[\text{Induction Hypothesis} \quad \text{Sum of first } k \text{ odds is perfect square } a^2 = k^2. \]

Induction Step To prove that sum of first $k + 1$ odds is $(k + 1)^2$.\[1. \text{ The } (k + 1)\text{st odd number is } 2(k + 1) - 1 = 2k + 1. \]
Strengthening Induction Hypothesis.

Theorem: The sum of the first \(n \) odd numbers is a perfect square.

Theorem: The sum of the first \(n \) odd numbers is \(n^2 \).

\[
\text{kth odd number is } 2k - 1 \text{ for } k \geq 1.
\]

Base Case \(1 \) (1st odd number) is \(1^2 \).

Induction Hypothesis Sum of first \(k \) odds is perfect square \(a^2 = k^2 \).

Induction Step To prove that sum of first \(k + 1 \) odds is \((k + 1)^2\).

1. The \((k + 1)\)st odd number is \(2(k + 1) - 1 = 2k + 1 \).
2. Sum of the first \(k + 1 \) odds is \(a^2 + 2k + 1 = k^2 + 2k + 1 \)
Strengthening Induction Hypothesis.

Theorem: The sum of the first \(n \) odd numbers is a perfect square.

Theorem: The sum of the first \(n \) odd numbers is \(n^2 \).

\(k \)th odd number is \(2k - 1 \) for \(k \geq 1 \).

Base Case 1 (1st odd number) is \(1^2 \).

Induction Hypothesis Sum of first \(k \) odds is perfect square \(a^2 = k^2 \).

Induction Step To prove that sum of first \(k + 1 \) odds is \((k + 1)^2 \).

1. The \((k + 1) \)st odd number is \(2(k + 1) - 1 = 2k + 1 \).
2. Sum of the first \(k + 1 \) odds is
 \[a^2 + 2k + 1 = k^2 + 2k + 1 \]
3. \(k^2 + 2k + 1 = (k + 1)^2 \)
 ... \(P(k+1) \)!

\(\Box \)
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles with a center hole.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles with a center hole.

Can we tile any $2^n \times 2^n$ with L-tiles (with a hole)
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles.

with a center hole.

Can we tile any $2^n \times 2^n$ with L-tiles (with a hole) for every n!
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$.
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

Hole have to be there? Maybe just one?
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

$$2^{2(k+1)}$$
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

$$2^{2(k+1)} = 2^{2k} \times 2^2$$
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

\[
\begin{align*}
2^{2(k+1)} &= 2^{2k} \times 2^2 \\
&= 4 \times 2^{2k}
\end{align*}
\]
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \times 2^2 \\
= 4 \times 2^{2k} \\
= 4 \times (3a + 1)
\]
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \times 2^2 = 4 \times 2^{2k} = 4(3a + 1) = 12a + 3 + 1
\]
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

\[
\begin{align*}
2^{2(k+1)} &= 2^{2k} \times 2^2 \\
&= 4 \times 2^{2k} \\
&= 4 \times (3a + 1) \\
&= 12a + 3 + 1 \\
&= 3(4a + 1) + 1
\end{align*}
\]
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

\[
\begin{align*}
2^{2(k+1)} &= 2^{2k} \cdot 2^2 \\
&= 4 \cdot 2^{2k} \\
&= 4 \cdot (3a + 1) \\
&= 12a + 3 + 1 \\
&= 3(4a + 1) + 1
\end{align*}
\]

a integer
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

$$
2^{2(k+1)} = 2^{2k} \times 2^2 \\
= 4 \times 2^{2k} \\
= 4 \times (3a + 1) \\
= 12a + 3 + 1 \\
= 3(4a + 1) + 1
$$

a integer $\implies (4a + 1)$ is an integer.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: Each tile covers 3 squares. The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $n = 0$. $2^0 = 1$

Ind Hyp: $n = k$. $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \cdot 2^2 \\
= 4 \cdot 2^{2k} \\
= 4 \cdot (3a + 1) \\
= 12a + 3 + 1 \\
= 3(4a + 1) + 1
\]

a integer $\implies (4a + 1)$ is an integer.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
 The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any $2^n \times 2^n$ square can be tiled with a hole at the center.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any $2^n \times 2^n$ square can be tiled with a hole at the center.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
 - The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any $2^n \times 2^n$ square can be tiled with a hole at the center.

\[
2^{n+1}
\]

\[
\begin{array}{cc}
\text{hole} & \text{hole} \\
\text{hole} & \text{hole}
\end{array}
\]

What to do now???
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere.*
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere.*

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine.
Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole anywhere.”

Consider $2^{n+1} \times 2^{n+1}$ square.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole anywhere.”

Consider $2^{n+1} \times 2^{n+1}$ square.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole **anywhere.**”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.
Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole anywhere.”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis: “Any $2^n \times 2^n$ square can be tiled with a hole anywhere.” Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ...
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole anywhere.”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ... we are done.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ... stronger induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole *anywhere*.”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ... we are done.
Strong Induction: Example

Theorem: Every natural number $n > 1$ is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step: $P(n) =$ "n is either a prime or a product of primes." Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.

$P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and $(\forall k \in \mathbb{N})(P(0) \land \ldots \land P(k)) \Rightarrow P(k + 1)$, then $(\forall k \in \mathbb{N})(P(k))$.

$P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) = \ldots$

Strong induction hypothesis: "a and b are products of primes" \Rightarrow "$n + 1 = a \cdot b$ = (factorization of a)(factorization of b)"

$n + 1$ can be written as the product of the prime factors!
Strong Induction: Example

Theorem: Every natural number $n > 1$ is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \text{“}n \text{ is either a prime or a product of primes. “} \)
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

Let \(P(n) = \text{"n is either a prime or a product of primes. "} \)

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).
Strong Induction: Example

Theorem: Every natural number $n > 1$ is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:

$P(n)$ = “n is either a prime or a product of primes. “

Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.

$P(n)$ says nothing about a, b!
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\[P(n) = \text{"} n \text{ is either a prime or a product of primes. "} \]

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k+1)),
\]

then \((\forall k \in N)(P(k))\).
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \) “\(n \) is either a prime or a product of primes. “

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in N)((P(0) \land \ldots \land P(k)) \Rightarrow P(k+1)),
\]

then \((\forall k \in N)(P(k)) \).

\[
P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \Rightarrow \ldots
\]
Strong Induction: Example

Theorem: Every natural number \(n > 1 \) is either a prime or can be written as a product of primes.

Fact: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \) “\(n \) is either a prime or a product of primes. “

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in \mathbb{N})(P(0) \land \ldots \land P(k)) \Rightarrow P(k+1),
\]

then \((\forall k \in \mathbb{N})(P(k)) \).

\[
P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \Rightarrow \ldots
\]

Strong induction hypothesis: “\(a \) and \(b \) are products of primes”
Strong Induction: Example

Theorem: Every natural number $n > 1$ is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:

$P(n) =$ “n is either a prime or a product of primes. “

Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.

$P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and

$$(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k + 1)),$$

then $(\forall k \in N)(P(k))$.

$P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots$

Strong induction hypothesis: “a and b are products of primes”

$\implies \text{“} n + 1 = a \cdot b \text{“}$
Strong Induction: Example

Theorem: Every natural number $n > 1$ is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:
$P(n) =$ “n is either a prime or a product of primes. “
Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.
$P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and

$$(\forall k \in \mathbb{N})(P(0) \land \ldots \land P(k)) \implies P(k + 1),$$

then $(\forall k \in \mathbb{N})(P(k))$.

$P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots$

Strong induction hypothesis: “a and b are products of primes”

$\implies “n + 1 = a \cdot b = (\text{factorization of } a)(\text{factorization of } b)”$

$n + 1$ can be written as the product of the prime factors!
Strong Induction: Example

Theorem: Every natural number $n > 1$ is either a prime or can be written as a product of primes.

Fact: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step: $P(n) = \text{“} n \text{ is either a prime or a product of primes. “}$
Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$. $P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and

$$(\forall k \in \mathbb{N})(P(0) \land \ldots \land P(k)) \implies P(k + 1),$$

then $(\forall k \in \mathbb{N})(P(k))$.

$P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots$

Strong induction hypothesis: “a and b are products of primes”
$\implies \text{“} n + 1 = a \cdot b = (\text{factorization of } a)(\text{factorization of } b)\text{“}$

$n + 1$ can be written as the product of the prime factors!
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$ then $(\forall k \in \mathbb{N})(Q(k))$”
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k + 1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and
Strong Induction is a form of (regular) Induction.

Let \(Q(k) = P(0) \land P(1) \cdots P(k) \).

By the induction principle:
“If \(Q(0) \), and \((\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))\) then \((\forall k \in \mathbb{N})(Q(k))\)”

Also, \(Q(0) \equiv P(0) \), and \((\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))\).
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))$.

$(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$

$\equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))$
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))$

$(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$

$\equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))$
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))$

$(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$
$\equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k+1))))$
$\equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies P(k+1)))$
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“\text{If } Q(0), \text{ and } (\forall k \in N)(Q(k) \implies Q(k + 1)) \text{ then } (\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k + 1))$
$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))$
$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies P(k + 1))$
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then
$(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k+1))$

$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k+1))))$

$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies P(k+1)))$
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))$

$(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$
$\equiv (\forall k \in \mathbb{N})((P(0) \land \cdots \land P(k)) \implies (P(0) \land \cdots \land P(k) \land P(k+1)))$
$\equiv (\forall k \in \mathbb{N})((P(0) \land \cdots \land P(k)) \implies P(k+1))$

Strong Induction Principle: If $P(0)$ and

$(\forall k \in \mathbb{N})((P(0) \land \cdots \land P(k)) \implies P(k+1))$,

then $(\forall k \in \mathbb{N})(P(k))$.
Strong Induction is a form of (regular) Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“\(Q(0) \), and \((\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1)) \) then
\((\forall k \in \mathbb{N})(Q(k)) \)”

Also, \(Q(0) \equiv P(0) \) , and \((\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k)) \)

\((\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))\)
\quad \equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))
\quad \equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies P(k + 1))

Strong Induction Principle: If \(P(0) \) and
\((\forall k \in \mathbb{N})((P(0) \land \cdots \land P(k)) \implies P(k + 1))\),
then \((\forall k \in \mathbb{N})(P(k))\).
Well Ordering Principle and Induction.

If $\forall n \ P(n)$ is not true, then $(\exists n) \neg P(n)$.
Well Ordering Principle and Induction.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

Consider smallest m, with $\neg P(m)$,

The Well ordering principle states that for any subset of the natural numbers there is a smallest element.
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).

Consider smallest \(m\), with \(\neg P(m)\),

\[P(m - 1) \implies P(m) \] must be false (assuming \(P(0)\) holds.)
Well Ordering Principle and Induction.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

Consider smallest m, with $\neg P(m)$,

$P(m - 1) \implies P(m)$ must be false (assuming $P(0)$ holds.)

This is a proof of the induction principle!

I.e.,

$$\neg(\forall nP(n)) \implies ((\exists n)\neg(P(n - 1) \implies P(n)).$$
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).

Consider smallest \(m\), with \(\neg P(m)\),

\[P(m - 1) \implies P(m) \] must be false (assuming \(P(0)\) holds.)

This is a proof of the induction principle!

I.e.,

\[\neg (\forall n P(n)) \implies ((\exists n) \neg (P(n - 1) \implies P(n))). \]

(Contrapositive of Induction principle (assuming \(P(0)\))
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).

Consider smallest \(m\), with \(\neg P(m)\),

\(P(m-1) \implies P(m)\) must be false (assuming \(P(0)\) holds.)

This is a proof of the induction principle!

I.e.,

\[
\neg (\forall n P(n)) \implies (\exists n) \neg (P(n-1) \implies P(n)).
\]

(Contrapositive of Induction principle (assuming \(P(0)\))

It assumes that there is a smallest \(m\) where \(P(m)\) does not hold.
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).

Consider smallest \(m\), with \(\neg P(m)\),
\[P(m-1) \implies P(m) \] must be false (assuming \(P(0)\) holds.)

This is a proof of the induction principle!
I.e.,
\[\neg(\forall nP(n)) \implies (\exists n)\neg(P(n-1) \implies P(n)). \]

(Contrapositive of Induction principle (assuming \(P(0)\))

It assumes that there is a smallest \(m\) where \(P(m)\) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find_x_y(n-4)
        return(x+1,y)
```

Base cases: \(P(12), P(13), P(14), P(15) \).

Strong Induction step: Recursive call is correct: \(P(n-4) \Rightarrow P(n) \).

Slight differences: showed for all \(n \geq 16 \) that \(n-1 = 4P(i) \Rightarrow P(n) \).
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.
Instead of proof, let's write some code!

```python
def find_x_y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find_x_y(n-4)
        return(x+1,y)
```

Base cases: $P(12), P(13), P(14), P(15)$.
Holds for all.

Strong Induction step: Recursive call is correct: $P(n-4) \Rightarrow P(n)$.

Slight differences: showed for all $n \geq 16$ that $n-1 = 4P(i) \Rightarrow P(n)$.
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases:
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: P(12)
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find_x_y(n-4)
        return(x+1,y)
```

Base cases: \(P(12) \), \(P(13) \)
Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12): return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)

Base cases: P(12) , P(13) , P(14)
```
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return(x+1,y)
```

Base cases: \(P(12) \), \(P(13) \), \(P(14) \), \(P(15) \).
Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x,y) = find-x-y(n-4)
 return(x+1,y)

Base cases: P(12), P(13), P(14), P(15). Holds for all.
Thm: For every natural number \(n \geq 12, \) \(n = 4x + 5y. \)

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find_x_y(n-4)
        return(x+1,y)
```

Base cases: \(P(12), P(13), P(14), P(15). \) Holds for all.

Strong Induction step:
Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12): return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return (x+1,y)
```

Base cases: $P(12), P(13), P(14), P(15)$. Holds for all.

Strong Induction step:
 Recursive call is correct: $P(n-4)$
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return (x+1,y)
```

Base cases: \(P(12) \), \(P(13) \), \(P(14) \), \(P(15) \). Holds for all.

Strong Induction step:
 Recursive call is correct: \(P(n - 4) \implies P(n) \).
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x,y) = find-x-y(n-4)
        return (x+1, y)
```


Strong Induction step:
Recursive call is correct: $P(n-4) \implies P(n)$.

Slight differences: showed for all $n \geq 16$ that $\land_{i=4}^{n-1} P(i) \implies P(n)$.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

First k have same color by $P(k)$.

Second k have same color by $P(k)$.

A horse in the middle in common!

All k must have the same color.

How about $P(1) \Rightarrow P(2)$?

Fix base case. ...Still doesn't work!! (There are two horses is $\not\equiv$ For all two horses!!!)

Of course it doesn't work. As we will see, it is more subtle to catch errors in proofs of correct theorems!!
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: \(P(1) \) - trivially true.

Induction Hypothesis: \(P(k) \) - Any \(k \) horses have the same color.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

Fix base case. ...Still doesn't work!! (There are two horses is $\not\equiv$ For all two horses!!!) Of course it doesn't work. As we will see, it is more subtle to catch errors in proofs of correct theorems!!
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

- First k have same color by $P(k)$. $1, 2, 3, \ldots, k, k + 1$
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$. $1, 2, 3, \ldots, k, k + 1$

Second k have same color by $P(k)$. $1, 2, 3, \ldots, k, k + 1$
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$.
1, 2, 3, ..., $k, k + 1$

Second k have same color by $P(k)$.
1, 2, 3, ..., $k, k + 1$

A horse in the middle in common!
1, 2, 3, ..., $k, k + 1$
Horses of the same color...

Theorem: All horses have the same color.

Base Case: \(P(1) \) - trivially true.

Induction Hypothesis: \(P(k) \) - Any \(k \) horses have the same color.

Induction step \(P(k + 1) \)?

First \(k \) have same color by \(P(k) \). \(1, 2, 3, \ldots, k, k + 1 \)

Second \(k \) have same color by \(P(k) \). \(1, 2, 3, \ldots, k, k + 1 \)

A horse in the middle in common! \(1, 2, 3, \ldots, k, k + 1 \)

All \(k \) must have the same color. \(1, 2, 3, \ldots, k, k + 1 \)
Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$.

Second k have same color by $P(k)$.

A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: \(P(1) \) - trivially true.

Induction Hypothesis: \(P(k) \) - Any \(k \) horses have the same color.

Induction step \(P(k + 1) \)?
- First \(k \) have same color by \(P(k) \).
- Second \(k \) have same color by \(P(k) \).
- A horse in the middle in common!

How about \(P(1) \implies P(2) \)?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

- First k have same color by $P(k)$. $1, 2$
- Second k have same color by $P(k)$.
 - A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$.\[1,2\]
Second k have same color by $P(k)$.\[1,2\]
A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

- First k have same color by $P(k)$. 1, 2
- Second k have same color by $P(k)$. 1, 2
 - A horse in the middle in common! 1, 2
 - No horse in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: \(P(1) \) - trivially true.

Induction Hypothesis: \(P(k) \) - Any \(k \) horses have the same color.

Induction step \(P(k + 1) \)?

First \(k \) have same color by \(P(k) \). 1, 2
Second \(k \) have same color by \(P(k) \). 1, 2
A horse in the middle in common! 1, 2
No horse in common!

How about \(P(1) \Rightarrow P(2) \)?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

- First k have same color by $P(k)$.
- Second k have same color by $P(k)$.
- A horse in the middle in common!

Fix base case.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color **by $P(k)$**.
Second k have same color **by $P(k)$**.
A horse in the middle in common!

Fix base case.
...Still doesn’t work!!
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

- First k have same color by $P(k)$.
- Second k have same color by $P(k)$.
- A horse in the middle in common!

Fix base case.

...Still doesn’t work!!

(There are two horses is \neq For all two horses!!!)
Horses of the same color...

Theorem: All horses have the same color.

Base Case: \(P(1) \) - trivially true.

New Base Case: \(P(2) \): there are two horses with same color.

Induction Hypothesis: \(P(k) \) - Any \(k \) horses have the same color.

Induction step \(P(k + 1) \)?

First \(k \) have same color by \(P(k) \).
Second \(k \) have same color by \(P(k) \).
A horse in the middle in common!

Fix base case.
...Still doesn’t work!!
(There are two horses is \(\neq \) For all two horses!!!)

Of course it doesn’t work.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$.
Second k have same color by $P(k)$.
A horse in the middle in common!

Fix base case.

...Still doesn’t work!!
(There are two horses is $\not\equiv$ For all two horses!!!)

Of course it doesn’t work.

As we will see, it is more subtle to catch errors in proofs of correct theorems!!
Summary: principle of induction.

Today: More induction.
Summary: principle of induction.

Today: More induction.

\(P(0) \)

Statement to prove: \(P(n) \) for \(n \) starting from \(n_0 \).

Base Case: Prove \(P(n_0) \).

Ind. Step: Prove for all values, \(n \geq n_0 \), \(P(n) = \Rightarrow P(n+1) \).

Statement is proven!

Strong Induction: \((P(0) \land (\forall n \leq k P(n))) = \Rightarrow P(k+1) \)\n
\(\Rightarrow (\forall n \in \mathbb{N}) (P(n)) \)

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first \(n \) odds is \(n^2 \).

Hole anywhere.

Not same as strong induction.

Induction \(\equiv \) Recursion.
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1))))\]
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove.
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\),
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Today: More induction.

\[(P(0) \land ((\forall k \in \mathbb{N})(P(k) \implies P(k + 1)))) \implies (\forall n \in \mathbb{N})(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).

Statement is proven!
Summary: principle of induction.

Today: More induction.

\[(P(0) \land (((\forall k \in \mathbb{N})(P(k) \implies P(k + 1)))) \implies (\forall n \in \mathbb{N})(P(n)))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
\[(P(0) \land ((\forall n \leq kP(n)) \implies P(k + 1))))\]
Today: More induction.

\[(P(0) \land ((\forall k \in \mathbb{N})(P(k) \implies P(k + 1)))) \implies (\forall n \in \mathbb{N})(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).

Statement is proven!

Strong Induction:

\[(P(0) \land ((\forall n \leq kP(n)) \implies P(k + 1)))) \implies (\forall n \in \mathbb{N})(P(n))\]
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).

Statement is proven!

Strong Induction:

\[(P(0) \land ((\forall n \leq kP(n)) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Also Today: strengthened induction hypothesis.
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
\[(P(0) \land ((\forall n \leq kP(n)) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

- Sum of first \(n\) odds is \(n^2\).
- Hole anywhere.

Not same as strong induction.
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
\[(P(0) \land ((\forall n \leq kP(n)) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.
- Sum of first \(n\) odds is \(n^2\).
- Hole anywhere.
- Not same as strong induction.

Induction \(\equiv\) Recursion.