
1. Public Key Cryptography
2. RSA system
 2.1 Efficiency: Repeated Squaring.
 2.2 Correctness: Fermat’s Theorem.
 2.3 Construction.
3. Warnings.
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \]

if \(\gcd(a, m) = 1 \).

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \]

and

\[x = b \pmod{n} \].

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5 \), \(n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider:\((a, b) + (a', b') = (0, 2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes!

Is it \(2 \pmod{9} \)? Yes!

Isomorphism: the actions under \((\pmod{5}), (\pmod{9})\) correspond to actions in \((\pmod{45})\)!
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]
Isomorphisms.

Bijection:
\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

Consider \(m = 5, \ n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\). What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes!

Is it \(2 \pmod{9} \)? Yes!

Isomorphism: the actions under \(\pmod{5} \), \(\pmod{9} \) correspond to actions in \(\pmod{45} \)!
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]
Isomorphisms.

Bijection:
\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:
If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a,m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n,m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m}) \) and \(x \pmod{mn} \).

Consider \(m = 5, n = 9 \), then if \((a,b) = (3,7) \) then \(x = 43 \pmod{45} \).
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m}) \) and \(x \pmod{mn} \).

Consider \(m = 5, \, n = 9 \), then if \((a, b) = (3, 7) \) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4) \), then \(x = 22 \pmod{45} \).
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45}\).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45}\).

Now consider:
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \quad \text{and} \quad x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\).
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45}\).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45}\).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x\) where \(x = 0 \pmod{5}\) and \(x = 2 \pmod{9}\)?
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where \(x = a \pmod{m} \) and \(x = b \pmod{n} \).

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 \).
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where

\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45}\).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45}\).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x\) where \(x = 0 \pmod{5}\) and \(x = 2 \pmod{9}\)?

Try \(43 + 22 = 65 = 20 \pmod{45}\).
Isomorphisms.

Bijection:

\(f(x) = ax \pmod{m} \) if \(\gcd(a, m) = 1 \).

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)?
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes!
Isomorphisms.

Bijection:
\[f(x) = ax \pmod{m} \] if \(\gcd(a, m) = 1. \)

Simplified Chinese Remainder Theorem:
If \(\gcd(n, m) = 1, \) there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \] and \(x = b \pmod{n}. \)

Bijection between \((a \pmod{n}, b \pmod{m}) \) and \(x \pmod{mn}. \)

Consider \(m = 5, \ n = 9, \) then if \((a, b) = (3, 7) \) then \(x = 43 \pmod{45}. \)

Consider \((a', b') = (2, 4), \) then \(x = 22 \pmod{45}. \)

Now consider: \((a, b) + (a', b') = (0, 2). \)

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9}? \)

Try \(43 + 22 = 65 = 20 \pmod{45}. \)

Is it \(0 \pmod{5}? \) Yes! Is it \(2 \pmod{9}? \)
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \] if \(\gcd(a, m) = 1. \)

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \] and \(x = b \pmod{n} \).

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes! Is it \(2 \pmod{9} \)? Yes!
Isomorphisms.

Bijection:

\[f(x) = ax \pmod{m} \] if \(\gcd(a, m) = 1 \).

Simplified Chinese Remainder Theorem:

If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \] and \(x = b \pmod{n} \).

Bijection between \((a \pmod{n}, b \pmod{m})\) and \(x \pmod{mn}\).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7)\) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4)\), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2)\).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes! Is it \(2 \pmod{9} \)? Yes!

Isomorphism:
Isomorphisms.

Bijection:
\[f(x) = ax \pmod{m} \text{ if } \gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:
If \(\gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m}) \) and \(x \pmod{mn} \).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7) \) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4) \), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2) \).
What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it 0 \(\pmod{5} \)? Yes! Is it 2 \(\pmod{9} \)? Yes!

Isomorphism:
the actions under \(\pmod{5}, \pmod{9} \).
Isomorphisms.

Bijection:
\[f(x) = ax \pmod{m} \text{ if } gcd(a, m) = 1. \]

Simplified Chinese Remainder Theorem:
If \(gcd(n, m) = 1 \), there is unique \(x \pmod{mn} \) where
\[x = a \pmod{m} \text{ and } x = b \pmod{n}. \]

Bijection between \((a \pmod{n}, b \pmod{m}) \) and \(x \pmod{mn} \).

Consider \(m = 5, n = 9 \), then if \((a, b) = (3, 7) \) then \(x = 43 \pmod{45} \).

Consider \((a', b') = (2, 4) \), then \(x = 22 \pmod{45} \).

Now consider: \((a, b) + (a', b') = (0, 2) \).

What is \(x \) where \(x = 0 \pmod{5} \) and \(x = 2 \pmod{9} \)?

Try \(43 + 22 = 65 = 20 \pmod{45} \).

Is it \(0 \pmod{5} \)? Yes! Is it \(2 \pmod{9} \)? Yes!

Isomorphism:
the actions under \(\pmod{5}, \pmod{9} \)
correspond to actions in \(\pmod{45} \)!
\begin{align*}
x &= 5 \mod 7 \text{ and } x &= 5 \mod 6 \\
y &= 4 \mod 7 \text{ and } y &= 3 \mod 6
\end{align*}
Poll

\[x = 5 \mod 7 \text{ and } x = 5 \mod 6 \]
\[y = 4 \mod 7 \text{ and } y = 3 \mod 6 \]

What’s true?
\[x = 5 \mod 7 \text{ and } x = 5 \mod 6 \]
\[y = 4 \mod 7 \text{ and } y = 3 \mod 6 \]

What’s true?

(A) \(x + y = 2 \mod 7 \)
(B) \(x + y = 2 \mod 6 \)
(C) \(xy = 3 \mod 6 \)
(D) \(xy = 6 \mod 7 \)
(E) \(x = 5 \mod 42 \)
(F) \(y = 39 \mod 42 \)
\(x = 5 \mod 7 \text{ and } x = 5 \mod 6 \)

\(y = 4 \mod 7 \text{ and } y = 3 \mod 6 \)

What’s true?

(A) \(x + y = 2 \mod 7 \)

(B) \(x + y = 2 \mod 6 \)

(C) \(xy = 3 \mod 6 \)

(D) \(xy = 6 \mod 7 \)

(E) \(x = 5 \mod 42 \)

(F) \(y = 39 \mod 42 \)

All true.
Xor

Computer Science:
Xor

Computer Science:
1 - True
0 - False
Xor

Computer Science:
1 - True
0 - False

\[1 \lor 1 = 1 \]
Xor

Computer Science:
- 1 - True
- 0 - False

\[1 \lor 1 = 1\]
\[1 \lor 0 = 1\]
\[0 \lor 1 = 1\]
\[0 \lor 0 = 0\]
Xor

Computer Science:
1 - True
0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\[A \oplus B \] - Exclusive or.
Computer Science:
 1 - True
 0 - False

1 \lor 1 = 1
1 \lor 0 = 1
0 \lor 1 = 1
0 \lor 0 = 0

A \oplus B - \text{Exclusive or.}
1 \oplus 1 = 0
Xor

Computer Science:
1 - True
0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0

Note: Also modular addition modulo 2!
{0, 1} is set. Take remainder for 2.

Property:
A ⊕ B ⊕ B = A.
Xor

Computer Science:
1 - True
0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0

Note: Also modular addition modulo 2!
Xor

Computer Science:
 1 - True
 0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0

Note: Also modular addition modulo 2!
 \{0, 1\} is set. Take remainder for 2.
Xor

Computer Science:
 1 - True
 0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\[A \oplus B \] - Exclusive or.
\[1 \oplus 1 = 0 \]
\[1 \oplus 0 = 1 \]
\[0 \oplus 1 = 1 \]
\[0 \oplus 0 = 0 \]

Note: Also modular addition modulo 2!
 \(\{0, 1\} \) is set. Take remainder for 2.
Xor

Computer Science:
1 - True
0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0

Note: Also modular addition modulo 2!
{0, 1} is set. Take remainder for 2.

Property: A ⊕ B ⊕ B = A.
Xor

Computer Science:
 1 - True
 0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0

Note: Also modular addition modulo 2!
\{0, 1\} is set. Take remainder for 2.

Property: A ⊕ B ⊕ B = A.
By cases: 1 ⊕ 1 ⊕ 1 = 1.
Xor

Computer Science:
 1 - True
 0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0

Note: Also modular addition modulo 2!
 \{0, 1\} is set. Take remainder for 2.

Property: A ⊕ B ⊕ B = A.
By cases: 1 ⊕ 1 ⊕ 1 = 1. …
Cryptography ...

Example: One-time Pad: secret s is string of length $|m|$. $m = 10101011110101101$ $s =$ $E(m, s)$ – bitwise $m \oplus s$. $D(x, s)$ – bitwise $x \oplus s$. Works because $m \oplus s \oplus s = m$! ...and totally secure! ...given $E(m, s)$ any message m is equally likely.

Disadvantages: Shared secret! Uses up one time pad. or less and less secure.
Cryptography ...

E = (m, s) \rightarrow E(m, s)

m = D(E(m, s), s)

Example: One-time Pad: secret s is string of length |m|.

m = 10101011110101101
s =

E(m, s) – bitwise m \oplus s.

D(x, s) – bitwise x \oplus s.

Works because m \oplus s \oplus s = m!

...and totally secure!

...given E(m, s) any message m is equally likely.

Disadvantages: Shared secret!

Uses up one time pad or less and less secure.
Cryptography ...

\[E(m, s) \]

\[m = D(E(m, s), s) \]

Example: One-time Pad: secret \(s \) is string of length \(|m| \).

\[m = 10101011110101101 \]

\[s = \ldots \]

\[E(m, s) \text{ – bitwise } \ m \oplus s. \]

\[D(x, s) \text{ – bitwise } x \oplus s. \]

Works because \(m \oplus s \oplus s = m \)!

...and totally secure!

...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages: Shared secret!

Uses up one time pad.. or less and less secure.
Cryptography ...

Example: One-time Pad: secret s is string of length $|m|$. $m = 10101011110101101$ $s = \ldots$ $E(m,s)$ – bitwise $m \oplus s$. $D(x,s)$ – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m$! ...and totally secure! ...given $E(m,s)$ any message m is equally likely.

Disadvantages: Shared secret! Uses up one time pad, or less and less secure.
Cryptography ...

\[E(m, s) \]

Alice \(\leftrightarrow \) Bob

Message \(m \)

Eve

Secret \(s \)
Cryptography ...

\[m = D(E(m, s), s) \]

Example:

One-time Pad: secret \(s \) is string of length \(|m|\).

\[m = 10101011110101101 \]

\[s = \ldots \]

\[E(m, s) \quad \text{– bitwise } \quad m \oplus s. \]

\[D(x, s) \quad \text{– bitwise } \quad x \oplus s. \]

Works because \(m \oplus s \oplus s = m \)!

...and totally secure! ...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad ..or less and less secure.
Cryptography...

Bob

Alice

Eve

$m = D(E(m, s), s)$

Secret s

Message m

Example:

One-time Pad: secret s is string of length $|m|$. $m = \text{10101011110101101}$ $s = \text{..................................}$ $E(m, s) – \text{bitwise } m \oplus s$ $D(x, s) – \text{bitwise } x \oplus s$ Works because $m \oplus s \oplus s = m$!...and totally secure!...given $E(m, s)$ any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad.. or less and less secure.
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).

\[E(m, s) \rightarrow \text{Bob} \]

\[E(m, s) \leftarrow \text{Alice} \]

Secret \(s \)

Message \(m \)

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m| \).
\[m = 10101011110101101 \]
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).

\[m = 10101011110101101 \]

\[s = \ldots \ldots \ldots \ldots \ldots \]
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[m = 10101011110101101 \]
\[s = \ldots \]
\[E(m, s) \) – bitwise \(m \oplus s. \]
Cryptography ...

\[m = D(E(m, s), s) \]

\[E(m, s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[m = 10101011110101101 \]
\[s = \ldots \]

\[E(m, s) \] – bitwise \(m \oplus s \).
\[D(x, s) \] – bitwise \(x \oplus s \).
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m| \).

\[m = 10101011110101101 \]
\[s = \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \]

\[E(m, s) \] – bitwise \(m \oplus s \).
\[D(x, s) \] – bitwise \(x \oplus s \).

Works because \(m \oplus s \oplus s = m \)!
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m| \).
\[
\begin{align*}
 m &= 10101011110101101 \\
 s &= \ldots \\
 E(m, s) &= \text{bitwise } m \oplus s. \\
 D(x, s) &= \text{bitwise } x \oplus s.
\end{align*}
\]
Works because \(m \oplus s \oplus s = m! \)
...and totally secure!
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[\begin{align*}
 m &= 10101011110101101 \\
 s &= \ldots \ldots \ldots \ldots \ldots \\
 E(m, s) &= m \oplus s \\
 D(x, s) &= x \oplus s
\end{align*} \]

Works because \(m \oplus s \oplus s = m! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:
- Shared secret!
- Uses up one time pad.

or less and less secure.
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[
\begin{align*}
m &= 10101011110101101 \\
s &= \ldots \ldots \ldots \ldots \ldots \\
E(m, s) &= \text{bitwise } m \oplus s. \\
D(x, s) &= \text{bitwise } x \oplus s.
\end{align*}
\]
Works because \(m \oplus s \oplus s = m! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).

\[m = 10101011110101101 \]
\[s = \ldots \ldots \ldots \ldots \]

\(E(m, s) \) – bitwise \(m \oplus s \).
\(D(x, s) \) – bitwise \(x \oplus s \).
Works because \(m \oplus s \oplus s = m \)!
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:
Shared secret!
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[m = 10101011110101101 \]
\[s = \ldots \]
\[E(m, s) – \text{bitwise } m \oplus s. \]
\[D(x, s) – \text{bitwise } x \oplus s. \]
Works because \(m \oplus s \oplus s = m! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad.
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[m = 10101011110101101 \]
\[s = \ldots \]

\[E(m, s) \] – bitwise \(m \oplus s \).
\[D(x, s) \] – bitwise \(x \oplus s \).

Works because \(m \oplus s \oplus s = m \! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.
Public key cryptography.

Public key cryptography involves the use of two keys: a public key and a private key. The public key is shared with others, while the private key is kept secret.

Let's denote:
- Alice
- Bob
- Eve
- Public key: K
- Private key: k
- Message: m

Encryption: $E(m, K)$

Decryption: $D(E(m, K), k)$

Everyone knows key K! Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

\[E(m, K) \]

Everyone knows key \(K \)!

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key \(k \) for public key \(K \).

(Only?) Alice can decode with \(k \).

Is this even possible?
Public key cryptography.

Private: k
Public: K

Alice ↔ Bob

Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k.Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.
Public key cryptography.

Private: k
Public: K
Message m

Bob (and Eve and me and you and you ...) can encode.
(Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

- **Private:** k
- **Public:** K
- **Message:** m

$E(m, K) \rightarrow$ Bob

Eve

Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k. Is this even possible?
Public key cryptography.

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key \(k \) for public key \(K \).

(Only?) Alice can decode with \(k \).

Is this even possible?
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key \(k \) for public key \(K \).

(Only?) Alice can decode with \(k \).

Is this even possible?
Public key crypography.

Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key for public key K. (Only?) Alice can decode with k.

Is this even possible?

$m = D(E(m, K), k)$

Everyone knows key K!
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K\)!
Bob (and Eve
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me ...)

Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).
Public key cryptography.

\[m = D(E(m, K), k) \]

Private: \(k \)

Public: \(K \)

Message \(m \)

\(E(m, K) \)

Everyone knows key \(K \)!
Bob (and Eve and me and you) can encode.
Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).

Is this even possible?
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode.
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key \(k \) for public key \(K \).
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).

Is this even possible?
Is public key crypto possible?

No. In a sense. One can try every message to "break" system. Too slow. Does it have to be slow? We don't really know. But we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)

Pick two large primes p and q. Let $N = pq$.

Choose e relatively prime to $(p-1)(q-1)$.

Compute $d = e^{-1} \mod (p-1)(q-1)$.

Announce N ($= p \cdot q$) and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.

Decoding: $\mod (y^d, N)$.

Does $D(E(m)) = m$?

Yes!

1 Typically small, say $e = 3$.
Is public key crypto possible?

No. In a sense. One can try every message to “break” system.

1 Typically small, say $e = 3$.
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow?

\[N = pq \]

Choose \(e \) relatively prime to \((p-1)(q-1)\).

\[d = e^{-1} \mod ((p-1)(q-1)) \]

Announce \(N \) and \(e \): \(K = (N, e) \) is my public key!

Encoding: \(\mod (x^e, N) \).

Decoding: \(\mod (y^d, N) \).

Does \(D(E(m)) = m \mod N \)?

Yes!

Typically small, say \(e = 3 \).
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know.

1 Typically small, say \(e = 3 \).
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

Typically small, say $e = 3$.

Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)

\[\text{Pick two large primes } p \text{ and } q. \text{ Let } N = pq.\]

Choose \(e\) relatively prime to \((p-1)(q-1)\).

Compute \(d = e^{-1} \mod (p-1)(q-1)\).

Announce \(N(=p\cdot q)\) and \(e\): \(K=(N,e)\) is my public key!

Encoding: \(\mod (x^e, N)\).

Decoding: \(\mod (y^d, N)\).

Does \(D(E(m)) = m \mod N\)? Yes! \(^1\)

Typically small, say \(e = 3\).
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.

1 Typically small, say $e = 3$.
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.

Typically small, say $e = 3$.\(^1\)
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know.
...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p − 1)(q − 1)$.
Compute $d = e^{−1}$ $\mod (p − 1)(q − 1)$.

\[\text{Announce} \ N = pq \text{ and } e; \quad \text{K} = (N, e) \text{ is my public key!}\]

\[\text{Encoding:} \quad \text{mod} \ (x^e, N)\]

\[\text{Decoding:} \quad \text{mod} \ (y^d, N)\]

\[\text{Does } \text{D}(\text{E}(m)) = \text{med} = m \mod N?\]

\[\text{Y es!}\]

\[\text{Typically small, say } e = 3.\]
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes \(p \) and \(q \). Let \(N = pq \).
Choose \(e \) relatively prime to \((p - 1)(q - 1)\).\(^1\)
Compute \(d = e^{-1} \mod (p - 1)(q - 1) \).
Announce \(N(= p \cdot q) \) and \(e \): \(K = (N, e) \) is my public key!

\(^1\) Typically small, say \(e = 3 \).
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. …but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p-1)(q-1)$.
Compute $d = e^{-1} \mod (p-1)(q-1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.

1 Typically small, say $e = 3$.
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.
Compute $d = e^{-1} \mod (p - 1)(q - 1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: mod (x^e, N).
Decoding: mod (y^d, N).

Typically small, say $e = 3$.
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p-1)(q-1)$.\(^1\)
Compute $d = e^{-1} \mod (p-1)(q-1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.

Decoding: $\mod (y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

\(^1\)Typically small, say $e = 3$.
Is public key crypto possible?

No. In a sense. One can try every message to “break” system. Too slow. Does it have to be slow? We don’t really know. ...but we do public-key cryptography constantly!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.1
Compute $d = e^{-1} \mod (p - 1)(q - 1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: mod (x^e, N).
Decoding: mod (y^d, N).
Does $D(E(m)) = m^{ed} = m \mod N$?
Yes!

1Typically small, say $e = 3$.
What is a piece of RSA?
Bob has a key (N,e,d). Alice is good, Eve is evil.
What is a piece of RSA?

Bob has a key \((N,e,d)\). Alice is good, Eve is evil.

(A) Eve knows \(e\) and \(N\).
(B) Alice knows \(e\) and \(N\).
(C) \(ed = 1 \pmod{N-1}\)
(D) Bob forgot \(p\) and \(q\) but can still decode?
(E) Bob knows \(d\)
(F) \(ed = 1 \pmod{(p-1)(q-1)}\) if \(N = pq\).
What is a piece of RSA?

Bob has a key (N, e, d). Alice is good, Eve is evil.

(A) Eve knows e and N.
(B) Alice knows e and N.
(C) \(ed = 1 \pmod{N - 1} \)
(D) Bob forgot p and q but can still decode?
(E) Bob knows d
(F) \(ed = 1 \pmod{(p - 1)(q - 1)} \) if \(N = pq \).

(A), (B), (D), (E), (F)
Iterative Extended GCD.

Example: $p = 7, q = 11$.

\[
\begin{align*}
\text{Choose } e &= 7, \text{ since } \gcd(7, 60) = 1. \\
\text{egcd}(7, 60). &
\end{align*}
\]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm:
\[
-119 + 120 = 1
\]

\[
d = e - 1 = -17 = 43 \pmod{60}
\]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

egcd(7,60).

7(0) + 60(1) = 60
7(1) + 60(0) = 7
7(−8) + 60(1) = 4
7(9) + 60(−1) = 3
7(−17) + 60(2) = 1

Confirm: $-119 + 120 = 1$

$d = e − 1 = −17 = 43 = (mod 60)$
Iterative Extended GCD.

Example: \(p = 7, \ q = 11. \)

\(N = 77. \)

\((p-1)(q-1) = 60\)
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[7(0) + 60(1) = 60\]
\[7(1) + 60(0) = 7\]
\[7(-8) + 60(1) = 4\]
\[7(9) + 60(-1) = 3\]
\[7(-17) + 60(2) = 1\]

Confirm: $-119 + 120 = 1$

$d = e - 1 = -17 = 43 \pmod{60}$
Iterative Extended GCD.

Example: \(p = 7, \ q = 11. \)

\[N = 77. \]
\[(p - 1)(q - 1) = 60 \]
Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)
\[\text{egcd}(7, 60). \]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
7(0) + 60(1) = 60
\]
Iterative Extended GCD.

Example: \(p = 7, \ q = 11 \).

\(N = 77 \).

\((p - 1)(q - 1) = 60\)

Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).

\(\text{egcd}(7, 60) \).

\[
7(0) + 60(1) = 60 \\
7(1) + 60(0) = 7
\]
Iterative Extended GCD.

Example: \(p = 7, q = 11. \)

\(N = 77. \)

\((p - 1)(q - 1) = 60 \)

Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)

\[\text{egcd}(7, 60). \]

\[
7(0) + 60(1) = 60 \\
7(1) + 60(0) = 7 \\
7(-8) + 60(1) = 4
\]
Iterative Extended GCD.

Example: \(p = 7, q = 11 \).

\(N = 77 \).

\((p - 1)(q - 1) = 60\)

Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).

\(\text{egcd}(7, 60) \).

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3
\end{align*}
\]
Iterative Extended GCD.

Example: \(p = 7, q = 11 \).

\(N = 77 \).

\((p - 1)(q - 1) = 60\)

Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).

\(\text{egcd}(7, 60) \).

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Iterative Extended GCD.

Example: \(p = 7, \ q = 11 \).

\[N = 77. \]
\[(p - 1)(q - 1) = 60 \]
Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).
\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{array}{ccc}
7(0) + 60(1) &=& 60 \\
7(1) + 60(0) &=& 7 \\
7(-8) + 60(1) &=& 4 \\
7(9) + 60(-1) &=& 3 \\
7(-17) + 60(2) &=& 1 \\
\end{array}
\]

Confirm:
Iterative Extended GCD.

Example: \(p = 7, \ q = 11 \).

\[N = 77. \]
\[(p - 1)(q - 1) = 60 \]
Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).
\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: \(-119 + 120 = 1\)
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: $-119 + 120 = 1$

$d = e^{-1} = -17 = 43 = (\text{mod } 60)$
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: {0, ..., 76}

Message: 2!

$E(2) = 2^e \equiv 128 \equiv 51 \pmod{77}$

$D(51) = 51^43 \pmod{77}$

uh oh!

Obvious way: 43 multiplications.

Ouch.

In general, $O(N)$ or $O(2^n)$ multiplications!
Encryption/Decryption Techniques.

Public Key: (77, 7)

Message Choices: {0, ..., 76}.

Message: 2

\[E(2) = 2^e \equiv 128 \equiv 51 \pmod{77} \]

\[D(51) = 51^d \equiv 43 \pmod{77} \]

uh oh!

Obvious way: 43 multiplications.

Ouch.

In general, \(O(N) \) or \(O(2^n) \) multiplications!
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.

\[
\begin{align*}
\text{Message: } 2! \\
E(2) &= 2^e \\
&= 2^{7} \\
&= 128 \\
&= 51 \pmod{77} \\
D(51) &= 51^{43} \pmod{77} \\
&= 43 \text{ multiplications.}
\end{align*}
\]
Public Key: (77, 7)
Message Choices: {0,...,76}.
Message: 2!
Encryption/Decryption Techniques.

Public Key: $(77, 7)$
Message Choices: $\{0, \ldots , 76\}$.
Message: $2!$

$E(2) \equiv 2^{2} \equiv 4 \equiv 51 \pmod{77}$

$D(51) = 51^{43} \equiv 1 \pmod{77}$

Oh no!
Obvious way: 43 multiplications.

In general, $O(N)$ or $O(2^n)$ multiplications!
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.
Message: 2!

\[E(2) = 2^e \]
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.

Message: 2!

\[E(2) = 2^e = 2^7 \]
Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.
Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 \]
Encryption/Decryption Techniques.

Public Key: \((77, 7)\)
Message Choices: \(\{0, \ldots, 76\}\).
Message: 2!

\[
E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77}
\]
Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.
Message: 2!

\[
E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77}
\]

\[
D(51) = 51^{43} \pmod{77}
\]
Encryption/Decryption Techniques.

Public Key: \((77, 7)\)
Message Choices: \(\{0, \ldots, 76\}\).

Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77} \]
\[D(51) = 51^{43} \pmod{77} \]

uh oh!
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.

Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77} \]
\[D(51) = 51^{43} \pmod{77} \]

uh oh!

Obvious way: 43 multiplications.
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: {0, …, 76}.

Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77} \]
\[D(51) = 51^{43} \pmod{77} \]

uh oh!

Obvious way: 43 multiplications. Ouch.
Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.

Message: 2!

\[
E(2) = 2^e = 2^7 \equiv 128 = 51 \pmod{77}
\]

\[
D(51) = 51^{43} \pmod{77}
\]

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, \(O(N)\) or \(O(2^n)\) multiplications!
Repeated squaring.
Repeated squaring.

Notice: \(43 = 32 + 8 + 2 + 1 \) or \(101011 \) in binary.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

51^{43}
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

Decoding got the message back!

Repeated squaring took 9 multiplications versus 43.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51 \pmod{77}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.
$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$?
$51^1 \equiv 51 \pmod{77}$
$51^2 =$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \ast (51) = 2601 \equiv 60 \pmod{77}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \times (51) = 2601 \equiv 60 \pmod{77}$

$51^4 =$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.
$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$
$51^2 = (51) \times (51) = 2601 \equiv 60 \pmod{77}$
$51^4 = (51^2) \times (51^2)$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1} \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^{1}$?

$51^{1} \equiv 51 \pmod{77}$

$51^{2} = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^{4} = (51^{2}) \cdot (51^{2}) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^{8} =$
Repeated squaring.

Notice: \(43 = 32 + 8 + 2 + 1 \) or \(101011 \) in binary.
\[
51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}.
\]
4 multiplications sort of...
Need to compute \(51^{32} \ldots 51^1 \).
\[
51^1 \equiv 51 \pmod{77}
\]
\[
51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}
\]
\[
51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}
\]
\[
51^8 = (51^4) \cdot (51^4)
\]
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}.$$
4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$?

$$51^1 \equiv 51 \pmod{77}$$
$$51^2 = (51) \ast (51) = 2601 \equiv 60 \pmod{77}$$
$$51^4 = (51^2) \ast (51^2) = 60 \ast 60 = 3600 \equiv 58 \pmod{77}$$
$$51^8 = (51^4) \ast (51^4) = 58 \ast 58 = 3364 \equiv 53 \pmod{77}$$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}.$

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1.$?

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32 + 8 + 2 + 1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

Decoding got the message back!
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^{1}$.

$51^{1} \equiv 51$ (mod 77)

$51^{2} = (51) \ast (51) = 2601 \equiv 60$ (mod 77)

$51^{4} = (51^{2}) \ast (51^{2}) = 60 \ast 60 = 3600 \equiv 58$ (mod 77)

$51^{8} = (51^{4}) \ast (51^{4}) = 58 \ast 58 = 3364 \equiv 53$ (mod 77)

$51^{16} = (51^{8}) \ast (51^{8}) = 53 \ast 53 = 2809 \equiv 37$ (mod 77)

$51^{32} = (51^{16}) \ast (51^{16}) = 37 \ast 37 = 1369 \equiv 60$ (mod 77)

5 more multiplications.

$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1} = (60) \ast (53) \ast (60) \ast (51) \equiv 2$ (mod 77).
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \pmod{77}$.

Decoding got the message back!
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51 \pmod{77}$
$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$
$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$
$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$
$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$
$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \pmod{77}$.

Decoding got the message back!

Repeated Squaring took 9 multiplications.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$ or 101011 in binary.

$51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1} \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^{1}$.?

$51^{1} \equiv 51 \pmod{77}$

$51^{2} = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^{4} = (51^{2}) \cdot (51^{2}) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^{8} = (51^{4}) \cdot (51^{4}) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^{8}) \cdot (51^{8}) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1} = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \pmod{77}.$

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Repeated Squaring: \(x^y \)

1. Compute \(x^1, x^2, x^4, \ldots, x^{2^\left\lfloor \log y \right\rfloor} \).
2. Multiply together \(x^i \) where the \(\left(\log(i) \right) \)th bit of \(y \) (in binary) is 1.

Example: \(43 = 101011 \) in binary.

\[x^{43} = x^{32} \times x^8 \times x^2 \times x^1. \]

Modular Exponentiation: \(x^y \mod N \).

All \(n \)-bit numbers. Repeated Squaring: \(O(n) \) multiplications. \(O(n^2) \) time per multiplication. \(= \Rightarrow O(n^3) \) time.

Conclusion: \(x^y \mod N \) takes \(O(n^3) \) time.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute x^1,

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2,$
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute x^1, x^2, x^4,
Repeated Squaring: \(x^y \)

Repeated squaring \(O(\log y) \) multiplications versus \(y \)!!!

1. \(x^y \): Compute \(x^1, x^2, x^4, \ldots \),
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^\lfloor \log y \rfloor}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^\lfloor \log y \rfloor}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.

Example:
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 $x^{43} = x^{32} \ast x^8 \ast x^2 \ast x^1$.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^\lfloor \log y \rfloor}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 $x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1$.

Modular Exponentiation: $x^y \mod N$.

Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 $x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 $$x^{43} = x^{32} \ast x^8 \ast x^2 \ast x^1.$$

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:
 $O(n)$ multiplications.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lceil \log y \rceil}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 \[x^{43} = x^{32} \ast x^{8} \ast x^{2} \ast x^{1}. \]

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:
 - $O(n)$ multiplications.
 - $O(n^2)$ time per multiplication.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.

 $x^{43} = x^{32} \ast x^8 \ast x^2 \ast x^1$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:

- $O(n)$ multiplications.
- $O(n^2)$ time per multiplication.

$\implies O(n^3)$ time.

Conclusion: $x^y \mod N$
Repeated Squaring: \(x^y \)

Repeated squaring \(O(\log y) \) multiplications versus \(y \!!! \)

1. \(x^y \): Compute \(x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}} \).

2. Multiply together \(x^i \) where the \(\log(i) \)th bit of \(y \) (in binary) is 1.
 Example: \(43 = 101011 \) in binary.
 \(x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1 \).

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers. Repeated Squaring:
 \(O(n) \) multiplications.
 \(O(n^2) \) time per multiplication.
 \(\implies O(n^3) \) time.

Conclusion: \(x^y \mod N \) takes \(O(n^3) \) time.
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$.
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers. \(O(n^3) \) time.

Remember RSA encoding/decoding!
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$E(m,(N,e)) = m^e \pmod{N}$.
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers.
\(O(n^3) \) time.

Remember RSA encoding/decoding!

\[
E(m, (N, e)) = m^e \pmod{N}.
\]
\[
D(m, (N, d)) = m^d \pmod{N}.
\]
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers.
\(O(n^3) \) time.

Remember RSA encoding/decoding!

\[
\begin{align*}
E(m, (N, e)) &= m^e \pmod{N}. \\
D(m, (N, d)) &= m^d \pmod{N}.
\end{align*}
\]
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers. \(O(n^3) \) time.

Remember RSA encoding/decoding!

\[
E(m, (N, e)) = m^e \pmod{N}.
\]

\[
D(m, (N, d)) = m^d \pmod{N}.
\]

For 512 bits, a few hundred million operations.
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m, (N, e)) = m^e \pmod{N}.$$
$$D(m, (N, d)) = m^d \pmod{N}.$$

For 512 bits, a few hundred million operations. Easy, peasey.
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \quad \text{and} \quad d = e^{-1} \pmod{(p-1)(q-1)} \]
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \]
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \] and \[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Want:
Decoding.

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Want: \((m^e)^d = m^{ed} = m \pmod{N}\).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]

Want:
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N}\).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
Always decode correctly?

\[
E(m, (N, e)) = m^e \pmod{N}.
D(m, (N, d)) = m^d \pmod{N}.
\]

\(N = pq\) and \(d = e^{-1} \pmod{(p - 1)(q - 1)}\).

Want: \((m^e)^d = m^{ed} = m \pmod{N}\).

Another view:
\(d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1\).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]
Always decode correctly?

\[
E(m, (N, e)) = m^e \pmod{N}.
\]
\[
D(m, (N, d)) = m^d \pmod{N}.
\]

\(N = pq\) and \(d = e^{-1} \pmod{(p - 1)(q - 1)}\).

Want: \((m^e)^d = m^{ed} = m \pmod{N}\).

Another view:
\[
d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1.
\]

Consider...

Fermat's Little Theorem: For prime \(p\), and \(a \not\equiv 0 \pmod{p}\),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

\[
\implies a^{k(p-1)} \equiv 1 \pmod{p}
\]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1)+1. \]

Consider...

Fermat's Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p} \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p} \]

versus \(a^{k(p-1)(q-1)+1} = a \pmod{pq} \).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]

Want: \((m^e)^d = m^{ed} = m \pmod{N}.\)

Another view:
\(d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1.\)

Consider...

Fermat’s Little Theorem: For prime \(p\), and \(a \not\equiv 0 \pmod{p}\),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p} \]

versus \(a^{k(p-1)(q-1)+1} = a \pmod{pq}.\)

Similar, not same, but useful.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof:
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.
Correct decoding...

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod p$,

$$a^{p-1} \equiv 1 \pmod p.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$. All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p - 1\}$ modulo p. Solve to get...

$$a^{p-1} \equiv 1 \pmod p.$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

$$ (a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p}, $$

Since multiplication is commutative.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},
\]
Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}.
\]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{ a \cdot 1, \ldots, a \cdot (p-1) \}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},\]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p-1)$ has an inverse modulo p,
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},\]
Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}. \]
Each of $2, \ldots (p - 1)$ has an inverse modulo p, solve to get...
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p}, \]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p - 1)$ has an inverse modulo p, solve to get...

\[a^{(p-1)} \equiv 1 \pmod{p}. \]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.

S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},$$

Since multiplication is commutative.

$$a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}.$$

Each of $2, \ldots (p - 1)$ has an inverse modulo p, solve to get...

$$a^{(p-1)} \equiv 1 \pmod{p}.$$
Poll
Mark what is true.

(A) \(2^7 = 1 \mod 7\)
(B) \(2^6 = 1 \mod 7\)
(C) \(2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7\) are distinct \(\mod 7\).
(D) \(2^1, 2^2, 2^3, 2^4, 2^5, 2^6\) are distinct \(\mod 7\)
(E) \(2^{15} = 2 \mod 7\)
(F) \(2^{15} = 1 \mod 7\)

(B), (F)
Poll

Mark what is true.

(A) \(2^7 = 1 \mod 7\)
(B) \(2^6 = 1 \mod 7\)
(C) \(2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7\) are distinct \(\mod 7\).
(D) \(2^1, 2^2, 2^3, 2^4, 2^5, 2^6\) are distinct \(\mod 7\)
(E) \(2^{15} = 2 \mod 7\)
(F) \(2^{15} = 1 \mod 7\)
Poll

Mark what is true.

(A) $2^7 = 1 \mod 7$
(B) $2^6 = 1 \mod 7$
(C) $2^1, 2^2, 2^3, 2^4, 2^5, 2^6, 2^7$ are distinct $\mod 7$.
(D) $2^1, 2^2, 2^3, 2^4, 2^5, 2^6$ are distinct $\mod 7$
(E) $2^{15} = 2 \mod 7$
(F) $2^{15} = 1 \mod 7$

(B), (F)
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof:
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.
Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),

\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Lemma 1: For any prime \(p \) and any \(a, b \),

\[
a^{1+b(p-1)} \equiv a \pmod{p}
\]

Proof: If \(a \equiv 0 \pmod{p} \), of course.

Otherwise

\[
a^{1+b(p-1)} \equiv
\]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Otherwise

$$a^{1+b(p-1)} \equiv a^1 \cdot (a^{p-1})^b$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Otherwise

$$a^{1+b(p-1)} \equiv a^1 \ast (a^{p-1})^b \equiv a \ast (1)^b \equiv a \pmod{p}$$

\qed
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]
Lemma 1: For any prime p and any a, b,
$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$
Lemma 1: For any prime p and any $a, b,$
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any $x, k,$
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x, b = k(p - 1)$ and apply Lemma 1 with modulus $q.$
...Decoding correctness...

Lemma 1: For any prime p and any $a, b,$
\[a^{1 + b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any $x, k,$
\[x^{1 + k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x, b = k(p - 1)$ and apply Lemma 1 with modulus $q.$
\[x^{1 + k(p-1)(q-1)} \equiv x \pmod{q} \]
Lemma 1: For any prime p and any a, b,
$$a^{1+b(p-1)} \equiv a \pmod p$$

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod {pq}$$

Let $a = x$, $b = k(p-1)$ and apply Lemma 1 with modulus q.
$$x^{1+k(p-1)(q-1)} \equiv x \pmod q$$

Let $a = x$, $b = k(q-1)$ and apply Lemma 1 with modulus p.

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Lemma 2: For any two different primes p, q and any x, k,

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Let $a = x, b = k(p - 1)$ and apply Lemma 1 with modulus q.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$$

Let $a = x, b = k(q - 1)$ and apply Lemma 1 with modulus p.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$$
Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \quad x^{1+k(q-1)(p-1)} - x \text{ is multiple of } p \text{ and } q. \]
Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \]
\[x^{1+k(q-1)(p-1)} - x \text{ is multiple of } p \text{ and } q. \]
\[x^{1+k(q-1)(p-1)} - x \equiv 0 \pmod{(pq)} \]
Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \]
\[x^{1+k(p-1)(q-1)} - x \equiv 0 \pmod{pq} \iff x^{1+k(q-1)(p-1)} \equiv x \pmod{pq}. \]
Lemma 1: For any prime p and any $a, b,$
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any $x, k,$
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x, b = k(p-1)$ and apply Lemma 1 with modulus $q.$
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x, b = k(q-1)$ and apply Lemma 1 with modulus $p.$
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \quad x^{1+k(q-1)(p-1)} - x \text{ is multiple of } p \text{ and } q. \]
\[x^{1+k(q-1)(p-1)} - x \equiv 0 \pmod{pq} \implies x^{1+k(q-1)(p-1)} \equiv x \pmod{pq}. \]

From CRT: $y = x \pmod{p}$ and $y = x \pmod{q} \implies y = x.$
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$
RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any $x, k,$
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[
D(E(x)) = (x^e)^d
\]
Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[D(E(x)) = (x^e)^d = x^{ed} \pmod{pq}, \]
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Theorem: RSA correctly decodes! Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$
RSA decodes correctly.

Lemma 2: For any two different primes \(p, q \) and any \(x, k \),
\[
x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}
\]

Theorem: RSA correctly decodes!
Recall
\[
D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},
\]
where \(ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1) \)
\[
x^{ed} \equiv x \pmod{pq}
\]
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Theorem: RSA correctly decodes!

Recall

$$D(E(x)) = (x^e)^d = x^{ed} \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$

$$x^{ed} \equiv x^{k(p-1)(q-1)+1}$$
Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[D(E(x)) = (x^e)^d = x^{ed} \pmod{pq}, \]
where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$
\[x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}. \]
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,
$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes!
Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$

$$x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$$

□
Construction of keys...

1. Find large (100 digit) primes p and q?
Construction of keys...

1. Find large (100 digit) primes \(p \) and \(q \)?

 Prime Number Theorem: \(\pi(N) \) number of primes less than \(N \). For all \(N \geq 17 \)

 \[
 \pi(N) \geq \frac{N}{\ln N}.
 \]
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime?)
Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..
Construction of keys.. ..

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test..
Construction of keys

1. Find large (100 digit) primes \(p \) and \(q \)?

Prime Number Theorem: \(\pi(N) \) number of primes less than \(N \). For all \(N \geq 17 \)

\[
\pi(N) \geq \frac{N}{\ln N}.
\]

Choosing randomly gives approximately \(1/(\ln N) \) chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in \(P \)).
Construction of keys.

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than $N.$ For all $N \geq 17$

 \[\pi(N) \geq \frac{N}{\ln N}. \]

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.
Construction of keys.

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.

 Use \gcd algorithm to test.
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p-1)(q-1)) = 1$.

 Use gcd algorithm to test.
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\text{gcd}(e, (p - 1)(q - 1)) = 1$.

 Use gcd algorithm to test.

3. Find inverse d of e modulo $(p - 1)(q - 1)$.
Construction of keys

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.

 Use gcd algorithm to test.

3. Find inverse d of e modulo $(p - 1)(q - 1)$.

 Use extended gcd algorithm.
Construction of keys.

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ...

cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.

 Use gcd algorithm to test.

3. Find inverse d of e modulo $(p - 1)(q - 1)$.

 Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.
Security of RSA.

1. Alice knows p and q.
2. Bob only knows, $N = pq$, and e. Does not know, for example, d or factorization of N.
3. I don't know how to break this scheme without factoring N. No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \Rightarrow factoring algorithm.
Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N = pq$, and e.
Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, $N(=pq)$, and e.
 Does not know, for example, d or factorization of N.
Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, $N (= pq)$, and e. Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.
Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, $N(=pq)$, and e.
 Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(= pq)$, and e. Does not know, for example, d or factorization of N.
3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \implies factoring algorithm.
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it. Eve can send credit card again!! The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
 Bob encodes credit card number, c,
If Bob sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
 Bob encodes credit card number, c, concatenated with random k-bit number r.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
- Bob encodes credit card number, c, concatenated with random k-bit number r.

Never sends just c.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.

Never sends just c.

Again, more work to do to get entire system.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:

Bob encodes credit card number, c, concatenated with random k-bit number r.

Never sends just c.

Again, more work to do to get entire system.

CS161...
Signatures using RSA.

Verisign:

Amazon \rightarrow Browser.

Browser "knows" Verisign's public key: K_V.

Amazon Certificate: $C = \text{"I am Amazon. My public Key is } K_A\text{."}$

Verisign signature of C: $SV(C)$:

$D(C, KV) = C^d \mod N$.

Browser receives: $[C, y]$ Checks $E(y, KV) = C$?

$E(SV(C), KV) = (SV(C))^e = C^e = C (\mod N)$

Valid signature of Amazon certificate C!

Security: Eve can't forge unless she "breaks" RSA scheme.
Signatures using RSA.

Verisign:

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Signatures using RSA.

Verisign: k_v, K_v

Amazon $\xleftarrow{}$ Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign's key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Signatures using RSA.

Verisign: k_v, K_v

Amazon ← Browser. K_v

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.
Signatures using RSA.

Verisign: k_v, K_v

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: $K_v = (N, e)$ and $k_v = d$ ($N = pq$.)
Browser “knows” Verisign’s public key: K_v.
Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A\text{”}$
Signatures using RSA.

Verisign: k_V, K_V

$[C, S_V(C)]$

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = “I am Amazon. My public Key is $K_A.”$

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.
Signatures using RSA.

Verisign: k_v, K_v

$[C, S_v(C)]$

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: $K_v = (N, e)$ and $k_v = d$ ($N = pq$.)
Browser “knows” Verisign’s public key: K_v.
Amazon Certificate: $C =$ “I am Amazon. My public Key is K_A.”
Versign signature of C: $S_v(C)$: $D(C, k_v) = C^d \mod N$.
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Browser “knows” Verisign’s public key: K_V.
Amazon Certificate: $C =$ “I am Amazon. My public Key is $K_A.$”
Versign signature of C: $S_V(C): D(C, k_V) = C^d \mod N$.
Browser receives: $[C, y]$
Signatures using RSA.

Verisign: k_V, K_V

$[C, S_V(C)]$

$C = E(S_V(C), k_V)$?

$[C, S_V(C)]$

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = “I am Amazon. My public Key is $K_A.”$

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A \text{.”} \)

Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)
Checks \(E(y, K_V) = C? \)
\(E(S_V(C), K_V) \)
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A.$”

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e$
Signatures using RSA.

Verisign: \(k_V, K_V \)

\[[C, S_V(C)] \quad \text{and} \quad C = E(S_V(C), k_V)? \]

Amazon \[\rightarrow\] Browser. \(K_V \)

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq)\).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A.\text{”} \)

Verisign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N. \)

Browser receives: \([C, y]\)

Checks \(E(y, K_V) = C? \)

\[E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e \]
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = “I am Amazon. My public Key is \ K_A.” \)

Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)

Checks \(E(y, K_V) = C \)?

\[E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} \]
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_V = (N, e)$ and $k_V = d \ (N = pq)$.

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A\text{.”}$

Verisign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?

$$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \ (\text{mod } N)$$
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A \text{.”} \)

Verisign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N. \)

Browser receives: \([C, y] \)

Checks \(E(y, K_V) = C? \)

\[E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \mod N \]

Valid signature of Amazon certificate \(C \)!
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Browser “knows” Verisign’s public key: K_V.
Amazon Certificate: $C =$ “I am Amazon. My public Key is K_A.”
Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.
Browser receives: $[C, y]$
Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \mod N$
Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.
Public Key Cryptography:

\[D(E(m, K), k) = (m^e) d \mod N = m \]

Signature scheme:

\[E(D(C, k), K) = (C^d) e \mod N = C \]
Public Key Cryptography:

$$D(E(m, K), k) = (m^e)^d \mod N = m.$$
RSA

Public Key Cryptography:

\[D(E(m, K), k) = (m^e)^d \mod N = m. \]
Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \mod N = m. \]

Signature scheme:
Public Key Cryptography:
\[D(E(m,K), k) = (m^e)^d \mod N = m. \]
Signature scheme:
\[E(D(C,k), K) = (C^d)^e \mod N = C \]
Signature authority has public key (N,e).
Signature authority has public key \((N,e)\).

(A) Given message/signature \((x,y)\): check \(y^d = x \pmod{N}\)
(B) Given message/signature \((x,y)\): check \(y^e = x \pmod{N}\)
(C) Signature of message \(x\) is \(x^e \pmod{N}\)
(D) Signature of message \(x\) is \(x^d \pmod{N}\)
Signature authority has public key \((N,e)\).

(A) Given message/signature \((x,y)\) : check \(y^d = x \pmod{N}\)
(B) Given message/signature \((x,y)\) : check \(y^e = x \pmod{N}\)
(C) Signature of message \(x\) is \(x^e \pmod{N}\)
(D) Signature of message \(x\) is \(x^d \pmod{N}\)
Other Eve.
Get CA to certify fake certificates: Microsoft Corporation.
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
... and August 28, 2011 announcement.
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...
and only them?
Summary.

Public-Key Encryption.
Public-Key Encryption.

RSA Scheme:

\[N = pq \] and \[d = e^{-1} \pmod{(p-1)(q-1)} \].

\[E(x) = x^e \pmod{N} \].

\[D(y) = y^d \pmod{N} \].

Repeated Squaring ⇒ efficiency.

Fermat's Theorem ⇒ correctness.

Good for Encryption and Signature Schemes.
Summary.

Public-Key Encryption.

RSA Scheme:

\[N = pq \quad \text{and} \quad d = e^{-1} \pmod{(p-1)(q-1)}. \]

\[E(x) = x^e \pmod{N}. \]

\[D(y) = y^d \pmod{N}. \]
Public-Key Encryption.

RSA Scheme:
\[N = pq \text{ and } d = e^{-1} \pmod{(p - 1)(q - 1)} \].
\[E(x) = x^e \pmod{N} \].
\[D(y) = y^d \pmod{N} \].

Repeated Squaring \(\Rightarrow\) efficiency.

Fermat's Theorem \(\Rightarrow\) correctness.

Good for Encryption and Signature Schemes.
Public-Key Encryption.

RSA Scheme:
$N = pq$ and $d = e^{-1} \pmod{(p-1)(q-1)}$.
$E(x) = x^e \pmod{N}$.
$D(y) = y^d \pmod{N}$.

Repeated Squaring \implies efficiency.
Fermat’s Theorem \implies correctness.
Summary.

Public-Key Encryption.

RSA Scheme:

- \(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).
- \(E(x) = x^e \pmod{N} \).
- \(D(y) = y^d \pmod{N} \).

Repeated Squaring \(\implies \) efficiency.

Fermat’s Theorem \(\implies \) correctness.

Good for Encryption.
Summary.

Public-Key Encryption.

RSA Scheme:
\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]
\[E(x) = x^e \pmod{N}. \]
\[D(y) = y^d \pmod{N}. \]

Repeated Squaring \(\implies\) efficiency.

Fermat’s Theorem \(\implies\) correctness.

Good for Encryption and Signature Schemes.