Lecture 7 Outline.

1. Modular Arithmetic.
Lecture 7 Outline.

1. Modular Arithmetic.
 Clock Math!!!
Lecture 7 Outline.

1. Modular Arithmetic.
 Clock Math!!!
2. Inverses for Modular Arithmetic: Greatest Common Divisor (GCD).
3. Euclid’s GCD Algorithm
Clock Math

If it is 4:00 now.
If it is 4:00 now.
What time is it in 5 hours?
If it is 4:00 now.
What time is it in 5 hours? 9:00!
Clock Math

If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours?
Clock Math

If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
Clock Math

If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.
If it is 4:00 now.

What time is it in 5 hours? 9:00!
What time is it in 15 hours? 19:00!
Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock Math

If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.
If it is 4:00 now.
 What time is it in 5 hours? 9:00!
What time is it in 15 hours? 19:00!
 Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock time equivalent up to addition/subtraction of 12.
If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

 19 is the “same as 7” with respect to a 12 hour clock system.
 Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours?
Clock Math

If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

 19 is the “same as 7” with respect to a 12 hour clock system.
 Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 104:00!
If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 104:00! or 8:00.
If it is 4:00 now.

What time is it in 5 hours? 9:00!
What time is it in 15 hours? 19:00!
Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock time equivalent up to addition/subtraction of 12.

What time is it in 100 hours? 104:00! or 8:00.
8 is the same as 104 for a 12 hour clock system.
If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
 Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 104:00! or 8:00.
 8 is the same as 104 for a 12 hour clock system.
 Clock time equivalent up to addition of any integer multiple of 12.
If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock time equivalent up to to addition/subtraction of 12.

What time is it in 100 hours? 104:00! or 8:00.
8 is the same as 104 for a 12 hour clock system.
Clock time equivalent up to addition of any integer multiple of 12.
If it is 4:00 now.
 What time is it in 5 hours? 9:00!
 What time is it in 15 hours? 19:00!
 Actually 7:00.

19 is the “same as 7” with respect to a 12 hour clock system.
Clock time equivalent up to addition/subtraction of 12.

What time is it in 100 hours? 104:00! or 8:00.
 8 is the same as 104 for a 12 hour clock system.
 Clock time equivalent up to addition of any integer multiple of 12.

Custom is only to use the representative in \{1, \ldots, 11, 12\}
Today is Tuesday.
Today is Tuesday.
What day is it a year from now?
Today is Tuesday.

What day is it a year from now? on February 6, 2025?
Day of the week.

Today is Tuesday. What day is it a year from now? on February 6, 2025? Number days.
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?
Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?
Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.

4 days from now.
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?
Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
 4 days from now. day 6
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.

 4 days from now. day 6 or Saturday.
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?
Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now.

This year is a leap year!

So 366 days from now.
Day 2+366 or day 368.
Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.
or February 6, 2025 is Day 4, a Thursday.
Day of the week.

Today is Tuesday.
 What day is it a year from now? on February 6, 2025?
 Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
 4 days from now. day 6 or Saturday.
 24 days from now. day 26
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.

4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
Day of the week.

Today is Tuesday.
 What day is it a year from now? on February 6, 2025?
 Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
 4 days from now. day 6 or Saturday.
 24 days from now. day 26 or day 5, which is Friday!
 two days are equivalent up to addition/subtraction of multiple of 7.
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.

4 days from now. day 6 or Saturday.

24 days from now. day 26 or day 5, which is Friday!

two days are equivalent up to addition/subtraction of multiple of 7.

10 days from now
Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.

4 days from now. day 6 or Saturday.

24 days from now. day 26 or day 5, which is Friday!

two days are equivalent up to addition/subtraction of multiple of 7.

10 days from now is day 5 again, Friday!
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
 two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?
Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year!
Today is Tuesday.
What day is it a year from now? on February 6, 2025?
Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
 4 days from now. day 6 or Saturday.
 24 days from now. day 26 or day 5, which is Friday!
 two days are equivalent up to addition/subtraction of multiple of 7.
 10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.
0 for Sunday, 1 for Monday, \ldots, 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day 2+366 or day 368.
Today is Tuesday.

What day is it a year from now? on February 6, 2025?
Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day 2+366 or day 368.
Smallest representation:
Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

0 for Sunday, 1 for Monday, \ldots, 6 for Saturday.

Today: day 2.

4 days from now. day 6 or Saturday.

24 days from now. day 26 or day 5, which is Friday!

two days are equivalent up to addition/subtraction of multiple of 7.

10 days from now is day 5 again, Friday!

What day is it a year from now?

This year is a leap year! So 366 days from now.

Day 2+366 or day 368.

Smallest representation:

subtract 7 until smaller than 7.
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?

Number days.
 0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
 4 days from now. day 6 or Saturday.
 24 days from now. day 26 or day 5, which is Friday!
 two days are equivalent up to addition/subtraction of multiple of 7.
 10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day 2+366 or day 368.

Smallest representation:
 subtract 7 until smaller than 7.
 divide and get remainder.

or February 6, 2025 is Day 4, a Thursday.
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.

0 for Sunday, 1 for Monday, \ldots, 6 for Saturday.

Today: day 2.

4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!

two days are equivalent up to addition/subtraction of multiple of 7.

10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.

Day 2+366 or day 368.

Smallest representation:

subtract 7 until smaller than 7.

divide and get remainder.

368/7
Day of the week.

Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!

two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day 2+366 or day 368.

Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.
Day of the week.

Today is Tuesday.
What day is it a year from now? on February 6, 2025?
Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day 2+366 or day 368.
Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.
or February 6, 2025 is Day 4, a Thursday.
Today is Tuesday.

What day is it a year from now? on February 6, 2025?

Number days.
0 for Sunday, 1 for Monday, . . . , 6 for Saturday.

Today: day 2.
4 days from now. day 6 or Saturday.
24 days from now. day 26 or day 5, which is Friday!
two days are equivalent up to addition/subtraction of multiple of 7.
10 days from now is day 5 again, Friday!

What day is it a year from now?
This year is a leap year! So 366 days from now.
Day 2+366 or day 368.
Smallest representation:
subtract 7 until smaller than 7.
divide and get remainder.
368/7 leaves quotient of 52 and remainder 4.
or February 6, 2025 is Day 4, a Thursday.
Years and years...

80 years from now? February 6, 2104
20 leap years. 366*20 days
60 regular years. 365*60 days
It is day \(2 + 366 \times 20 + 365 \times 60\). Equivalent to?

Hmm.

What is remainder of 366 when dividing by 7? 2.
What is remainder of 365 when dividing by 7? 1

Today is day 2.
Get Day: \(2 + 20 \times 2 + 60 \times 1 = 102\)
Remainder when dividing by 7? 4.
Or February 6, 2104 is Thursday!

Further Simplify Calculation:
20 has remainder 6 when divided by 7.
60 has remainder 4 when divided by 7.
Get Day: \(2 + 6 \times 2 + 4 \times 1 = 18\).
Or Day 4. February 6, 2104 is Thursday.

“Reduce” at any time in calculation!
Modular Arithmetic: Basics.

\(x \) is congruent to \(y \) modulo \(m \) or “\(x \equiv y \ (\text{mod } m) \)” if and only if \((x - y) \) is divisible by \(m \).
Modular Arithmetic: Basics.

\[x \text{ is congruent to } y \text{ modulo } m \text{ or } “x \equiv y \text{ (mod } m\text{)” } \]

if and only if \((x - y)\) is divisible by \(m\).

...or \(x = y + km\) for some integer \(k\).
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.
...or $x = y + km$ for some integer k.
...or x and y have the same remainder w.r.t. m.
Modular Arithmetic: Basics.

\[x \text{ is congruent to } y \text{ modulo } m \text{ or } \left(x \equiv y \pmod{m} \right) \]
if and only if \((x - y)\) is divisible by \(m\).
...or \(x = y + km\) for some integer \(k\).
...or \(x\) and \(y\) have the same remainder w.r.t. \(m\).
Modular Arithmetic: Basics.

x is congruent to y modulo m or "$x \equiv y \pmod{m}$" if and only if $(x - y)$ is divisible by m.
...or $x = y + km$ for some integer k.
...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
Modular Arithmetic: Basics.

\(x \) is congruent to \(y \) modulo \(m \) or “\(x \equiv y \) \((\text{mod } m) \)” if and only if \((x - y) \) is divisible by \(m \).

...or \(x = y + km \) for some integer \(k \).

...or \(x \) and \(y \) have the same remainder w.r.t. \(m \).

Mod 7 equivalence classes:
{\ldots, -7, 0, 7, 14, \ldots}
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.

...or $x = y + km$ for some integer k.

...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:

$\{\ldots, -7, 0, 7, 14, \ldots \}$ $\{\ldots, -6, 1, 8, 15, \ldots \}$
Modular Arithmetic: Basics.

\(x \) is congruent to \(y \) modulo \(m \) or “\(x \equiv y \pmod{m} \)” if and only if \((x - y)\) is divisible by \(m \).

...or \(x = y + km \) for some integer \(k \).

...or \(x \) and \(y \) have the same remainder w.r.t. \(m \).

Mod 7 equivalence classes:
\[
\{\ldots,-7,0,7,14,\ldots\} \quad \{\ldots,-6,1,8,15,\ldots\} \quad \ldots
\]
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.
...or $x = y + km$ for some integer k.
...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
{\ldots, -7, 0, 7, 14, \ldots} {\ldots, -6, 1, 8, 15, \ldots} ...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k. If $b \equiv d \pmod{m}$, then $b = d + jm$ for some integer j. Therefore, $a + b = c + d + (k + j)m$ and since $k + j$ is integer. $\Rightarrow a + b \equiv c + d \pmod{m}$.

Can calculate with representative in {\ldots, 0, \ldots, m - 1}.
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.

...or $x = y + km$ for some integer k.

...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
{..., −7, 0, 7, 14,...} {..., −6, 1, 8, 15,...} ...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or “ $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$ ”
Modular Arithmetic: Basics.

\[x \text{ is congruent to } y \text{ modulo } m \text{ or } "x \equiv y \pmod{m}" \]
if and only if \((x - y)\) is divisible by \(m\).
...or \(x = y + km\) for some integer \(k\).
...or \(x\) and \(y\) have the same remainder w.r.t. \(m\).

Mod 7 equivalence classes:
\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ldots

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent \(x\) and \(y\).

or "\(a \equiv c \pmod{m}\) and \(b \equiv d \pmod{m}\)
\[\implies a + b \equiv c + d \pmod{m} \text{ and } a \cdot b \equiv c \cdot d \pmod{m}" \]
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.

...or $x = y + km$ for some integer k.

...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:

$\{\ldots, -7, 0, 7, 14, \ldots\}$ $\{\ldots, -6, 1, 8, 15, \ldots\}$...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or “$a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$

$\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b \equiv c \cdot d \pmod{m}$”

Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k.

Modular Arithmetic: Basics.

\(x \) is congruent to \(y \) modulo \(m \) or \(\text{“} x \equiv y \pmod{m} \text{”} \)
if and only if \((x - y) \) is divisible by \(m \).

...or \(x = y + km \) for some integer \(k \).

...or \(x \) and \(y \) have the same remainder w.r.t. \(m \).

Mod 7 equivalence classes:
\{ \ldots, -7, 0, 7, 14, \ldots \} \quad \{ \ldots, -6, 1, 8, 15, \ldots \} \ldots

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent \(x \) and \(y \).

or \(\text{“} a \equiv c \pmod{m} \) and \(b \equiv d \pmod{m} \)
\(\implies a + b \equiv c + d \pmod{m} \) and \(a \cdot b \equiv c \cdot d \pmod{m} \)”

Proof: If \(a \equiv c \pmod{m} \), then \(a = c + km \) for some integer \(k \).
If \(b \equiv d \pmod{m} \), then \(b = d + jm \) for some integer \(j \).
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.
...or $x = y + km$ for some integer k.
...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
{..., −7, 0, 7, 14,...} {..., −6, 1, 8, 15,...} ...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or “ $a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$

$\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b \equiv c \cdot d \pmod{m}$”

Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k.
If $b \equiv d \pmod{m}$, then $b = d + jm$ for some integer j.
Therefore,
Modular Arithmetic: Basics.

x is congruent to y modulo m or “*x ≡ y (mod m)*” if and only if *(x − y)* is divisible by *m*.

...or *x = y + km* for some integer *k*.

...or *x* and *y* have the same remainder w.r.t. *m*.

Mod 7 equivalence classes:

{..., −7, 0, 7, 14, ...} {..., −6, 1, 8, 15, ...}...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent *x* and *y*.

or “*a ≡ c (mod m)* and *b ≡ d (mod m)*

⇒ *a + b ≡ c + d (mod m)* and *a · b = c · d (mod m)***”

Proof: If *a ≡ c (mod m)*, then *a = c + km* for some integer *k*.

If *b ≡ d (mod m)*, then *b = d + jm* for some integer *j*.

Therefore,

\[a + b = c + d + (k + j)m \]
Modular Arithmetic: Basics.

\(x \) is congruent to \(y \) modulo \(m \) or \(x \equiv y \pmod{m} \)
if and only if \((x - y) \) is divisible by \(m \).
...or \(x = y + km \) for some integer \(k \).
...or \(x \) and \(y \) have the same remainder w.r.t. \(m \).

Mod 7 equivalence classes:
\{\ldots, -7, 0, 7, 14, \ldots\} \quad \{\ldots, -6, 1, 8, 15, \ldots\} \ldots

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent \(x \) and \(y \).

or \(\text{“} a \equiv c \pmod{m} \) and \(b \equiv d \pmod{m} \)

\[\implies a + b \equiv c + d \pmod{m} \) and \(a \cdot b = c \cdot d \pmod{m} \)\]

Proof: If \(a \equiv c \pmod{m} \), then \(a = c + km \) for some integer \(k \).
If \(b \equiv d \pmod{m} \), then \(b = d + jm \) for some integer \(j \).
Therefore, \(a + b = c + d + (k + j)m \) and since \(k + j \) is integer.
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.
...or $x = y + km$ for some integer k.
...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
{\ldots, -7, 0, 7, 14, \ldots} {\ldots, -6, 1, 8, 15, \ldots} ...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or “$a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$

$\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b = c \cdot d \pmod{m}$”

Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k.
If $b \equiv d \pmod{m}$, then $b = d + jm$ for some integer j.
Therefore, $a + b = c + d + (k + j)m$ and since $k + j$ is integer.
$\implies a + b \equiv c + d \pmod{m}$.
Modular Arithmetic: Basics.

x is congruent to y modulo m or “x ≡ y (mod m)”
if and only if (x − y) is divisible by m.
...or x = y + km for some integer k.
...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
{..., −7, 0, 7, 14,...} {..., −6, 1, 8, 15,...} ...

Useful Fact: Addition, subtraction, multiplication can be done with
any equivalent x and y.

or “ a ≡ c (mod m) and b ≡ d (mod m)
⇒ a + b ≡ c + d (mod m) and a · b = c · d (mod m)”

Proof: If a ≡ c (mod m), then a = c + km for some integer k.
If b ≡ d (mod m), then b = d + jm for some integer j.
Therefore, a + b = c + d + (k + j)m and since k + j is integer.
⇒ a + b ≡ c + d (mod m). □
Modular Arithmetic: Basics.

x is congruent to y modulo m or “$x \equiv y \pmod{m}$” if and only if $(x - y)$ is divisible by m.
...or $x = y + km$ for some integer k.
...or x and y have the same remainder w.r.t. m.

Mod 7 equivalence classes:
{\ldots, -7, 0, 7, 14, \ldots} {\ldots, -6, 1, 8, 15, \ldots} ...

Useful Fact: Addition, subtraction, multiplication can be done with any equivalent x and y.

or “$a \equiv c \pmod{m}$ and $b \equiv d \pmod{m}$

$\implies a + b \equiv c + d \pmod{m}$ and $a \cdot b \equiv c \cdot d \pmod{m}$”

Proof: If $a \equiv c \pmod{m}$, then $a = c + km$ for some integer k.
If $b \equiv d \pmod{m}$, then $b = d + jm$ for some integer j.
Therefore, $a + b = c + d + (k + j)m$ and since $k + j$ is integer.
$\implies a + b \equiv c + d \pmod{m}$. □

Can calculate with representative in $\{0, \ldots, m-1\}$.
Notation

\(x \ (\text{mod} \ m) \) or \(\text{mod} \ (x, m) \)- remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m - 1\} \).
Notation

\[x \pmod{m} \text{ or } \mod (x, m) - \text{ remainder of } x \text{ divided by } m \text{ in } \{0, \ldots, m - 1\}. \]
Notation

\[x \pmod{m} \text{ or } \text{mod} \ (x, m) - \text{remainder of } x \text{ divided by } m \text{ in } \{0, \ldots, m - 1\}. \]

\[\text{mod} \ (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m \]
Notation

$x \ (\text{mod } m)$ or $\text{mod} \ (x, m)$- remainder of x divided by m in \{0, \ldots, m - 1\}.

$\text{mod} \ (x, m) = x - \lfloor \frac{x}{m} \rfloor m$

$\lfloor \frac{x}{m} \rfloor$ is quotient.
Notation

\(x \pmod{m} \) or \(\text{mod } (x, m) \)- remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m-1\} \).

\[\text{mod } (x, m) = x - \lfloor \frac{x}{m} \rfloor m \]

\(\lfloor \frac{x}{m} \rfloor \) is quotient.

\[\text{mod } (29, 12) = 29 - (\lfloor \frac{29}{12} \rfloor) \times 12 \]
Notation

\[x \pmod{m} \] or \[\text{mod} (x, m) \] - remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m-1\} \).

\[\text{mod} (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m \]

\[\left\lfloor \frac{x}{m} \right\rfloor \] is quotient.

\[\text{mod} (29, 12) = 29 - (\left\lfloor \frac{29}{12} \right\rfloor) \times 12 = 29 - (2) \times 12 \]
Notation

\(x \pmod{m} \) or \(\text{mod} \ (x, m) \)- remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m-1\} \).

\[\text{mod} \ (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m \]

\(\left\lfloor \frac{x}{m} \right\rfloor \) is quotient.

\[\text{mod} \ (29, 12) = 29 - \left(\left\lfloor \frac{29}{12} \right\rfloor \right) \times 12 = 29 - (2) \times 12 = 5 \]
Notation

$x \ (\text{mod} \ m)$ or $\text{mod} \ (x, m)$ - remainder of x divided by m in $\{0, \ldots, m-1\}$.

$$\text{mod} \ (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m$$

$\left\lfloor \frac{x}{m} \right\rfloor$ is quotient.

$$\text{mod} \ (29, 12) = 29 - (\left\lfloor \frac{29}{12} \right\rfloor) \times 12 = 29 - (2) \times 12 = 5$$

Recap:
Notation

\(x \pmod{m} \) or \(\text{mod} (x, m) \) - remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m-1\} \).

\[
\text{mod} (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m
\]

\(\left\lfloor \frac{x}{m} \right\rfloor \) is quotient.

\[
\text{mod} (29, 12) = 29 - \left(\left\lfloor \frac{29}{12} \right\rfloor\right) \times 12 = 29 - (2) \times 12 = 5
\]

Recap:

\(a \equiv b \pmod{m} \).
Notation

\(x \pmod{m} \) or \(\text{mod} \ (x, m) \) - remainder of \(x \) divided by \(m \) in \(\{0, \ldots, m-1\} \).

\[
\text{mod} \ (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m
\]

\(\left\lfloor \frac{x}{m} \right\rfloor \) is quotient.

\[
\text{mod} \ (29, 12) = 29 - \left(\left\lfloor \frac{29}{12} \right\rfloor \right) \times 12 = 29 - (2) \times 12 = 5
\]

Recap:

\(a \equiv b \pmod{m} \).

Says two integers \(a \) and \(b \) are equivalent modulo \(m \).
Notation

\(x \pmod{m} \) or \(\text{mod} (x, m) \)- remainder of \(x \) divided by \(m \) in \{0, \ldots, m-1\}.

\[
\text{mod} (x, m) = x - \left\lfloor \frac{x}{m} \right\rfloor m
\]

\(\left\lfloor \frac{x}{m} \right\rfloor \) is quotient.

\[
\text{mod} (29, 12) = 29 - (\left\lfloor \frac{29}{12} \right\rfloor) \times 12 = 29 - (2) \times 12 = 5
\]

Recap:
\(a \equiv b \pmod{m} \).

Says two integers \(a \) and \(b \) are equivalent modulo \(m \).

Modulus is \(m \)
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1 \);
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1 \); **1 is multiplicative identity element.**
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right)3 \implies x = 3/2. \]

Multiplicative inverse of \(x\) **is** \(y\) **where** \(xy = 1\); \(1\) **is multiplicative identity element.**

In modular arithmetic, \(1\) **is the multiplicative identity element.**
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1 \); 1 **is multiplicative identity element.**

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) **is** \(y \) **with** \(xy = 1 \) (mod \(m \)).
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) is \(y \) where \(xy = 1; 1 \) is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) is \(y \) with \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2: \[2 \cdot 4 \equiv 8 \equiv 1 \mod 7. \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1; \)
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) **is** \(y \) with \(xy = 1 \mod m).**

For 4 modulo 7 inverse is 2: \[2 \cdot 4 \equiv 8 \equiv 1 \mod 7. \]
Can solve \(4x = 5 \mod 7). \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1 \);
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) **is** \(y \) **with** \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2: \(2 \cdot 4 \equiv 8 \equiv 1 \mod 7 \).

Can solve \(4x = 5 \mod 7 \).
\[2 \cdot 4x = 2 \cdot 5 \mod 7 \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) is \(y \) where \(xy = 1 \); 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) is \(y \) with \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2: \(2 \cdot 4 \equiv 8 \equiv 1 \mod 7 \).

Can solve \(4x = 5 \mod 7 \).
\[2 \cdot 4x = 2 \cdot 5 \mod 7 \]
\[8x = 10 \mod 7 \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies \left(\frac{1}{2}\right) \cdot 2x = \left(\frac{1}{2}\right)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) is \(y \) where \(xy = 1 \);
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) is \(y \) with \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2: \(2 \cdot 4 \equiv 8 \equiv 1 \mod 7 \).

Can solve \(4x = 5 \mod 7 \).
\[2 \cdot 4x = 2 \cdot 5 \mod 7 \]
\[8x = 10 \mod 7 \]
\[x = 3 \mod 7 \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) is \(y \) where \(xy = 1 \); \(1 \) is multiplicative identity element.

In modular arithmetic, \(1 \) is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) is \(y \) with \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2: \(2 \cdot 4 \equiv 8 \equiv 1 \mod 7 \).

Can solve \(4x = 5 \mod 7 \).
\[
2 \cdot 4x = 2 \cdot 5 \mod 7 \\
8x = 10 \mod 7 \\
x = 3 \mod 7
\]

Check!
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1; \) **1 is multiplicative identity element.**

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) **is** \(y \) **with** \(xy = 1 \mod m).**

For 4 modulo 7 inverse is 2: \(2 \cdot 4 \equiv 8 \equiv 1 \mod 7). \)

Can solve \(4x = 5 \mod 7). \)
\(2 \cdot 4x = 2 \cdot 5 \mod 7) \)
\(8x = 10 \mod 7) \)
\(x = 3 \mod 7) \)
Check! \(4(3) = 12 = 5 \mod 7). \)
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) is \(y \) where \(xy = 1 \);

1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) is \(y \) with \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2:

\[2 \cdot 4 \equiv 8 \equiv 1 \mod 7. \]

Can solve \(4x = 5 \mod 7 \).

\(x = 3 \mod 7 \implies \text{Check! } 4(3) = 12 = 5 \mod 7. \)
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) is \(y \) where \(xy = 1 \);
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) is \(y \) with \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2:
\[2 \cdot 4 \equiv 8 \equiv 1 \mod 7. \]
Can solve \(4x = 5 \mod 7 \).
\[x = 3 \mod 7 \implies \text{Check! } 4(3) = 12 = 5 \mod 7. \]

For 8 modulo 12: no multiplicative inverse!
Inverses and Factors.

Division: multiply by multiplicative inverse.

$$2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2.$$

Multiplicative inverse of x **is** y **where** $xy = 1$;
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of $x \mod m$ **is** y **with** $xy = 1 \mod m$.

For 4 modulo 7 inverse is 2:
$$2 \cdot 4 \equiv 8 \equiv 1 \mod 7.$$

Can solve $4x = 5 \mod 7$.
$x = 3 \mod 7$::: Check! $4(3) = 12 = 5 \mod 7$.

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4”
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1 \);
1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) **is** \(y \) **with** \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2:
\[2 \cdot 4 \equiv 8 \equiv 1 \mod 7. \]

Can solve \(4x = 5 \mod 7 \).
\[x = 3 \mod 7 \implies \text{Check! } 4(3) = 12 = 5 \mod 7. \]

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4”
\[8k - 12\ell \text{ is a multiple of four for any } \ell \text{ and } k \implies \]
Inverses and Factors.

Division: multiply by multiplicative inverse.

\[2x = 3 \implies (1/2) \cdot 2x = (1/2)3 \implies x = 3/2. \]

Multiplicative inverse of \(x \) **is** \(y \) **where** \(xy = 1 \); 1 is multiplicative identity element.

In modular arithmetic, 1 is the multiplicative identity element.

Multiplicative inverse of \(x \mod m \) **is** \(y \) **with** \(xy = 1 \mod m \).

For 4 modulo 7 inverse is 2: \[2 \cdot 4 \equiv 8 \equiv 1 \mod 7. \]

Can solve \(4x = 5 \mod 7 \). \[x = 3 \mod 7 \] : Check! \(4(3) = 12 = 5 \mod 7 \).

For 8 modulo 12: no multiplicative inverse!

“Common factor of 4” \(\implies \)
\(8k - 12\ell \) **is** a **multiple** **of** **four for any** \(\ell \) **and** \(k \) \(\implies \)
\(8k \not\equiv 1 \mod 12 \) for any \(k \).
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \Rightarrow:
The set $S = \{0 \cdot x, 1 \cdot x, \ldots, (m-1) \cdot x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\Rightarrow One must correspond to 1 modulo m. If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where $(ax \equiv bx \pmod{m}) \Rightarrow (a - b) \cdot x \equiv 0 \pmod{m}$

$\gcd(x, m) = 1 \Rightarrow$ Prime factorization of m and x do not contain common primes. \Rightarrow $(a - b)$ factorization contains all primes in m’s factorization.

\Rightarrow $(a - b)$ has to be multiple of m.

\Rightarrow $(a - b) \geq m$.

But $a, b \in \{0, \ldots, m-1\}$.

Contradiction.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of \(x \) and \(m \), \(\gcd(x, m) \), is 1, then \(x \) has a multiplicative inverse modulo \(m \).

Proof \(\implies \): The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \iff: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigenhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \Rightarrow: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\Rightarrow One must correspond to 1 modulo m.
Greatest Common Divisor and Inverses.

Thm: If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$,
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where $(ax \equiv bx \mod m) \implies (a - b)x \equiv 0 \mod m$
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of \(x \) and \(m \), \(\gcd(x, m) \), is 1, then \(x \) has a multiplicative inverse modulo \(m \).

Proof \(\Rightarrow \): The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

Pigeonhole principle: Each of \(m \) numbers in \(S \) correspond to different one of \(m \) equivalence classes modulo \(m \).
\[\Rightarrow \text{ One must correspond to } 1 \text{ modulo } m. \]

If not distinct, then \(a, b \in \{0, \ldots, m - 1\} \), where
\[(ax \equiv bx \pmod{m}) \Rightarrow (a - b)x \equiv 0 \pmod{m} \]
Or \((a - b)x = km \) for some integer \(k \).
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \Rightarrow The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\Rightarrow One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m - 1\}$, where

$(ax \equiv bx \pmod m) \Rightarrow (a - b)x \equiv 0 \pmod m$

Or $(a - b)x = km$ for some integer k.

$\gcd(x, m) = 1$
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies : The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.
\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where

$(ax \equiv bx \mod m) \implies (a-b)x \equiv 0 \mod m$

Or $(a-b)x = km$ for some integer k.

$gcd(x, m) = 1$
\implies Prime factorization of m and x do not contain common primes.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.
\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where
$$(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$$
Or $(a-b)x = km$ for some integer k.

$\gcd(x, m) = 1$
\implies Prime factorization of m and x do not contain common primes.
$\implies (a-b)$ factorization contains all primes in m's factorization.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.
\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where
$(ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m}$
Or $(a-b)x = km$ for some integer k.

$\gcd(x, m) = 1$
\implies Prime factorization of m and x do not contain common primes.
$\implies (a-b)$ factorization contains all primes in m's factorization.
So $(a-b)$ has to be multiple of m.

Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m - 1\}$, where

\[(ax \equiv bx \pmod{m}) \implies (a - b)x \equiv 0 \pmod{m}
\]

Or $(a - b)x = km$ for some integer k.

$\gcd(x, m) = 1$

\implies Prime factorization of m and x do not contain common primes.

$\implies (a - b)$ factorization contains all primes in m’s factorization.

So $(a - b)$ has to be multiple of m.

$\implies (a - b) \geq m$.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where

$(ax \equiv bx \mod m) \implies (a-b)x \equiv 0 \mod m$

Or $(a-b)x = km$ for some integer k.

$gcd(x, m) = 1$

\implies Prime factorization of m and x do not contain common primes.

\implies $(a-b)$ factorization contains all primes in m’s factorization.

So $(a-b)$ has to be multiple of m.

$\implies (a-b) \geq m$. But $a, b \in \{0, \ldots m-1\}$.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of x and m, $\gcd(x, m)$, is 1, then x has a multiplicative inverse modulo m.

Proof \implies: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.

Pigeonhole principle: Each of m numbers in S correspond to different one of m equivalence classes modulo m.

\implies One must correspond to 1 modulo m.

If not distinct, then $a, b \in \{0, \ldots, m-1\}$, where

$(ax \equiv bx \pmod{m}) \implies (a - b)x \equiv 0 \pmod{m}$

Or $(a - b)x = km$ for some integer k.

$\gcd(x, m) = 1$
\implies Prime factorization of m and x do not contain common primes.
\implies $(a - b)$ factorization contains all primes in m's factorization.
So $(a - b)$ has to be multiple of m.

$\implies (a - b) \geq m$. But $a, b \in \{0, \ldots, m-1\}$. Contradiction.
Greatest Common Divisor and Inverses.

Thm:
If greatest common divisor of \(x \) and \(m \), \(\gcd(x,m) \), is 1, then \(x \) has a multiplicative inverse modulo \(m \).

Proof \(\implies \): The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

Pigeonhole principle: Each of \(m \) numbers in \(S \) correspond to different one of \(m \) equivalence classes modulo \(m \).
\(\implies \) One must correspond to 1 modulo \(m \).

If not distinct, then \(a, b \in \{0, \ldots, m-1\} \), where \((ax \equiv bx \pmod{m}) \implies (a-b)x \equiv 0 \pmod{m} \)
Or \((a-b)x = km \) for some integer \(k \).

\(\gcd(x,m) = 1 \)
\(\implies \) Prime factorization of \(m \) and \(x \) do not contain common primes.
\(\implies (a-b) \) factorization contains all primes in \(m \)'s factorization.
So \((a-b) \) has to be multiple of \(m \).
\(\implies (a-b) \geq m \). But \(a, b \in \{0, \ldots m-1\} \). Contradiction.
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

\(\square \)

For \(x = 4 \) and \(m = 6 \). All products of 4...
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \pmod{m} \) if all distinct modulo \(m \).

...

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0, 4, 8, 12, 16, 20\}
\]

\[
\text{reducing (mod 6)} \quad S = \{0, 4, 2, 0, 4, 2\}
\]

Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).

\[
S = \{0, 5, 4, 3, 2, 1\}
\]

All distinct, contains 1!

5 is multiplicative inverse of 5 \((\text{mod 6})\).

What is \(x \)? Multiply both sides by 5.

\[
x = 15 = 3 \pmod{6}
\]

\[
4x = 3 \pmod{6}
\]

No solutions. Can't get an odd.

\[
4x = 2 \pmod{6}
\]

Two solutions! \(x = 2, 5 \pmod{6} \).

Very different for elements with inverses.
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\}$
Thm: If gcd$(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing (mod 6)
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1\), then \(x\) has a multiplicative inverse modulo \(m\).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\}\) contains \(y \equiv 1 \mod m\) if all distinct modulo \(m\).

... For \(x = 4\) and \(m = 6\). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]

reducing \((\mod 6)\)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

...

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \]

reducing \(\mod 6 \)

\[S = \{0, 4, 2, 0, 4, 2\} \]
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \pmod{m} \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]

reducing \(\pmod{6} \)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]

Not distinct.
Proof review. Consequence.

Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \]

reducing (mod 6)

\[S = \{0, 4, 2, 0, 4, 2\} \]

Not distinct. Common factor 2.
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

... For \(x = 4 \) and \(m = 6 \). All products of 4...

\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \]

reducing \(\mod 6 \)

\[S = \{0, 4, 2, 0, 4, 2\} \]

Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \pmod{m} \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]

reducing \(\pmod{6} \)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]

Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).

\[
S =
\]
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

...

For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing (mod 6)

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\}$
Proof review. Consequence.

Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing (mod 6)

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \]

reducing \(\mod 6 \)

\[S = \{0, 4, 2, 0, 4, 2\} \]

Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).

\[S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\} \]
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\} \) contains \(y \equiv 1 \pmod{m} \) if all distinct modulo \(m \).

...

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]
reducing \(\pmod{6} \)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]
Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).

\[
S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
\]
All distinct,
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

... For \(x = 4 \) and \(m = 6 \). All products of 4...
\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \]
reducing \(\mod 6 \)
\[S = \{0, 4, 2, 0, 4, 2\} \]
Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).
\[S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\} \]
All distinct, contains 1!
Proof review. Consequence.

Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

Reducing (mod 6)

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).
Proof: If \(\gcd(x, m) = 1\), then \(x\) has a multiplicative inverse modulo \(m\).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\}\) contains \(y \equiv 1 \mod m\) if all distinct modulo \(m\).

For \(x = 4\) and \(m = 6\). All products of 4...

\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\} \]

reducing \(\mod 6\)

\[S = \{0, 4, 2, 0, 4, 2\} \]

Not distinct. Common factor 2.

For \(x = 5\) and \(m = 6\).

\[S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\} \]

All distinct, contains 1! 5 is multiplicative inverse of 5 \(\mod 6\).

\[5x = 3 \mod 6 \]
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing $\pmod{6}$

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

$5x = 3 \pmod{6}$ What is x?
Thm: If \(\gcd(x, m) = 1\), then \(x\) has a multiplicative inverse modulo \(m\).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m - 1)x\}\) contains \(y \equiv 1 \mod m\) if all distinct modulo \(m\).

For \(x = 4\) and \(m = 6\). All products of 4...
\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]
reducing \((\mod 6)\)
\[
S = \{0, 4, 2, 0, 4, 2\}
\]
Not distinct. Common factor 2.

For \(x = 5\) and \(m = 6\).
\[
S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
\]
All distinct, contains 1! 5 is multiplicative inverse of 5 \((\mod 6)\).

\[5x = 3 \mod 6\] What is \(x\)? Multiply both sides by 5.
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...
\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]
reducing \(\mod 6 \)
\[
S = \{0, 4, 2, 0, 4, 2\}
\]
Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).
\[
S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
\]
All distinct, contains 1! 5 is multiplicative inverse of 5 \(\mod 6 \).

\[
5x = 3 \mod 6 \quad \text{What is } x? \quad \text{Multiply both sides by 5.}
\]
\[
x = 15
\]
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing (mod 6)

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

$5x = 3 \mod 6$ What is x? Multiply both sides by 5.

$x = 15 = 3 \mod 6$
Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]

Reducing \(\mod 6 \)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]

Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).

\[
S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
\]

All distinct, contains 1! 5 is multiplicative inverse of 5 \(\mod 6 \).

5\(x \equiv 3 \mod 6 \) What is \(x \)? Multiply both sides by 5.

\[
x = 15 = 3 \mod 6
\]

4\(x \equiv 3 \mod 6 \)
Proof review. Consequence.

Thm: If \(\gcd(x, m) = 1 \), then \(x \) has a multiplicative inverse modulo \(m \).

Proof Sketch: The set \(S = \{0x, 1x, \ldots, (m-1)x\} \) contains \(y \equiv 1 \mod m \) if all distinct modulo \(m \).

For \(x = 4 \) and \(m = 6 \). All products of 4...

\[
S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}
\]

reducing \(\mod 6 \)

\[
S = \{0, 4, 2, 0, 4, 2\}
\]

Not distinct. Common factor 2.

For \(x = 5 \) and \(m = 6 \).

\[
S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}
\]

All distinct, contains 1! 5 is multiplicative inverse of 5 \(\mod 6 \).

\[
5x = 3 \mod 6\quad \text{What is } x? \quad \text{Multiply both sides by 5.}
\]

\[
x = 15 = 3 \mod 6
\]

\[
4x = 3 \mod 6\quad \text{No solutions.}
\]
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.

For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing (mod 6)

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

$5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

$x = 15 = 3 \pmod{6}$

$4x = 3 \pmod{6}$ No solutions. Can’t get an odd.
Proof review. Consequence.

Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m-1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing $\mod 6$

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains $1!$ 5 is multiplicative inverse of $5 \mod 6$.

$5x = 3 \mod 6$ What is x? Multiply both sides by 5.
$x = 15 = 3 \mod 6$

$4x = 3 \mod 6$ No solutions. Can’t get an odd.
$4x = 2 \mod 6$
Proof review. Consequence.

Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.

For $x = 4$ and $m = 6$. All products of 4...

\[S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}\]

reducing $\pmod{6}$

\[S = \{0, 4, 2, 0, 4, 2\}\]

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

\[S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}\]

All distinct, contains 1! 5 is multiplicative inverse of 5 $\pmod{6}$.

$5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

\[x = 15 = 3 \pmod{6}\]

$4x = 3 \pmod{6}$ No solutions. Can’t get an odd.

$4x = 2 \pmod{6}$ Two solutions!
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \pmod{m}$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$ reducing (mod 6)

$S = \{0, 4, 2, 0, 4, 2\}$
Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$
All distinct, contains 1! 5 is multiplicative inverse of 5 (mod 6).

$5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

$x = 15 = 3 \pmod{6}$

$4x = 3 \pmod{6}$ No solutions. Can’t get an odd.

$4x = 2 \pmod{6}$ Two solutions! $x = 2, 5 \pmod{6}$
Thm: If $\gcd(x, m) = 1$, then x has a multiplicative inverse modulo m.

Proof Sketch: The set $S = \{0x, 1x, \ldots, (m - 1)x\}$ contains $y \equiv 1 \mod m$ if all distinct modulo m.

... For $x = 4$ and $m = 6$. All products of 4...

$S = \{0(4), 1(4), 2(4), 3(4), 4(4), 5(4)\} = \{0, 4, 8, 12, 16, 20\}$

reducing $\pmod{6}$

$S = \{0, 4, 2, 0, 4, 2\}$

Not distinct. Common factor 2.

For $x = 5$ and $m = 6$.

$S = \{0(5), 1(5), 2(5), 3(5), 4(5), 5(5)\} = \{0, 5, 4, 3, 2, 1\}$

All distinct, contains 1! 5 is multiplicative inverse of 5 $(\mod 6)$.

$5x = 3 \pmod{6}$ What is x? Multiply both sides by 5.

$x = 15 = 3 \pmod{6}$

$4x = 3 \pmod{6}$ No solutions. Can’t get an odd.

$4x = 2 \pmod{6}$ Two solutions! $x = 2, 5 \pmod{6}$

Very different for elements with inverses.
Finding inverses.

How to find the inverse?

Algorithm:
Try all numbers up to x to see if it divides both x and m.

Very slow.

Next: A Faster algorithm.
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?
Finding inverses.

How to find the inverse?
How to find if \(x \) has an inverse modulo \(m \)?
Find \(\text{gcd} \ (x, m) \).
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find $\operatorname{gcd}(x, m)$.
 Greater than 1?
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find $\gcd(x, m)$.

Greater than 1? No multiplicative inverse.
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find $\gcd(x, m)$.
 Greater than 1? No multiplicative inverse.
 Equal to 1?
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find $\gcd(x, m)$.
 Greater than 1? No multiplicative inverse.
 Equal to 1? Multiplicative inverse.
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find $\text{gcd} \ (x, m)$.
 Greater than 1? No multiplicative inverse.
 Equal to 1? Multiplicative inverse.

Algorithm:
Finding inverses.

How to find the inverse?

How to find if x has an inverse modulo m?

Find gcd (x, m).
 Greater than 1? No multiplicative inverse.
 Equal to 1? Mutliplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.
Finding inverses.

How to find the inverse?
How to find if x has an inverse modulo m?

Find $\text{gcd} \ (x, m)$.
 Greater than 1? No multiplicative inverse.
 Equal to 1? Multiplicative inverse.

Algorithm: Try all numbers up to x to see if it divides both x and m.
Very slow.
Finding inverses.

How to find the inverse?
How to find if \(x \) has an inverse modulo \(m \)?

Find \(\gcd(x, m) \).
 Greater than 1? No multiplicative inverse.
 Equal to 1? Multiplicative inverse.

Algorithm: Try all numbers up to \(x \) to see if it divides both \(x \) and \(m \).
Very slow.

Next: A Faster algorithm.