Lecture 7. Outline.

1. Isoperimetric inequality for hypercube.

2. Modular Arithmetic.
 Clock Math!!!

3. Inverses for Modular Arithmetic: Greatest Common Divisor.
 Division!!!

4. Euclid’s GCD Algorithm.
 A little tricky here!
For 3-space:

The sphere minimizes surface area to volume.

Surface Area: $4\pi r^2$, Volume: $\frac{4}{3}\pi r^3$.

Ratio: $1/3r = \Theta(V^{-1/3})$.

Graphical Analog: Cut into two pieces and find ratio of edges/vertices on small side.

Tree: $\Theta(1/|V|)$.

Hypercube: $\Theta(1)$.

Surface Area is roughly at least the volume!
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An \(n \)-dimensional hypercube consists of a 0-subcube (1-subcube) which is a \(n - 1 \)-dimensional hypercube with nodes labelled \(0x \) (1x) with the additional edges \((0x, 1x)\).

(A), (C), (D)
Thm: Any subset S of the hypercube where $|S| \leq |V|/2$ has $\geq |S|$ edges connecting it to $V - S$; $|E \cap S \times (V - S)| \geq |S|$.

Terminology:
- $(S, V - S)$ is cut.
- $(E \cap S \times (V - S))$ - cut edges.

Restatement: for any cut in the hypercube, the number of cut edges is at least the size of the small side.
Cuts in graphs.

S is red, $V - S$ is blue.

What is size of cut?

Number of edges between red and blue. 4.

Hypercube: any cut that cuts off x nodes has $\geq x$ edges.
Proof of Large Cuts.

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Proof:
Base Case: \(n = 1\) \(V = \{0,1\}\).
- \(S = \{0\}\) has one edge leaving. \(|S| = \phi\) has 0.
Induction Step Idea

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side.

Use recursive definition into two subcubes.

Two cubes connected by edges.

Case 1: Count edges inside subcube inductively.

Case 2: Count inside and across.
Induction Step

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step.

Recursive definition:
\[
H_0 = (V_0, E_0), H_1 = (V_1, E_1), \text{ edges } E_x \text{ that connect them.}
\]
\[
H = (V_0 \cup V_1, E_0 \cup E_1 \cup E_x)
\]
\[
S = S_0 \cup S_1 \text{ where } S_0 \text{ in first, and } S_1 \text{ in other.}
\]

Case 1: \(|S_0| \leq |V_0|/2, |S_1| \leq |V_1|/2

Both \(S_0\) and \(S_1\) are small sides. So by induction.

Edges cut in \(H_0 \geq |S_0|\).

Edges cut in \(H_1 \geq |S_1|\).

Total cut edges \(\geq |S_0| + |S_1| = |S|\).

\(\square \)
Induction Step. Case 2.

Thm: For any cut \((S, V - S)\) in the hypercube, the number of cut edges is at least the size of the small side, \(|S|\).

Proof: Induction Step. Case 2.

\(|S_0| \geq |V_0|/2.\)

Recall Case 1: \(|S_0|, |S_1| \leq |V|/2\)

\(|S_1| \leq |V_1|/2\) since \(|S| \leq |V|/2.\)

\(\implies \geq |S_1|\) edges cut in \(E_1\).

\(|S_0| \geq |V_0|/2 \implies |V_0 - S| \leq |V_0|/2\)

\(\implies \geq |V_0| - |S_0|\) edges cut in \(E_0\).

Edges in \(E_x\) connect corresponding nodes.

\(\implies = |S_0| - |S_1|\) edges cut in \(E_x\).

Total edges cut:

\(\geq |S_1| + |V_0| - |S_0| + |S_0| - |S_1| = |V_0|\)

\(|V_0| = |V|/2 \geq |S|.

Also, case 3 where \(|S_1| \geq |V|/2\) is symmetric.
Hypercube proof: poll

Hypercube has large cuts proof uses these ideas:
(A) If cuts are same size on two sides it works by induction.
(B) Uses the fact that it is planar.
(C) Recursive definition of hypercube.
(D) If different size, can count edges between to subcubes.
(E) Applies Euler’s formula.

(A), (D), and (E).
The cuts in the hypercubes are exactly the transitions from 0 sets to 1 set on boolean functions on $\{0, 1\}^n$.

Central area of study in computer science!

Yes/No Computer Programs \equiv Boolean function on $\{0, 1\}^n$

Central object of study.
Modular Arithmetic.

Applications: cryptography, error correction.
Key ideas for modular arithmetic.

Theorem: If $d| x$ and $d| y$, then $d|(y - x)$.

Proof:

$x = ad, y = bd,$

$(x - y) = (ad - bd) = d(a - b) \implies d|(x - y)$.

Theorem: Every number $n \geq 2$ can be represented as a product of primes.

Proof: Either prime, or $n = a \times b$, and use strong induction. (Uniqueness? Later.)
Poll

What did we use in our proofs of key ideas?

(A) Distributive Property of multiplication over addition.
(B) Euler’s formula.
(C) The definition of a prime number.
(D) Euclid’s Lemma.

(A) and (C)
Next Up.

Modular Arithmetic.
If it is 1:00 now.

What time is it in 2 hours? 3:00!
What time is it in 5 hours? 6:00!
What time is it in 15 hours? 16:00!
 Actually 4:00.

16 is the “same as 4” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 101:00! or 5:00.
 \[101 = 12 \times 8 + 5.\]
5 is the same as 101 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in \{12, 1, \ldots, 11\}
(Almost remainder, except for 12 and 0 are equivalent.)
This is Thursday is September 16, 2021.
What day is it a year from then? on September 16, 2022?
Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 4.
 5 days from then. day 9 or day 2 or Tuesday.
 25 days from then. day 29 or day 1. 29 = (7)4 + 1
 two days are equivalent up to addition/subtraction of multiple of 7.
 11 days from then is day 1 which is Monday!

What day is it a year from then?
Next year is not a leap year. So 365 days from then.
Day 4+365 or day 369.
Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.
 369/7 leaves quotient of 52 and remainder 5. 369 = 7(52) + 5
 or September 16, 2022 is a Friday.
Years and years...

80 years? 20 leap years. 366 × 20 days
 60 regular years. 365 × 60 days
Today is day 4.
It is day 4 + 366 × 20 + 365 × 60. Equivalent to?

Hmm.
 What is remainder of 366 when dividing by 7? 52 × 7 + 2.
 What is remainder of 365 when dividing by 7? 1
Today is day 4.
 Get Day: 4 + 2 × 20 + 1 × 60 = 104
 Remainder when dividing by 7? 104 = 14 × 7 + 6.
 Or February 11, 2101 is Saturday!

Further Simplify Calculation:
 20 has remainder 6 when divided by 7.
 60 has remainder 4 when divided by 7.
Get Day: 4 + 2 × 6 + 1 × 4 = 20.
 Or Day 6. September 16, 2101 is Saturday.

“Reduce” at any time in calculation!
Modular Arithmetic: refresher.

\textbf{Modular Arithmetic: refresher.}

\textit{x is congruent to y modulo m} or “\(x \equiv y \pmod{m}\)” if and only if \((x - y)\) is divisible by \(m\).
...or \(x\) and \(y\) have the same remainder w.r.t. \(m\).
...or \(x = y + km\) for some integer \(k\).

Mod 7 equivalence classes:
\(\{..., -7, 0, 7, 14, ...\}\) \(\{..., -6, 1, 8, 15, ...\}\) ...

\textbf{Useful Fact:} Addition, subtraction, multiplication can be done with any equivalent \(x\) and \(y\).

or “\(a \equiv c \pmod{m}\) and \(b \equiv d \pmod{m}\)
\[\implies a + b \equiv c + d \pmod{m}\) and \(a \cdot b \equiv c \cdot d \pmod{m}\)”

\textbf{Proof:} If \(a \equiv c \pmod{m}\), then \(a = c + km\) for some integer \(k\).
If \(b \equiv d \pmod{m}\), then \(b = d + jm\) for some integer \(j\).
Therefore, \(a + b = c + d + (k + j)m\) and since \(k + j\) is integer.
\[\implies a + b \equiv c + d \pmod{m}\].

Can calculate with representative in \(\{0, \ldots, m - 1\}\).
Notation

\[x \pmod{m} \text{ or } \text{mod} \ (x, m) \]
- remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m-1\} \).

\[
\text{mod} \ (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m
\]

\(\left\lfloor \frac{x}{m} \right\rfloor \) is quotient.

\[
\text{mod} \ (29, 12) = 29 - (\left\lfloor \frac{29}{12} \right\rfloor) \times 12 = 29 - (2) \times 12 = \text{X} = 5
\]

Work in this system.

\[a \equiv b \pmod{m}. \]
Says two integers \(a \) and \(b \) are equivalent modulo \(m \).

Modulus is \(m \)

\[6 \equiv 3 + 3 \equiv 3 + 10 \pmod{7}. \]

\[6 = 3 + 3 = 3 + 10 \pmod{7}. \]

Generally, not \(6 \pmod{7} = 13 \pmod{7} \).
But probably won’t take off points, still hard for us to read.
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (\frac{1}{2}) \cdot 2x = (\frac{1}{2}) \cdot 3 \implies x = \frac{3}{2}. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1; \)
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \) **mod** \(m \) **is** \(y \) **with** \(xy = 1 \) **(mod** \(m \)).

For 4 modulo 7 inverse is 2:
\[2 \cdot 4 \equiv 8 \equiv 1 \pmod{7}. \]

Can solve \(4x = 5 \pmod{7}. \)
\[x = 3 \pmod{7}. \]

For 8 modulo 12: no multiplicative inverse!

"Common factor of 4"
\[8k - 12\ell \text{ is a multiple of four for any } \ell \text{ and } k \implies 8k \not\equiv 1 \pmod{12} \text{ for any } k. \]
Mark true statements.
(A) Multiplicative inverse of 2 mod 5 is 3 mod 5.
(B) The multiplicative inverse of \((n - 1) \pmod{n} = (n - 1) \pmod{n}\).
(C) Multiplicative inverse of 2 mod 5 is 0.5.
(D) Multiplicative inverse of 4 \(= -1 \pmod{5}\).
(E) \((-1) \times (-1) = 1\). Woohoo.
(F) Multiplicative inverse of 4 mod 5 is 4 mod 5.

(C) is false. 0.5 has no meaning in arithmetic modulo 5.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies :

Claim: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Each of m numbers in S correspond to one of m equivalence classes modulo m.

\implies One must correspond to 1 modulo m. **Inverse Exists!**

Proof of Claim: If not distinct, then $\exists a, b \in \{0, \ldots, m-1\}$, $a \neq b$, where

$(ax \equiv bx \mod m) \implies (a-b)x \equiv 0 \mod m$

Or $(a-b)x = km$ for some integer k.

$\gcd(x, m) = 1$

\implies Prime factorization of m and x do not contain common primes.

$\implies (a-b)$ factorization contains all primes in m’s factorization.

So $(a-b)$ has to be multiple of m.

$\implies (a-b) \geq m$. But $a, b \in \{0, \ldots m-1\}$. **Contradiction.**
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]

reducing \(\mod 6 \)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]

Not distinct. Common factor 2. Can’t be 1. No inverse.

For \(x = 5 \) and \(m = 6 \).

\[
S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
\]

All distinct, contains 1! 5 is multiplicative inverse of 5 \(\mod 6 \).

(Hmm. What normal number is it own multiplicative inverse?) 1 -1.

\[
5x = 3 \mod 6 \] What is \(x \)? Multiply both sides by 5.

\[
x = 15 = 3 \mod 6
\]

\[
4x = 3 \mod 6 \] No solutions. Can’t get an odd.

\[
4x = 2 \mod 6 \] Two solutions! \(x = 2, 5 \mod 6 \)

Very different for elements with inverses.
If $\gcd(x,m) = 1$.

Then the function $f(a) = xa \mod m$ is a bijection.

One to one: there is a unique pre-image.

Onto: the sizes of the domain and co-domain are the same.

$x = 3, m = 4$.

$f(1) = 3(1) = 3 \mod 4, f(2) = 6 = 2 \mod 4, f(3) = 1 \mod 3$.

Oh yeah. $f(0) = 0$.

Bijection \equiv unique pre-image and same size.

All the images are distinct. \implies unique pre-image for any image.

$x = 2, m = 4$.

$f(1) = 2, f(2) = 0, f(3) = 2$

Oh yeah. $f(0) = 0$.

Not a bijection.
Which is bijection?
(A) \(f(x) = x \) for domain and range being \(\mathbb{R} \)
(B) \(f(x) = ax \pmod{n} \) for \(x \in \{0, \ldots, n-1\} \) and \(\gcd(a, n) = 2 \)
(C) \(f(x) = ax \pmod{n} \) for \(x \in \{0, \ldots, n-1\} \) and \(\gcd(a, n) = 1 \)

(B) is not.
Thm: If $gcd(x,m) \neq 1$ then x has no multiplicative inverse modulo m.

Assume a is x^{-1}, or $ax = 1 + km$.

$x = nd$ and $m = \ell d$ for $d > 1$.

Thus,

$a(nd) = 1 + k\ell d$ or $d(na - k\ell) = 1$.

But $d > 1$ and $n = (na - k\ell) \in \mathbb{Z}$.

so $dn \neq 1$ and $dn = 1$. Contradiction.
Finding inverses.

How to find the inverse?
How to find if \(x \) has an inverse modulo \(m \)?

Find \(\text{gcd}(x, m) \).
 Greater than 1? No multiplicative inverse.
 Equal to 1? Multiplicative inverse.

Algorithm: Try all numbers up to \(x \) to see if it divides both \(x \) and \(m \).
Very slow.
Inverses

Next up.

Euclid’s Algorithm.
Runtime.
Euclid’s Extended Algorithm.
Does 2 have an inverse mod 8? No.
Any multiple of 2 is 2 away from 0 + 8k for any \(k \in \mathbb{N} \).

Does 2 have an inverse mod 9? Yes. 5
\[2(5) = 10 = 1 \mod 9. \]

Does 6 have an inverse mod 9? No.
Any multiple of 6 is 3 away from 0 + 9k for any \(k \in \mathbb{N} \).
\[3 = \gcd(6, 9)! \]

\(x \) has an inverse modulo \(m \) if and only if
\[\gcd(x, m) > 1? \] No.
\[\gcd(x, m) = 1? \] Yes.

Now what?:
Compute gcd!
Compute Inverse modulo \(m \).
Divisibility...

Notation: $d|x$ means “d divides x” or $x = kd$ for some integer k.

Fact: If $d|x$ and $d|y$ then $d|(x + y)$ and $d|(x - y)$.

Is it a fact? Yes? No?

Proof: $d|x$ and $d|y$ or $x = \ell d$ and $y = kd$

$$\implies x - y = kd - \ell d = (k - \ell)d \implies d|(x - y)$$
More divisibility

Notation: $d | x$ means “d divides x” or $x = kd$ for some integer k.

Lemma 1: If $d | x$ and $d | y$ then $d | y$ and $d | \text{mod}(x, y)$.

Proof:

\[
\text{mod}(x, y) = x - \left\lfloor \frac{x}{y} \right\rfloor \cdot y \\
= x - \left\lfloor s \right\rfloor \cdot y \quad \text{for integer } s \\
= kd - s\ell d \quad \text{for integers } k, \ell \text{ where } x = kd \text{ and } y = \ell d \\
= (k - s\ell)d
\]

Therefore $d | \text{mod}(x, y)$. And $d | y$ since it is in condition.

Lemma 2: If $d | y$ and $d | \text{mod}(x, y)$ then $d | y$ and $d | x$.

Proof...: Similar. Try this at home.

GCD Mod Corollary: $\gcd(x, y) = \gcd(y, \text{mod}(x, y))$.

Proof: x and y have **same** set of common divisors as x and $\text{mod}(x, y)$ by Lemma 1 and 2.

Same common divisors \implies largest is the same.
Euclid’s algorithm.

GCD Mod Corollary: \(\gcd(x, y) = \gcd(y, \mod(x, y)) \).

Hey, what’s \(\gcd(7, 0) \)? 7 since 7 divides 7 and 7 divides 0
What’s \(\gcd(x, 0) \)? \(x \)

```scheme
(define (euclid x y)
  (if (= y 0)
      x
      (euclid y (mod x y)))))
```

Theorem: \((\text{euclid } x \ y) = \gcd(x, y)\) if \(x \geq y \).

Proof: Use Strong Induction.

Base Case: \(y = 0, “x \text{ divides } y \text{ and } x” \)

\[\implies “x \text{ is common divisor and clearly largest.”} \]

Induction Step: \(\mod(x, y) < y \leq x \) when \(x \geq y \)

Call in line (***) meets conditions plus arguments “smaller”
and by strong induction hypothesis computes \(\gcd(y, \mod(x, y)) \)
which is \(\gcd(x, y) \) by GCD Mod Corollary.
Modular Arithmetic Lecture in a minute.

Modular Arithmetic: \(x \equiv y \pmod{N} \) if \(x = y + kN \) for some integer \(k \).

For \(a \equiv b \pmod{N} \), and \(c \equiv d \pmod{N} \),
\[
ac = bd \pmod{N} \text{ and } a + b = c + d \pmod{N}.
\]

Division? Multiply by multiplicative inverse.
\(a \pmod{N} \) has multiplicative inverse, \(a^{-1} \pmod{N} \).
If and only if \(\gcd(a, N) = 1 \).

Why? If: \(f(x) = ax \pmod{N} \) is a bijection on \(\{1, \ldots, N-1\} \).
\[
ax - ay = 0 \pmod{N} \implies a(x - y) \text{ is a multiple of } N.
\]
If \(\gcd(a, N) = 1 \),
then \(x - y \) must contain all primes in prime factorization of \(N \),
and is therefore be bigger than \(N \).

Only if: For \(a = xd \) and \(N = yd \),
any \(ma + kN = d(mx - ky) \) or is a multiple of \(d \),
and is not 1.

Euclid’s Alg: \(\gcd(x, y) = \gcd(y \mod x, x) \)
Fast cuz value drops by a factor of two every two recursive calls.

Know if there is an inverse, but how do we find it? On Tuesday!