

Finish Euclid. Bijection/CRT/Isomorphism. Fermat's Little Theorem.

#### Quick review

Review runtime proof.

# Runtime Proof.

```
Theorem: (euclid x y) uses O(n) "divisions" where n = b(x).
```

Proof:

#### Fact:

First arg decreases by at least factor of two in two recursive calls.

After  $2\log_2 x = O(n)$  recursive calls, argument *x* is 1 bit number. One more recursive call to finish. 1 division per recursive call. O(n) divisions.

# Runtime Proof (continued.)

#### Fact:

First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is  $y \implies$  true in one recursive call;

Case 2: Will show " $y \ge x/2$ "  $\implies$  "mod $(x, y) \le x/2$ ."

mod (x, y) is second argument in next recursive call, and becomes the first argument in the next one. When  $y \ge x/2$ , then

$$\lfloor \frac{x}{y} \rfloor = 1,$$
  
mod  $(x, y) = x - y \lfloor \frac{x}{y} \rfloor = x - y \leq x - x/2 = x/2$ 

#### Poll

#### Mark correct answers.

Note: Mod(x,y) is the remainder of x divided by y and y < x.

(A) mod (x, y) < y(B) If euclid(x,y) calls euclid(u,v) calls euclid (a,b) then  $a \le x/2$ . (C) euclid(x,y) calls euclid (u,v) means u = y. (D) if y > x/2, mod (x, y) = (x - y)(E) if y > x/2, mod (x, y) < x/2

### Finding an inverse?

We showed how to efficiently tell if there is an inverse. Extend euclid to find inverse.

# Euclid's GCD algorithm.

Computes the gcd(x, y) in O(n) divisions. (Remember  $n = \log_2 x$ .) For x and m, if gcd(x, m) = 1 then x has an inverse modulo m.

#### Multiplicative Inverse.

GCD algorithm used to tell **if** there is a multiplicative inverse. How do we **find** a multiplicative inverse?

#### Extended GCD

#### **Euclid's Extended GCD Thm:** For any $x, y \in Z$ , $\exists a, b \in Z$

ax + by = d where d = gcd(x, y).

"Make *d* out of sum of multiples of *x* and *y*." smallest positive value for such an expression. since always a multiple of *d*.

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x, m) = 1.

ax + bm = 1 $ax \equiv 1 - bm \equiv 1 \pmod{m}$ .

So *a* multiplicative inverse of  $x \pmod{m}$ !! Example: For x = 12 and y = 35, gcd(12,35) = 1.

(3)12 + (-1)35 = 1.

a = 3 and b = -1.

The multiplicative inverse of 12 (mod 35) is 3.

Check:  $3(12) = 36 = 1 \pmod{35}$ .

## Make *d* out of multiples of *x* and *y*..?

```
gcd(35,12)
gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)
1
```

```
How did gcd get 11 from 35 and 12?
35 - |\frac{35}{12}|12 = 35 - (2)12 = 11
```

How does gcd get 1 from 12 and 11?  $12 - \lfloor \frac{12}{11} \rfloor 11 = 12 - (1)11 = 1$ 

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.

1 = 12 - (1)11 = 12 - (1)(35 - (2)12) = (3)12 + (-1)35Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b = -1.

## Extended GCD Algorithm.

Claim: Returns (d, a, b): d = gcd(a, b) and d = ax + by. Example:  $a - \lfloor x/y \rfloor \cdot b = 1 - [11] + [12] / [1] + [-1] = 3$ 

```
ext-gcd(35,12)
ext-gcd(12, 11)
ext-gcd(11, 1)
ext-gcd(11, 0)
return (1,1,0) ;; 1 = (1)1 + (0) 0
return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11
return (1,-1, 3) ;; 1 = (-1)35 + (3)12
```

#### Extended GCD Algorithm.

**Theorem:** Returns (d, a, b), where d = gcd(a, b) and

d = ax + by.

#### Correctness.

**Proof:** Strong Induction.<sup>1</sup> **Base:** ext-gcd(x,0) returns (d = x,1,0) with x = (1)x + (0)y. **Induction Step:** Returns (d, A, B) with d = Ax + ByInd hyp: **ext-gcd**(y, mod (x,y)) returns (d, a,b) with d = ay + b(mod (x, y))

ext-gcd(x, y) calls ext-gcd(y, mod(x, y)) so

$$d = ay + b \cdot ( \mod (x, y))$$
  
=  $ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)$   
=  $bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y$ 

And ext-gcd returns  $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$  so theorem holds!

<sup>&</sup>lt;sup>1</sup>Assume *d* is gcd(x, y) by previous proof.

#### Review Proof: step.

Recursively:  $d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y$ Returns  $(d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))$ .

#### Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1. gcd(7,60).

$$7(0)+60(1) = 60$$
  

$$7(1)+60(0) = 7$$
  

$$7(-8)+60(1) = 4$$
  

$$7(9)+60(-1) = 3$$
  

$$7(-17)+60(2) = 1$$

Confirm: -119 + 120 = 1Note: an "iterative" version of the e-gcd algorithm.

### Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: *n* is either prime (base cases)

or  $n = a \times b$  and *a* and *b* can be written as product of primes.

Thm: The prime factorization of *n* is unique up to reordering.

Fundamental Theorem of Arithmetic:

Every natural number can be written as a unique (up to reordering) product of primes.

Generalization: things with a "division algorithm".

One example: polynomial division.

# No shared common factors, and products.

Claim: For  $x, y, z \in \mathbb{Z}^+$  with gcd(x, y) = 1 and x|yz then x|z.

Idea(restatemten): *x* doesn't share common factors with *y* so it must divide *z*.

Euclid: 1 = ax + by.

Observe: x | axz and x | byz (since x | yz), and x divides the sum.  $\implies x | axz + byz$ And axz + byz = z, thus x | z.

Extended Euclid: computes inverses.

Extended Euclid from integer division algorithm:

 $\implies$  Fundamental Theorem.

Used to prove that the prime factorization of a number is unique. Contradiction (two factorizations):  $q_1 \cdot q_\ell$  and  $p_1 \cdot p_k$ Induction:  $p_1$  divides both. Same number. Using claim:  $p_1$  divides  $q_1 \cdot q_{\ell-1}$  or  $q_\ell$ . Conclusion:  $p_1 = q_i$  for some *i*.

# Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time! Very different from elementary school: try 1, try 2, try 3...  $2^{n/2}$ 

Inverse of 500,000,357 modulo 1,000,000,000,000?  $\leq$  80 divisions. versus 1,000,000

Internet Security: Soon.

 $1 \times 2 \times 3 \times 4 \times 5 \times 6 = 2(1) \times 2(2) \times 2(3) \times 2(4) \times 2(5) \times 2(6) \text{ modulo 7.}$ 

#### Lots of Mods

 $x = 5 \pmod{7}$  and  $x = 3 \pmod{5}$ . What is  $x \pmod{35}$ ? Let's try 5. Not 3 (mod 5)! Let's try 3. Not 5 (mod 7)! If  $x = 5 \pmod{7}$ then x is in {5,12,19,26,33}. Oh, only 33 is 3 (mod 5). Hmmm... only one solution. A bit slow for large values.

### Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

My love is won. 0 and 1. Nothing and nothing done.

Find  $x = a \pmod{m}$  and  $x = b \pmod{n}$  where gcd(m, n)=1.

**CRT Thm:** There is a unique solution  $x \pmod{mn}$ . **Proof (solution exists):** 

Consider  $u = n(n^{-1} \pmod{m})$ .  $u = 0 \pmod{n}$   $u = 1 \pmod{m}$ Consider  $v = m(m^{-1} \pmod{n})$ .  $v = 1 \pmod{n}$   $v = 0 \pmod{m}$ Let x = au + bv.  $x = a \pmod{m}$  since  $bv = 0 \pmod{m}$  and  $au = a \pmod{m}$   $x = b \pmod{n}$  since  $au = 0 \pmod{n}$  and  $bv = b \pmod{n}$ Thus there is a solution.

# Simple Chinese Remainder Theorem.

**CRT Thm:** There is a unique solution *x* (mod *mn*).

#### Proof (uniqueness):

If not, two solutions, *x* and *y*.

$$(x-y) \equiv 0 \pmod{m}$$
 and  $(x-y) \equiv 0 \pmod{n}$ .  
 $\implies (x-y)$  is multiple of *m* and *n*  
 $gcd(m,n) = 1 \implies$  no common primes in factorization *m* and *n*  
 $\implies mn|(x-y)$   
 $\implies x-y \ge mn \implies x, y \notin \{0, ..., mn-1\}.$ 

Thus, only one solution modulo mn.

### Poll.

#### My love is won, Zero and one. Nothing and nothing done.

What is the rhyme saying?

- (A) Multiplying by 1, gives back number. (Does nothing.)
- (B) Adding 0 gives back number. (Does nothing.)
- (C) Rao is goofy.
- (D) Multiplying by 0, gives 0.
- (E) Adding one does, not too much.

All are (maybe) correct.

(E) doesn't have to do with the rhyme.

(C) Recall Polonius:

"Though this be madness, yet there is method in't."

### CRT:isomorphism.

For m, n, gcd(m, n) = 1.

 $x \mod mn \leftrightarrow x = a \mod m$  and  $x = b \mod n$ 

 $y \mod mn \leftrightarrow y = c \mod m$  and  $y = d \mod n$ 

Also, true that  $x + y \mod mn \leftrightarrow a + c \mod m$  and  $b + d \mod n$ .

Mapping is "isomorphic":

addition (and multiplication) works with pre-images or images

Basis of hardware accelerators for security.

#### Fermat's Theorem: Reducing Exponents.

**Fermat's Little Theorem:** For prime *p*, and  $a \not\equiv 0 \pmod{p}$ ,

 $a^{p-1} \equiv 1 \pmod{p}$ .

**Proof:** Consider  $S = \{a \cdot 1, \dots, a \cdot (p-1)\}$ .

All different modulo p since a has an inverse modulo p. S contains representative of  $\{1, \dots, p-1\}$  modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \mod p$$

Since multiplication is commutative.

$$a^{(p-1)}(1\cdots(p-1)) \equiv (1\cdots(p-1)) \mod p.$$

Each of 2,... (p-1) has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \mod p$$
.

#### Example.

*p* = 5.

 $a = 2 \mod 5$ .

 $\textit{S} = \{1, 2, 3, 4\}$ 

 $T = \{2(1), 2(2), 2(3), 2(4)\} = \{2, 4, 1, 3\} \text{ mod } 5.$ 

 $1 \times 2 \times 3 \times 4 = 2 \times 4 \times 1 \times 3 \mod 5.$ 

Cuz Multiplication is commutative.

 $1\times 2\times 3\times 4=2(1)\times 2(2)\times 2(3)\times 2(4)=2^4\times 1\times 2\times 3\times 4 \text{ mod } 5.$ 

All of 1,2,3,4 have a multiplicative inverse. So...

 $1 = 2^4 \pmod{5}$   $2^4 = 1 \pmod{5}$  $a^{p-1} = 1 \pmod{5}.$ 

## Poll

#### Which was used in Fermat's theorem proof?

- (A) The mapping  $f(x) = ax \mod p$  is a bijection.
- (B) Multiplying a number by 1, gives the number.
- (C) All nonzero numbers mod p, have an inverse.
- (D) Multiplying a number by 0 gives 0.
- (E) Multiplying elements of sets A and B together is the same if A = B.

(A), (C), and (E)

#### Fermat and Exponent reducing.

**Fermat's Little Theorem:** For prime p, and  $a \neq 0 \pmod{p}$ ,

 $a^{p-1}\equiv 1 \pmod{p}.$ 

What is 2<sup>101</sup> (mod 7)?

Wrong:  $2^{101} = 2^{7*14+3} = 2^3 \pmod{7}$ 

Fermat: 7 prime, gcd(2,7) = 1.  $\implies 2^6 = 1 \pmod{7}$ .

Correct:  $2^{101} = 2^{6*16+5} = 2^5 = 32 = 4 \pmod{7}$ .

For a prime modulus, we can reduce exponents modulo p-1!

#### Lecture in a minute.

Extended Euclid: Find *a*, *b* where ax + by = gcd(x, y). Idea: compute *a*, *b* recursively (euclid), or iteratively. Inverse:  $ax + by = ax = gcd(x, y) \pmod{y}$ . If gcd(x, y) = 1, we have  $ax = 1 \pmod{y}$  $\rightarrow a = x^{-1} \pmod{y}$ .

Fundamental Theorem of Algebra:

Unique prime factorization of any natural number. Claim: if p|n and n = xy, p|x of p|x. From Extended Euclid. Induction.

```
Chinese Remainder Theorem:

If gcd(n,m) = 1, x = a \pmod{n}, x = b \pmod{m} unique sol.

Proof: Find u = 1 \pmod{n}, u = 0 \pmod{m},

and v = 0 \pmod{n}, v = 1 \pmod{m}.

Then: x = au + bv = a \pmod{n}...

u = m(m^{-1} \pmod{n}) \pmod{n} works!

Fermat: Prime p, a^{p-1} = 1 \pmod{p}.

Proof Idea: f(x) = a(x) \pmod{p}: bijection on S = \{1, \dots, p-1\}.

Product of elts == for range/domain: a^{p-1} factor in range.
```