
Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.

1 / 28



Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.

1 / 28



Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.

1 / 28



Today

Finish Euclid.

Bijection/CRT/Isomorphism.

Fermat’s Little Theorem.

1 / 28



Quick review

Review runtime proof.

2 / 28



Runtime Proof.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Theorem: (euclid x y) uses O(n) ”divisions” where n = b(x).

Proof:

Fact:
First arg decreases by at least factor of two in two recursive calls.

After 2 log2 x = O(n) recursive calls, argument x is 1 bit number.
One more recursive call to finish.
1 division per recursive call.
O(n) divisions.
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Runtime Proof (continued.)
(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Fact:
First arg decreases by at least factor of two in two recursive calls.

Proof of Fact: Recall that first argument decreases every call.

Case 1: y < x/2, first argument is y
=⇒ true in one recursive call;

Case 2: Will show “y ≥ x/2” =⇒ “mod(x ,y)≤ x/2.”

mod (x ,y) is second argument in next recursive call,
and becomes the first argument in the next one.

When y ≥ x/2, then

⌊ x
y ⌋= 1,

mod (x ,y) = x −y⌊ x
y ⌋= x −y≤x −x/2 = x/2
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Poll

Mark correct answers.
Note: Mod(x,y) is the remainder of x divided by y and y < x .

(A) mod (x ,y)< y
(B) If euclid(x,y) calls euclid(u,v) calls euclid (a,b) then a <= x/2.
(C) euclid(x,y) calls euclid (u,v) means u = y.
(D) if y > x/2, mod (x ,y) = (x −y)
(E) if y > x/2, mod (x ,y)< x/2
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Finding an inverse?

We showed how to efficiently tell if there is an inverse.

Extend euclid to find inverse.
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Euclid’s GCD algorithm.

(define (euclid x y)
(if (= y 0)

x
(euclid y (mod x y))))

Computes the gcd(x ,y) in O(n) divisions. (Remember n = log2 x .)

For x and m, if gcd(x ,m) = 1 then x has an inverse modulo m.
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Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?
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Multiplicative Inverse.

GCD algorithm used to tell if there is a multiplicative inverse.

How do we find a multiplicative inverse?
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Extended GCD
Euclid’s Extended GCD Thm: For any x ,y ∈ Z , ∃a,b ∈ Z

ax +by = d where d = gcd(x ,y).

“Make d out of sum of multiples of x and y .”
smallest positive value for such an expression.
since always a multiple of d .

What is multiplicative inverse of x modulo m?

By extended GCD theorem, when gcd(x ,m) = 1.

ax +bm = 1
ax ≡ 1−bm ≡ 1 (mod m).

So a multiplicative inverse of x (mod m)!!
Example: For x = 12 and y = 35 , gcd(12,35) = 1.

(3)12+(−1)35 = 1.

a = 3 and b =−1.
The multiplicative inverse of 12 (mod 35) is 3.

Check: 3(12) = 36 = 1 (mod 35).
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Make d out of multiples of x and y ..?

gcd(35,12)

gcd(12, 11) ;; gcd(12, 35%12)
gcd(11, 1) ;; gcd(11, 12%11)
gcd(1,0)

1

How did gcd get 11 from 35 and 12?
35−⌊35

12⌋12 = 35− (2)12 = 11

How does gcd get 1 from 12 and 11?
12−⌊12

11⌋11 = 12− (1)11 = 1

Algorithm finally returns 1.

But we want 1 from sum of multiples of 35 and 12?

Get 1 from 12 and 11.
1 = 12− (1)11

= 12− (1)(35− (2)12)

= (3)12+(−1)35

Get 11 from 35 and 12 and plugin.... Simplify. a = 3 and b =−1.
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Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Claim: Returns (d ,a,b): d = gcd(x ,y) and d = ax +by .
Example:

a−⌊x/y⌋ ·b =

1−⌊11/1⌋ ·0 = 10−⌊12/11⌋ ·1 =−11−⌊35/12⌋ · (−1) = 3

ext-gcd(35,12)
ext-gcd(12, 11)

ext-gcd(11, 1)
ext-gcd(1,0)
return (1,1,0) ;; 1 = (1)1 + (0) 0

return (1,0,1) ;; 1 = (0)11 + (1)1
return (1,1,-1) ;; 1 = (1)12 + (-1)11

return (1,-1, 3) ;; 1 = (-1)35 +(3)12
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Correctness.

Proof: Strong Induction.1

Base: ext-gcd(x ,0) returns (d = x ,1,0) with x = (1)x +(0)y .

Induction Step: Returns (d ,A,B) with d = Ax +By
Ind hyp: ext-gcd(y , mod (x ,y)) returns (d ,a,b) with

d = ay +b( mod (x ,y))

ext-gcd(x ,y) calls ext-gcd(y , mod (x ,y)) so

d = ay +b · ( mod (x ,y))

= ay +b · (x −⌊x
y
⌋y)

= bx +(a−⌊x
y
⌋ ·b)y

And ext-gcd returns (d ,b,(a−⌊ x
y ⌋ ·b)) so theorem holds!

1Assume d is gcd(x ,y) by previous proof.
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Review Proof: step.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)

else
(d, a, b) := ext-gcd(y, mod(x,y))
return (d, b, a - floor(x/y) * b)

Recursively: d = ay +b(x −⌊ x
y ⌋ ·y) =⇒ d = bx − (a−⌊ x

y ⌋b)y

Returns (d ,b,(a−⌊ x
y ⌋ ·b)).
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Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.

egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60

7(1)+60(0) = 7
7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4

7(9)+60(−1) = 3
7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm:

−119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Hand Calculation Method for Inverses.

Example: gcd(7,60) = 1.
egcd(7,60).

7(0)+60(1) = 60
7(1)+60(0) = 7

7(−8)+60(1) = 4
7(9)+60(−1) = 3

7(−17)+60(2) = 1

Confirm: −119+120 = 1

Note: an “iterative” version of the e-gcd algorithm.

15 / 28



Fundamental Theorem of Arithmetic.

Thm: Every natural number can be written as the product of primes.

Proof: n is either prime (base cases)
or n = a×b and a and b can be written as product of primes.

Thm: The prime factorization of n is unique up to reordering.

Fundamental Theorem of Arithmetic:
Every natural number can be written as a unique (up to reordering)
product of primes.

Generalization: things with a “division algorithm”.

One example: polynomial division.
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No shared common factors, and products.
Claim: For x ,y ,z ∈ Z+ with gcd(x ,y) = 1 and x |yz then x |z.

Idea(restatemten): x doesn’t share common factors with y
so it must divide z.

Euclid: 1 = ax +by .

Observe: x |axz and x |byz (since x |yz), and x divides the sum.
=⇒ x |axz +byz

And axz +byz = z, thus x |z.

Extended Euclid: computes inverses.

Extended Euclid from integer division algorithm:
=⇒ Fundamental Theorem.

Used to prove that the prime factorization of a number is unique.
Contradiction (two factorizations): q1 ·qℓ and p1 ·pk
Induction: p1 divides both. Same number.

Using claim: p1 divides q1 ·qℓ−1 or qℓ.
Conclusion: p1 = qi for some i .
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Extended Euclid: computes inverses.

Extended Euclid from integer division algorithm:
=⇒ Fundamental Theorem.

Used to prove that the prime factorization of a number is unique.
Contradiction (two factorizations): q1 ·qℓ and p1 ·pk
Induction: p1 divides both. Same number.

Using claim: p1 divides q1 ·qℓ−1 or qℓ.
Conclusion: p1 = qi for some i .
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Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!

Very different from elementary school: try 1, try 2, try 3...

2n/2

Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.
(10000000000000000000000000000000000000000000)5 divisions.

Internet Security: Soon.
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1×2×3×4×5×6 = 2(1)×2(2)×2(3)×2(4)×2(5)×2(6) modulo 7.
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Lots of Mods

x = 5 (mod 7) and x = 3 (mod 5).

What is x (mod 35)?

Let’s try 5. Not 3 (mod 5)!
Let’s try 3. Not 5 (mod 7)!

If x = 5 (mod 7)
then x is in {5,12,19,26,33}.

Oh, only 33 is 3 (mod 5).
Hmmm... only one solution.

A bit slow for large values.
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Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

My love is won. 0 and 1. Nothing and nothing done.

Find x = a (mod m) and x = b (mod n) where gcd(m,n)=1.

CRT Thm: There is a unique solution x (mod mn).
Proof (solution exists):
Consider u = n(n−1 (mod m)).

u = 0 (mod n) u = 1 (mod m)
Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

Thus there is a solution.
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Consider v = m(m−1 (mod n)).

v = 1 (mod n) v = 0 (mod m)
Let x = au+bv .

x = a (mod m) since bv = 0 (mod m) and au = a (mod m)
x = b (mod n) since au = 0 (mod n) and bv = b (mod n)

Thus there is a solution.
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Simple Chinese Remainder Theorem.

CRT Thm: There is a unique solution x (mod mn).

Proof (uniqueness):
If not, two solutions, x and y .

(x −y)≡ 0 (mod m) and (x −y)≡ 0 (mod n).

=⇒ (x −y) is multiple of m and n

gcd(m,n) = 1 =⇒ no common primes in factorization m and n

=⇒ mn|(x −y)

=⇒ x −y ≥ mn =⇒ x ,y ̸∈ {0, . . . ,mn−1}.

Thus, only one solution modulo mn.
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Poll.

My love is won,
Zero and one.
Nothing and nothing done.

What is the rhyme saying?

(A) Multiplying by 1, gives back number. (Does nothing.)
(B) Adding 0 gives back number. (Does nothing.)
(C) Rao is goofy.
(D) Multiplying by 0, gives 0.
(E) Adding one does, not too much.

All are (maybe) correct.
(E) doesn’t have to do with the rhyme.
(C) Recall Polonius:

“Though this be madness, yet there is method in’t.”
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CRT:isomorphism.

For m,n, gcd(m,n) = 1.

x mod mn ↔ x = a mod m and x = b mod n

y mod mn ↔ y = c mod m and y = d mod n

Also, true that x +y mod mn ↔ a+c mod m and b+d mod n.

Mapping is “isomorphic”:
addition (and multiplication) works with pre-images or images

Basis of hardware accelerators for security.
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Fermat’s Theorem: Reducing Exponents.

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

Proof: Consider S = {a ·1, . . . ,a · (p−1)}.
All different modulo p since a has an inverse modulo p.
S contains representative of {1, . . . ,p−1} modulo p.

(a ·1) · (a ·2) · · ·(a · (p−1))≡ 1 ·2 · · ·(p−1) mod p,

Since multiplication is commutative.

a(p−1)(1 · · ·(p−1))≡ (1 · · ·(p−1)) mod p.

Each of 2, . . .(p−1) has an inverse modulo p, solve to get...

a(p−1) ≡ 1 mod p.
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Example.

p = 5.

a = 2 mod 5.

S = {1,2,3,4}
T = {2(1),2(2),2(3),2(4)} = {2,4,1,3} mod 5.

1×2×3×4 = 2×4×1×3 mod 5.

Cuz Multiplication is commutative.

1×2×3×4 = 2(1)×2(2)×2(3)×2(4) = 24 ×1×2×3×4 mod 5.

All of 1,2,3,4 have a multiplicative inverse. So...

1 = 24 (mod 5) 24 = 1 (mod 5)

ap−1 = 1 (mod 5).
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Poll

Which was used in Fermat’s theorem proof?

(A) The mapping f (x) = ax mod p is a bijection.
(B) Multiplying a number by 1, gives the number.
(C) All nonzero numbers mod p, have an inverse.
(D) Multiplying a number by 0 gives 0.
(E) Multiplying elements of sets A and B together is the same if A = B.

(A), (C), and (E)
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Fermat and Exponent reducing.

Fermat’s Little Theorem: For prime p, and a ̸≡ 0 (mod p),

ap−1 ≡ 1 (mod p).

What is 2101 (mod 7)?

Wrong: 2101 = 27∗14+3 = 23 (mod 7)

Fermat: 7 prime, gcd(2,7) = 1. =⇒ 26 = 1 (mod 7).

Correct: 2101 = 26∗16+5 = 25 = 32 = 4 (mod 7).

For a prime modulus, we can reduce exponents modulo p−1!
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Lecture in a minute.
Extended Euclid: Find a,b where ax +by = gcd(x ,y).

Idea: compute a,b recursively (euclid), or iteratively.
Inverse: ax +by = ax = gcd(x ,y) (mod y).

If gcd(x ,y) = 1, we have ax = 1 (mod y)
→ a = x−1 (mod y).

Fundamental Theorem of Algebra:
Unique prime factorization of any natural number.
Claim: if p|n and n = xy , p|x of p|x .

From Extended Euclid.
Induction.

Chinese Remainder Theorem:
If gcd(n,m) = 1, x = a (mod n),x = b (mod m) unique sol.

Proof: Find u = 1 (mod n), u = 0 (mod m),
and v = 0 (mod n), v = 1 (mod m).

Then: x = au+bv = a (mod n)...
u = m(m−1 (mod n)) (mod n) works!

Fermat: Prime p, ap−1 = 1 (mod p).
Proof Idea: f (x) = a(x) (mod p): bijection on S = {1, . . . ,p−1}.
Product of elts == for range/domain: ap−1 factor in range.
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