CS70: New Discussion Format

Small group:
- Three modes of working.
 - (A) Individual working.
 - (B) Pairs working together.
 - (C) Pairs: one works one forces talking.

Supported by course staff and course volunteers.

Why? It works better for learning.

Evidence:
- (1) Experience. (years and years, faculty agree.)
- (2) Literature.

Students hate it.

Students happy (in the moment): negatively correlated to learning.

Do you remember the first lecture?

Simple Chinese Remainder Theorem.

My love is won. Zero and One. Nothing and nothing done.

Find \(x = a \pmod{m} \) and \(x = b \pmod{n} \) where \(\gcd(m,n)=1 \).

CRT Thm: There is a unique solution \(x \pmod{mn} \).

Proof (uniqueness):

If not, two solutions, \(x \) and \(y \):

\[
\begin{align*}
(x - y) &= 0 \pmod{m} \quad \text{(since } \gcd(m,n) = 1) \\
(x - y) &= 0 \pmod{n}
\end{align*}
\]

\[\implies (x - y) \text{ is multiple of } m \text{ and } n\]

\[\implies mn | (x - y)\]

Thus, only one solution modulo \(mn \).

Simple Chinese Remainder Theorem.

Do you remember the first lecture?

Veritassium on Khan

![Graph showing recall rates](image)

CS70: Lecture 9. Outline.

1. Public Key Cryptography
 - 2. RSA system
 - 2.1 Efficiency: Repeated Squaring.
 - 2.2 Correctness: Fermat's Theorem.
 - 2.3 Construction.
 - 3. Warnings.

Isomorphisms.

Bijection:

\(f(x) = ax \pmod{m} \) if \(\gcd(a,m) = 1 \).

Simplified Chinese Remainder Theorem:

If \(\gcd(n,m) = 1 \), there is unique \(x \pmod{mn} \) where

\[
\begin{align*}
x &= a \pmod{m} \\
x &= b \pmod{n}
\end{align*}
\]

Bijection between \((a \pmod{n}), b \pmod{m}) and \(x \pmod{mn} \).

Consider \(m = 5, n = 9 \), then if \((a,b) = (3,7)\) then \(x = 43 \pmod{45} \).

Consider \((a',b') = (2,4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a,b) + (a',b') = (0,2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 \equiv 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes! Is it \(2 \pmod{9} \)? Yes!

Isomorphism:

the actions under \(\pmod{5}, \pmod{9} \) correspond to actions in \(\pmod{45} \).
Poll

\[
\begin{align*}
 x &= 5 \mod 7 \text{ and } x = 5 \mod 6 \\
 y &= 4 \mod 7 \text{ and } y = 3 \mod 6 \\
\end{align*}
\]

\textbf{What's true?}

(A) \(x + y = 2 \mod 7 \) \\
(B) \(x + y = 2 \mod 6 \) \\
(C) \(xy = 3 \mod 6 \) \\
(D) \(xy = 6 \mod 7 \) \\
(E) \(x = 5 \mod 42 \) \\
(F) \(y = 39 \mod 42 \)

All true.

Poll

\[
\begin{align*}
 x &= 5 \mod 7 \text{ and } x = 5 \mod 6 \\
 y &= 4 \mod 7 \text{ and } y = 3 \mod 6 \\
\end{align*}
\]

\textbf{What's true?}

(A) \(x + y = 2 \mod 7 \) \\
(B) \(x + y = 2 \mod 6 \) \\
(C) \(xy = 3 \mod 6 \) \\
(D) \(xy = 6 \mod 7 \) \\
(E) \(x = 5 \mod 42 \) \\
(F) \(y = 39 \mod 42 \)

All true.

Xor

\textbf{Computer Science:}

\[
\begin{align*}
 1 &- \text{ True} \\
 0 &- \text{ False} \\
 1 \lor 1 &= 1 \\
 1 \lor 0 &= 1 \\
 0 \lor 1 &= 1 \\
 0 \lor 0 &= 0 \\
 A \oplus B &- \text{Exclusive or.} \\
 1 \oplus 1 &= 0 \\
 1 \oplus 0 &= 1 \\
 0 \oplus 1 &= 1 \\
 0 \oplus 0 &= 0 \\
\end{align*}
\]

\textbf{Property:} \(A \oplus B \oplus B = A \).

\textbf{By cases:} \(1 \oplus 1 \oplus 1 = 1 \).

\textbf{Disadvantages:}

\textbf{Shared secret!}

\textbf{Uses up one time pad.} or less and less secure.

Cryptography ...

\textbf{Bob Alice Eve}

\textbf{Secret} \(s \)

\textbf{Message} \(m \)

\(m = D(E(m,K),s) \)

Public key cryptography.

\(m = D(E(m,K),k) \)

\textbf{Private:} \(k \)

\textbf{Public:} \(K \)

\textbf{Message} \(m \)

\textbf{Alice}

\(E(m,K) \)

\textbf{Bob}

\(E(m,K) \)

\textbf{Eve}

\textbf{What is a piece of RSA?}

Bob has a key \((N,e,d)\). Alice is good, Eve is evil.

(A) Eve knows \(e \) and \(N \).

(B) Alice knows \(e \) and \(N \).

(C) \(ed \equiv 1 \pmod{N-1} \).

(D) Bob forgets \(p \) and \(q \) but can still decode?

(E) Bob knows \(d \).

(F) \(ed \equiv 1 \pmod{(p-1)(q-1)} \) if \(N = pq \).

\textbf{(A), (B), (D), (E), (F)}
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^1: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.
2. Multiply together x^i where the $\lfloor \log(i) \rfloor$th bit of y (in binary) is 1.

Example: $43 = 101011$ in binary,

$x_{\text{as 32-bit}} = 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 11011$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:

- $O(n^2)$ multiplications.
- $O(n^2)$ time per multiplication.
- $O(n^2)$ time.

Conclusion: $x^y \mod N$ takes $O(n^2)$ time.

Recursive.

x^y.

xseven, $x = 2k$, $x^y = x^{2k} = (x^2)^k$.

power $(x,y) = power (x^2, y/2)$.

xisodd, $x = 2k+1$, $x^y = x^{2k} = (x^2)^{k-1}$.

power $(x,y) = x \cdot power (x^2, y/2)$.

Base case: $x^0 = 1$.

RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers.

$O(n^2)$ time.

Remember RSA encoding/decoding!

$E(m: (N,e)) = m^e \mod N$.

$D(m: (N,d)) = m^d \mod N$.

For 512 bits, a few hundred million operations.

Easy, peasy.

Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p-1)(q-1) = 60$

Choose $e = 7$, since $\text{gcd}(7,60) = 1$.

$\text{egcd}(7,60)$.

7(0) + 60(1) = 60

7(1) + 60(0) = 7

7(-8) + 60(1) = 4

7(9) + 60(-1) = 3

7(-17) + 60(2) = 1

Confirm: −119 + 120 = 1

$d = e^{-1} = -17 = 43 \equiv 1 \pmod{60}$

Encryption/Decryption Techniques.

Public Key: (77, 7)

Message Choices: {0, ..., 76}.

Message: 2!

$E(2) = 2^7 = 128 = 51 \mod 77$

$D(51) = 51^{43} \mod 77$

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, $O(N)$ or $O(2^n)$ multiplications!

Repeated squaring.

$51^{43} = 51^{64 \cdot 8 + 2 + 1} = 51^{53} \cdot 51^{2} \cdot 51^{1} \mod 77$.

Need to compute $51^{53} \cdot 51^{2} \cdot 51^{1}$.?

$51^{1} = 51 \mod 77$

$51^{2} = (51) \cdot (51) = 2601 = 60 \mod 77$

$51^{3} = (51)^{2} \cdot (51) = 60 + 60 - 3600 = 58 \mod 77$

$51^{4} = (51)^{3} \cdot (51) = 58 - 58 = 3364 = 53 \mod 77$

5 more multiplications.

$51^{53} = 51^{16} \cdot 51^{16} \cdot 51^{16} \cdot 51^{3} \cdot 51 = 37 \cdot 37 = 1369 = 60 \mod 77$

Decoding got the message back!

Repeated Squaring took 8 multiplications versus 42.
Always decode correctly?

\[
E(m, (N, e)) = m^e \pmod{N},
D(m, (N, d)) = m^{d} \pmod{N}.
\]
\[
N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}.
\]
Want: \((m^d)^d = m^{md} = m \pmod{(mod N)}.

Fermat's Little Theorem: For prime \(p\), and \(a \not\equiv 0 \pmod{p}\),
\(a^{p-1} \equiv 1 \pmod{p}\).

Proof: Consider \(S = \{a \cdot 1 \ldots \cdot a \pmod{p} \} \) modulo \(p\).
Each of \(a, \ldots, a^{p-1}\) has an inverse modulo \(p\), solve to get...
\[a(a^{p-1})^{-1} \equiv 1 \pmod{p}.
\]

Correct decoding...

Fermat's Little Theorem: For prime \(p\), and \(a \not\equiv 0 \pmod{p}\),
\(a^{p-1} \equiv 1 \pmod{p}\).

Proof: Consider \(S = \{a \cdot 1 \ldots \cdot a \pmod{p} \} \) modulo \(p\).
All different modulo \(p\) since \(a\) has an inverse modulo \(p\).
\(S\) contains representative of \(\{1, \ldots, p-1\} \pmod{p}\).

\[(a \cdot 1 \cdot \ldots \cdot a \pmod{p}) \equiv 1 \cdot 2 \cdot \ldots \cdot (p-1) \pmod{p}.
\]
Since multiplication is commutative...
\[a^{(p-1)}(1 \cdot \ldots \cdot (p-1)) \equiv (1 \cdot \ldots \cdot (p-1)) \pmod{p}.
\]
Each of \(2 \ldots (p-1)\) has an inverse modulo \(p\), solve to get...
\[a^{(p-1)} \equiv 1 \pmod{p}.
\]

...Decoding correctness...

Lemma 1: For any prime \(p\) and any \(a, b\),
\[a^{1+k(p-1)} \equiv a \pmod{p}\]

Proof:\(a \equiv 0 \pmod{p}\), of course.
Otherwise
\[a^{1+k(p-1)} = a^1 \equiv (a^{p-1})^k = a \pmod{p}.
\]

Lemma 2: For any two different primes \(p, q\) and any \(x, k\),
\[x^{1+k(p-1)} \equiv x \pmod{q}\]

Proof:\(a \equiv 0 \pmod{p}\), of course.
\[a^{1+k(p-1)} = x \pmod{q}\]
\[x^{1+k(q-1)} \equiv x \pmod{q} \iff x^{1+k(q-1)}(p-1) \equiv x \pmod{pq}\]
From CRT: \(y = x \pmod{p}\) and \(y = x \pmod{q} \iff y = x.

Poll

Mark what is true.

- (A) \(2^7 \equiv 1 \pmod{7}\)
- (B) \(2^8 \equiv 1 \pmod{7}\)
- (C) \(2^1, 2^2, 2^3, 2^5, 2^6, 2^7\) are distinct \(\pmod{7}\).
- (D) \(2^1, 2^2, 2^3, 2^5, 2^6\) are distinct \(\pmod{7}\)
- (E) \(2^8 \equiv 2 \pmod{7}\)
- (F) \(2^9 \equiv 1 \pmod{7}\)
- (B), (F)
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p−1)(q−1)} ≡ x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[D(E(x)) = (x^e)^d = x^{ed} = x \pmod{pq}, \]
where $ed ≡ 1 \pmod{(p−1)(q−1)} \implies ed = 1 + k(p−1)(q−1)$
\[x^{ed} = x^{k(p−1)(q−1)+1} = x \pmod{pq}. \]

Security of RSA.

Security?
1. Alice knows p and q.
2. Bob only knows, $N(= pq)$, and e.
 Does not know, for example, d or factorization of N.
3. I don’t know how to break this scheme without factoring N.
No one I know or have heard of admits to knowing how to factor N.
Breaking in general sense \implies factoring algorithm.

Construction of keys... ..

1. Find large (100 digit) primes p and q?
2. Choose e with gcd$(e, (p−1)(q−1)) = 1$.
 Use gcd algorithm to test.
3. Find inverse d of e modulo $(p−1)(q−1)$.
 Use extended gcd algorithm.
 All steps are polynomial in $O(\log N)$, the number of bits.

Prime Number Theorem: $\pi(N)$ number of primes less than N
For all $N \geq 17$
\[\pi(N) \geq N/\ln N. \]
Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ...
cs170...Miller-Rabin test.. Primes in P).
For 1024 bit number, 1 in 710 is prime.

Security: Eve can't forge unless she “breaks” RSA scheme.

Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.
Never sends just c.
Again, more work to do to get entire system.
CS161...

Signatures using RSA.

Verisign: k_v, K_v

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign's key: $K_v = (N, e)$ and $k_v = d \equiv N = pq$.
Browser "knows" Verisign's public key: K_v.
Amazon Certificate: $C = \text{"I am Amazon. My public Key is } K_A,$
Verisign signature of C: $S_v(C)$:
$D(C, k_v) = C^d \pmod{N}$
Browser receives: $[C, S_v(C)]$
Checks $E(y, K_y) = C$?
$E(S_v(C), K_y) = (S_v(C))^y = (C^d)^y = C^{de} = C \pmod{N}$
Valid signature of Amazon certificate C!
Security: Eve can't forge unless she "breaks" RSA scheme.

Public Key Cryptography:
$D(E(m, K), k) = (m^e)^d \equiv m \pmod{N}$
Signature scheme:
$E(D(C, k), K) = (C^d)^e \equiv C \pmod{N}$

RSA
Poll

Signature authority has public key \((N,e)\).

(A) Given message/signature \((x,y)\) : check \(yd = x \pmod{N}\)
(B) Given message/signature \((x,y)\) : check \(ye = x \pmod{N}\)
(C) Signature of message \(x\) is \(xe \pmod{N}\)
(D) Signature of message \(x\) is \(xd \pmod{N}\)

Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

... and August 28, 2011 announcement.

DigiNotar Certificate issued for Microsoft!!!

How does Microsoft get a CA to issue certificate to them ... and only them?

Summary.

Public-Key Encryption.

RSA Scheme:
\(N = pq\) and \(d = e^{-1} \pmod{(p-1)(q-1)}\).

\(E(x) = x^e \pmod{N}\).

\(D(y) = y^d \pmod{N}\).

Repeated Squaring \(\Rightarrow\) efficiency.

Fermat’s Theorem \(\Rightarrow\) correctness.

Good for Encryption and Signature Schemes.