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A 9 Percent Chance?

“A team of researchers from the University of Hawaiʻi at Mānoa published 
a study that estimated the probability of a magnitude 9+ earthquake in the 
Aleutian Islands—an event with sufficient power to create a mega-tsunami 
especially threatening to Hawaiʻi. In the next 50 years, they report, there is 
a 9 percent chance of such an event.” - The School of Ocean and Earth 
Science and Technology at the University of Hawai‘i at Mānoa

http://onlinelibrary.wiley.com/doi/10.1002/2016JB012861/full
http://onlinelibrary.wiley.com/doi/10.1002/2016JB012861/full
https://www.soest.hawaii.edu/soestwp/announce/press-releases/probability-of-aleutians-mega-earthquake-estimated/
https://www.soest.hawaii.edu/soestwp/announce/press-releases/probability-of-aleutians-mega-earthquake-estimated/
https://www.soest.hawaii.edu/soestwp/announce/press-releases/probability-of-aleutians-mega-earthquake-estimated/


Probability and Intuition

Suppose we flip a coin 20 times.

Consider two outcomes:

a) HHHHHHHHHHHHHHHHHHHHH

b) HHTTHTHHHTTHTHTHHTHTH

Which outcome is more likely?

Neither!  Both equally likely…

Which outcome is more random?

This is a deeper question…

Kolmogorov complexity says (b) is – we won’t deal with this notion of “random”



Probability and Intuition

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant at that center with equal probability.

● If we eat at a Moroccan restaurant, what is the chance we picked center 1?

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant



Probability and CS70

In CS70, we’ll give you a solid foundation for probability.

● What did the “9%” mean in that chance for a mega-tsunami?

● Which outcome of coin flips is more likely?

● What is the chance we picked shopping center 1?

Probabilistic reasoning is famously counterintuitive!

● A firm foundation will keep you safe from easy mistakes.



Probability

Second part of the class – time for a fresh start!

Most important topics/skills from the first part:

● Rigorous reasoning and writing formal proofs

● Counting

Others do come up….  Some we’ll talk about in CS70, others not…

● Graphs: Random graph generation or random traversals

● Random transmission errors (for error detection/correction)

● …



Counting Summary

Parts of the counting lecture we’ll need today:

● Given 𝑛 items, there are 𝑛! permutations.

● If we draw 𝑘 samples from a set of 𝑛 objects, the number of possible 
draws is:

○ With replacement, where order matters: 𝑛𝑘

○ Without replacement, where order matters: 𝑛 × 𝑛 − 1 × 𝑛 − 2 ×⋯×
𝑛 − 𝑘 + 1

○ Without replacement, where order doesn’t matter: 𝑛
𝑘
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Probability Basics

Much like part one of this class, only a few terms/concepts
It’s the variations and application that you need to practice with!

Concepts for today:
● Random experiments

● Outcomes

● Sample spaces (just the set of all outcomes)

● Probability spaces (just a function/measure defined on a sample space)

● Events (just a subset of a sample space)

That’s it!
The rest is just counting…



Random Experiment, Sample Point, Sample Space

Random Experiment: Drawing a sample of 𝑘 items from a set 𝑆 with 
cardinality 𝑛. 

Example: Rolling two 4-sided dice. In this case 𝑆 = {1, 2, 3, 4}, 𝑘 = 2, 𝑛 = 4, 
and we are drawing with replacement.

Sample Point: The outcome of a single experiment, e.g. 22.

Sample Space: Set of all possible outcomes, given by Ω.

11   12   13   14
21   22   23   24
31   32   33   34
41   42   43   44

Ω =



Probability Space

A Probability Space consists of:

● A sample space Ω

● A probability function 𝑷(𝜔) that maps 𝜔 ∈ Ω to a real number such that:
○ 0 ≤ 𝑷 𝜔 ≤ 1 for all 𝜔 ∈ Ω

○ σ𝑤∈Ω𝑷(𝜔) = 1

11   12   13   14
21   22   23   24
31   32   33   34
41   42   43   44

Ω =

𝑷 𝜔 =
1

16

Example: Rolling two fair 4-sided dice. In this case, Ω and 𝑷 are:

This is a “uniform probability space”.



Event

Example: Rolling two 4-sided dice. In this case S = {1, 2, 3, 4}, k = 2,                   
and we are drawing without replacement. If dice are fair then:

An event A is a subset of our sample space Ω.

● Example: Let 𝐴2𝑛𝑑𝑔𝑟𝑒𝑎𝑡𝑒𝑟 be the event where the second roll is greater 
than first.
○ 𝐴2𝑛𝑑𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = {12, 13, 14, 23, 24, 34}

Naturally, 𝑷 𝐴 = σ𝜔∈𝐴𝑷 𝜔 , e.g. 𝑷 𝐴2𝑛𝑑𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 6/16 = 3/8

11   12   13   14
21   22   23   24
31   32   33   34
41   42   43   44

Ω = 𝑷 𝜔 =
1

16



Quick Note on Notation

Slides use parentheses for probability functions, e.g.

𝑷 𝜔

The notes use brackets and a blackboard P.

Reminder: Mathematical symbols are just placeholders for ideas.

● These two notations are exactly equivalent. 



Sample Space Ignoring Order

Note: It is possible to define your sample space such that it ignores the order 
of the samples, e.g. treats 21 and 12 as the same object.

For two four-sided dice: Ω = {11, 12, 13, 14, 22, 23, 24, 33, 34, 44}

● 10 outcomes rather than 16.

● Probability space is non-uniform and thus harder to work with.
○ 𝑃 11 = 1/16

○ 𝑃 12 = 1/8

We’ll almost always take into account order in defining our sample spaces.

11   12   13   14
21   22   23   24
31   32   33   34
41   42   43   44

Ω = vs.

11   12   13   14
22   23   24

33   34
44

Ω =
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Another Example Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 is slightly more complicated:

● 𝑷 𝟏𝟏 = ? ?

11 12   13   14
21   22   23   24
31   32   33   34
41   42   43   44

Ω =



Another Example Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 is slightly more complicated:

● 𝑷 𝟏𝟏 = 25/64

11 12   13   14
21   22   23   24
31   32   33   34
41   42   43   44

Ω =



Another Example Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 is slightly more complicated:

● 𝑷 11 = 25/64

● 𝑷 21 = 𝑷 31 = 𝑷 41 = 𝑷 12 = 𝑷 13 = 𝑷 14 = ? ?

11 12   13   14
21 22   23   24
31 32   33   34
41 42   43   44

Ω =



Another Example Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 is slightly more complicated:

● 𝑷 11 = 25/64

● 𝑷 21 = 𝑷 31 = 𝑷 41 = 𝑷 12 = 𝑷 13 = 𝑷 14 = 5/64

11 12   13   14
21 22   23   24
31 32   33   34
41 42   43   44

Ω =

This is a non-uniform probability space.



Another Example Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 is slightly more complicated:

● 𝑷 11 = 25/64

● 𝑷 21 = 𝑷 31 = 𝑷 41 = 𝑷 12 = 𝑷 13 = 𝑷 14 = 5/64

● 𝑷 22 = 𝑷 23 = ⋯ = 𝑷 44 = 1/64

11 12   13   14
21 22   23   24
31 32   33   34
41 42   43   44

Ω =

This is a non-uniform probability space.



Tree Diagram for a Non-Uniform Probability Space

1

5/8

2

1/8

3
1/8

4

1/8

A tree diagram gives a somewhat more 
formal explanation of the probability of 
each outcome.



Tree Diagram for a Non-Uniform Probability Space

1

4

1

5/8

2

1/8

3
1/8

1/8

The tree diagram gives a somewhat 
more formal explanation of the 
probability of each outcome.

● 𝑷 11 =
5

8
×

5

8
= 25/64



Tree Diagram for a Non-Uniform Probability Space

1

2

3

4

4

1

5/8

2

1/8

3
1/8

1/8

The tree diagram gives a somewhat 
more formal explanation of the 
probability of each outcome.

Here, we can multiply the probabilities 
together because the dice rolls are 
independent. More on this in a later 
lecture.

● 𝑷 11 =
5

8
×

5

8
= 25/64

● 𝑷 12 = 𝑷 13 = 𝑷 14 =
5

8
×

1

8
= 5/64



Tree Diagram for a Non-Uniform Probability Space

1

2

3

4

1

2

3

4

1

2

3

4

4

1

2

3

4

1

5/8

2

1/8

3
1/8

1/8

The tree diagram gives a somewhat 
more formal explanation of the 
probability of each outcome.

Here, we can multiply the probabilities 
together because the dice rolls are 
independent. More on this in a later 
lecture.

● 𝑷 11 = 25/64

● 𝑷 12 = 𝑷 13 = 𝑷 14 = 𝑷 21 =
𝑷 31 = 𝑷 41 = 5/64

● 𝑷 22 = 𝑷 23 = ⋯ = 𝑷 44 = 1/64



Events in a Non Uniform Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 yields a non-uniform probability space:

● 𝑷 11 = 25/64

● 𝑷 21 = 𝑷 31 = 𝑷 41 = 𝑷 12 = 𝑷 13 = 𝑷 14 = 5/64

● 𝑷 22 = 𝑷 23 = ⋯ = 𝑷 44 = 1/64

11 12   13   14
21 22   23   24
31 32   33   34
41 42   43   44

Ω =

What is 𝑷 𝐴2𝑛𝑑𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ?



Events in a Non Uniform Probability Space

Example: Rolling two unfair 4-sided dice. In this case S = {1, 2, 3, 4},  k = 2, 
and we are drawing without replacement. Suppose that dice are loaded so 
that 1 appears 5/8 times, and other numbers occurs 1/8 times.

In this example 𝑷 𝜔 yields a non-uniform probability space:

● 𝑷 11 = 25/64

● 𝑷 21 = 𝑷 31 = 𝑷 41 = 𝑷 12 = 𝑷 13 = 𝑷 14 = 5/64

● 𝑷 22 = 𝑷 23 = ⋯ = 𝑷 44 = 1/64

11 12   13   14
21 22   23   24
31 32   33   34
41 42   43   44

Ω =

What is 𝑷 𝐴2𝑛𝑑𝑔𝑟𝑒𝑎𝑡𝑒𝑟 ?

𝑷 𝐴2𝑛𝑑𝑔𝑟𝑒𝑎𝑡𝑒𝑟 = 3 × 5/64 + 3 × 1/64

= 18/64
= 9/32
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Four Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of four consecutive flips.

What is the chance that we get HHHH? The chance that we get HTHT?

Ω =

HHHH  HHHT  HHTH  HHTT
HTHH  HTHT  HTTH  HTTT
THHH  THHT  THTH  THTT
TTHH  TTHT  TTTH  TTTT



Four Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of four consecutive flips.

What is the chance that we get HHHH? The chance that we get HTHT?

● 𝑃 𝐻𝐻𝐻𝐻 = 1/3 4, 𝑃 𝐻𝑇𝐻𝑇 = 1/3 2 2/3 2

Ω =

HHHH  HHHT  HHTH  HHTT
HTHH  HTHT  HTTH  HTTT
THHH  THHT  THTH  THTT
TTHH  TTHT  TTTH  TTTT



Four Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of four consecutive flips.

What is the chance that all the flips are the same?

● 𝑃 𝐴𝑠𝑎𝑚𝑒 = 𝑃 𝐻𝐻𝐻𝐻 + 𝑃 𝑇𝑇𝑇𝑇 = 1/3 4 + 2/3 4 = 17/81

Ω =

HHHH  HHHT  HHTH  HHTT
HTHH  HTHT  HTTH  HTTT
THHH  THHT  THTH  THTT
TTHH  TTHT  TTTH  TTTT



Four Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of four consecutive flips.

What is the chance that we have two heads?

Ω =

HHHH  HHHT  HHTH  HHTT
HTHH  HTHT  HTTH  HTTT
THHH  THHT  THTH  THTT
TTHH  TTHT  TTTH  TTTT



Four Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of four consecutive flips.

What is the chance that we have two heads?

● 𝑷 𝐻𝐻𝑇𝑇 = 2/3 2 1/3 2 = 4/81, 𝑷 𝐴𝑡𝑤𝑜ℎ𝑒𝑎𝑑𝑠 = 6 × 4/81 = 24/81

Ω =

HHHH  HHHT  HHTH  HHTT
HTHH  HTHT  HTTH  HTTT
THHH  THHT  THTH  THTT
TTHH  TTHT  TTTH  TTTT

Note: This “manual 
counting” approach 
doesn’t scale to larger k!
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Sixteen Biased Coins

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of 16 consecutive flips.

● What is the chance that we have 6 heads?

We can’t just enumerate events individually! Way too many to list.



Back to Four Biased Coins

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of four consecutive flips.

What is the chance that we have two heads?

● Probability of any two heads event: 𝑷 𝐻𝐻𝑇𝑇 = 2/3 2 1/3 2 = 4/81

● Given 2 heads out of 4, there are 4
2

= 6 ways to choose the position of 

the heads. Thus overall probability is 6 × 4/81 = 24/81

Ω =

HHHH  HHHT  HHTH  HHTT
HTHH  HTHT  HTTH  HTTT
THHH  THHT  THTH  THTT
TTHH  TTHT  TTTH  TTTT

We just did this process of 
counting the 6 sample points 
with 2 heads, but without 
drawing it out visually.



Sixteen Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of 16 consecutive flips.

● What is the chance that we have exactly 6 heads?



Sixteen Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of 16 consecutive flips.

● What is the chance that we have exactly 6 heads?
○ Chance of any given outcome with 6 heads: 1/3 6 2/3 10

○ Number of ways to choose position of 6 out of 16 heads? 16
6



Sixteen Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of 16 consecutive flips.

● What is the chance that we have exactly 6 heads?
○ Chance of any given outcome with 6 heads: 1/3 6 2/3 10

○ Number of ways to choose position of 6 out of 16 heads: 16
6

○ Overall chance is therefore 1/3 6 2/3 10 16
6



Sixteen Biased Coins

One common model in engineering applications is the biased coin. Can be 
used to model, e.g. chance that a system will fail.

Suppose we have a coin where 𝑷 𝐻 = 1/3 and 𝑷 𝑇 = 2/3.

Suppose that our experiment consists of 16 consecutive flips.

● What is the chance that we have exactly 6 heads?
○ Chance of any given outcome with 6 heads: 1/3 6 2/3 10

○ Number of ways to choose position of 6 out of 16 heads: 16
6

○ Overall chance is therefore 1/3 6 2/3 10 16
6

1/3 6 2/3 10 16
10

is also correct! 16
10

=
16
6

= 8008
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Playing Cards

In a standard deck of American playing cards, there are 52 cards.

● Each card has a “rank” and a “suit”. 

● Ranks: {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}

● Suits: { , , , }

When shuffled, there are 52! (roughly 8 × 1067) permutations.
• No two shuffled decks 

have ever been the 
same!



Poker Hands as a Random Experiment

In the game of poker, each player is given a “hand” consisting of 5 cards 
from the set of 52 cards shown below.

● Each card has a “rank” and a “suit”. 

● Ranks: {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}

● Suits: { , , , }

Questions:

● What is n (the cardinality of 
the set we’re drawing from)? 
What is k? What is Ω ?

● Is this with/without 
replacement?

● Is the probability space 
uniform? 

Example Hand: {A , 2 , 5 , K , 
Q }



Poker Hands as a Random Experiment

In the game of poker, each player is given a “hand” consisting of 5 cards 
from the set of 52 cards shown below.

● Each card has a “rank” and a “suit”. 

● Ranks: {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}

● Suits: { , , , }

Questions:

● What is n (the cardinality of 
the set we’re drawing from)? 
What is k? What is Ω ?

● Is this with/without 
replacement?

● Is the probability space 
uniform? 

Example Hand: {A , 2 , 5 , K , 
Q }

Answers:

● n is 52. k is 5. Drawing without 
replacement.

● Drawing 5 items without 
replacement from a set of 
cardinality 52: 52 × 51 × 50 × 49 ×
48 or 311,875,200 possible hands.

● The space is uniform.



Poker Hands as a Random Experiment

In the game of poker, each player is given a “hand” consisting of 5 cards 
from the set of 52 cards shown below.

● Each card has a “rank” and a “suit”. 

● Ranks: {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}

● Suits: { , , , }

Question: Which hand is more likely?

Example Hand: {A , 2 , 5 , K , 
Q }



Poker Hands as a Random Experiment

In the game of poker, each player is given a “hand” consisting of 5 cards 
from the set of 52 cards shown below.

● Each card has a “rank” and a “suit”. 

● Ranks: {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}

● Suits: { , , , }

Question: Which hand is more likely?

● They are equally likely. It’s a uniform probability space.

Example Hand: {A , 2 , 5 , K , 
Q }



Poker Hands: Probability of a “Flush”

In the game of poker, each player is given a “hand” consisting of 5 cards 
from the set of 52 cards shown below.

What is the chance that your hand is a “flush”, i.e. has all the same suit?

● Since all hands are equally likely, we just need to count the number of 
different flushes.

● Number of possible hands (taking into account order): 52 × 51 × 50 × 49 ×
48 or 311,875,200.

● Number of different flushes:

Example Flushes: {A , 2 , 5 , K , Q } {5 , A , 2 , Q , K }



Poker Hands: Probability of a “Flush”

In the game of poker, each player is given a “hand” consisting of 5 cards 
from the set of 52 cards shown below.

What is the chance that your hand is a “flush”, i.e. has all the same suit?

● Since all hands are equally likely, we just need to count the number of 
different flushes.

● Number of possible hands (taking into account order): 52 × 51 × 50 × 49 ×
48 or 311,875,200.

● Number of different flushes: There are 13 hearts, and we are drawing 5 
without replacement: there are 13 × 12 × 11 × 10 × 9 or 154,440 heart 
flushes.

● Four different suits, so total number of flushes = 617,760

● Thus, chance of a flush is 617,760/311,875,200 ≈ 0.2%

Example Flushes: {A , 2 , 5 , K , Q } {5 , A , 2 , Q , K }



Alternate Framing: Ignoring Order

With hands playing cards it’s also perfectly reasonable to define the sample 
space so that we ignore order.

{1 , 2 , 3 , 4 , 5 } ≡ {5 , 3 , 1 , 2 , 4 }

Questions:

● What is n (the cardinality of 
the set we’re drawing from)? 
What is k? What is Ω ?

● Is this with/without 
replacement?

● Is the probability space 
uniform? 

Answers:

● n is 52. k is 5. Drawing without 
replacement.

● Drawing 5 items without 
replacement from a set of 
cardinality 52, ignoring order: ??

● The space is ??



Alternate Framing: Ignoring Order

With hands playing cards it’s also perfectly reasonable to define the sample 
space so that we ignore order.

{1 , 2 , 3 , 4 , 5 } ≡ {5 , 3 , 1 , 2 , 4 }

Questions:

● What is n (the cardinality of 
the set we’re drawing from)? 
What is k? What is Ω ?

● Is this with/without 
replacement?

● Is the probability space 
uniform? 

Answers:

● n is 52. k is 5. Drawing without 
replacement.

● Drawing 5 items without 
replacement from a set of 
cardinality 52, ignoring order: 52

5

or 2,598,960 possible hands.

● The space is ….  ?



Alternate Framing: Ignoring Order

With hands playing cards it’s also perfectly reasonable to define the sample 
space so that we ignore order.

Why is this probability space uniform, but the probability space of two four-
sided dice ignoring order was not uniform?

Questions:

● What is n (the cardinality of 
the set we’re drawing from)? 
What is k? What is Ω ?

● Is this with/without 
replacement?

● Is the probability space 
uniform? 

Answers:

● n is 52. k is 5. Drawing without 
replacement.

● Drawing 5 items without 
replacement from a set of 
cardinality 52, ignoring order: 52

5

or 2,598,960 possible hands.

● The space is uniform.

{1 , 2 , 3 , 4 , 5 } ≡ {5 , 3 , 1 , 2 , 4 }



Alternate Framing: Ignoring Order

With hands playing cards it’s also perfectly reasonable to define the sample 
space so that we ignore order.

Why is this probability space uniform, but the probability space of two four-
sided dice ignoring order was not uniform? We’re drawing without 
replacement, so duplicates are impossible! No 12 vs. 21 situation.

{1 , 2 , 3 , 4 , 5 } ≡ {5 , 3 , 1 , 2 , 4 }

Questions:

● What is n (the cardinality of 
the set we’re drawing from)? 
What is k? What is Ω ?

● Is this with/without 
replacement?

● Is the probability space 
uniform? 

Answers:

● n is 52. k is 5. Drawing without 
replacement.

● Drawing 5 items without 
replacement from a set of 
cardinality 52, ignoring order: 52

5

or 2,598,960 possible hands.

● The space is uniform.



Poker Hands: Probability of a “Flush”

We can analyze the probability of a flush in this sample space as well.

What is the chance that your hand is a “flush”, i.e. has all the same suit?

● Since probability space is uniform, we just need to count the number of 
different flushes.

● Number of different flushes:

Example Flush: {A , 2 , 5 , K , Q }



Poker Hands: Probability of a “Flush”

We can analyze the probability of a flush in this sample space as well.

What is the chance that your hand is a “flush”, i.e. has all the same suit?

● Since probability space is uniform, we just need to count the number of 
different flushes.

● Number of different flushes: There are 13 hearts, so there are 13
5

=

1287 heart flushes.

● Four different suits, so total number of flushes = 5,148.

● Total number of hands is 2,598,960.

● Thus, chance of a flush is 5,148/2,598,960 ≈ 0.2%

Example Flush: {A , 2 , 5 , K , Q }



Overview of Second Half of the Course

Probability Basics

• Probability Spaces and Events

• Non-uniform Probability Spaces

• Example: Four Biased Coins

• Example: Sixteen Biased Coins 

Trickier Uniform Probability Spaces

• Poker Hands

• Balls and Bins

• The Birthday Paradox (n=50 case)

• The Birthday Paradox (general case)

The Monty Hall Problem

• Simple Analysis

• Sample Space Analysis

Conclusion

Balls and Bins
Lecture 16, CS70 Summer 2025



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

Let’s do a quick demo.

20 balls thrown!



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

What is k, n, is this with/without replacement, and what is Ω ? Uniform p.s.?



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

What is k, n, is this with/without replacement, and what is Ω ? Uniform p.s.?

● k is 20 (samples drawn).

● n is 10 (set of possible outcomes are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

● Drawings are with replacement (can get same number multiple times).

● Sample space has 1020 elements

● Probability space is uniform, i.e., specific distribution of balls above 
(ignoring who is on top of whom, etc.) occurs 1 out of 1020 times.



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

What is k, n, is this with/without replacement, and what is Ω ? Uniform p.s.?

● k is 20 (samples drawn).

● n is 10 (set of possible outcomes are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

● Drawings are with replacement (can get same number multiple times).

● Sample space has 1020 elements – does this consider order? 

● Probability space is uniform, i.e., specific distribution of balls above 
(ignoring who is on top of whom, etc.) occurs 1 out of 1020 times.



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

What is k, n, is this with/without replacement, and what is Ω ? Uniform p.s.?

● k is 20 (samples drawn).

● n is 10 (set of possible outcomes are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

● Drawings are with replacement (can get same number multiple times).

● Sample space has 1020 elements. This considers order, despite balls being 
indistinguishable.

● Probability space is uniform, i.e., specific distribution of balls above 
(ignoring who is on top of whom, etc.) occurs 1 out of 1020 times.



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

Why do you think I chose to consider order in defining my sample space?



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

Why do you think I chose to consider order in defining my sample space?

● So that the probability space is uniform!

● Otherwise, some sample points would be more likely than others.
○ Example: Only one configuration where all balls go in bin 1 (unlikely). Many 

configurations where 2 balls go in each bin (thus more likely).



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins. 

● k=20, n=10, with replacement, Ω = 1020

What is 𝑷(𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦), i.e. the probability bin 1 has no ball?

● Since all outcomes are equally likely, just need to count number of 
outcomes where no ball lands in bin 1.

● Number of ways 20 balls can land in 9 bins: 920

○ Can think of this as “Assume that the first bin is empty, how many 
different configurations are there?”

● So 𝑷 𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦 = 920/1020 ≈ 12%



Example: Balls and Bins

Suppose we throw 20 balls independently into 10 bins. Assume each ball is 
equally likely to land in any of the ten bins.

● k=20, n=10, with replacement, Ω = 1020

What is 𝑷(𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦), i.e. the probability bin 1 has no ball?

● 920/1020 ≈ 12%

What is 𝑷(𝐴𝑏𝑖𝑛1𝑛𝑜𝑛𝑒𝑚𝑝𝑡𝑦), i.e. the probability at least one ball lands in bin 1?

● This is just 1 − 𝑷 𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦 = 1 − 920/1020 ≈ 88%

In general, for an event 𝐴, 𝑃 𝐴 = 1 − 𝑃 ҧ𝐴



Example: Balls and Bins

Suppose we throw 𝑚 balls independently into 𝑛 bins. Assume each ball is 
equally likely to land in any of the 𝑛 bins.

● k=𝑚, n=𝑛, with replacement, Ω = 𝑛𝑚

What is 𝑷(𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦), i.e. the probability bin 1 has no ball?

● For k = 20, n = 10, we had 𝑷 𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦 = 920/1020

● For k = 𝑚, n = 𝑛, we have 𝑷 𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦 = (𝑛 − 1)𝑚/𝑛𝑚

So 𝑷 𝐴𝑏𝑖𝑛1𝑒𝑚𝑝𝑡𝑦 =
𝑛−1 𝑚

𝑛𝑚
=

𝑛 − 1

𝑛

𝑚

= 1 −
1

𝑛

𝑚

Number of ways m balls can 
land in n-1 bins: (𝑛 − 1)𝑚



Buckets and Balls and the World

Suppose we throw 𝑚 balls independently into 𝑛 bins. Assume each ball is 
equally likely to land in any of the 𝑛 bins.

This problem is a common model in computer science, e.g., modeling jobs 
being sent to one of many servers. Suppose 𝑚 jobs are sent to one of 𝑛
servers randomly.

● 𝑃 𝐴𝑠𝑒𝑟𝑣𝑒𝑟1𝑛𝑜𝑡𝑢𝑠𝑒𝑑 =
𝑛−1

𝑛

𝑚
= 1 −

1

𝑛

𝑚

Or 𝑚 items are stored in one of 𝑛 hash table buckets:

● 𝑃 𝐴𝑏𝑢𝑐𝑘𝑒𝑡1𝑛𝑜𝑡𝑢𝑠𝑒𝑑 =
𝑛−1

𝑛

𝑚
= 1 −

1

𝑛

𝑚



Example: Buckets and Balls and Dice and Coins

Suppose we throw 𝑚 balls independently into 𝑛 bins. Assume each ball is 
equally likely to land in any of the 𝑛 bins.

This is also a more general framing of some previous problems, e.g.

● Rolling a 4-sided die twice: 𝑚 = ?, 𝑛 = ?



Example: Buckets and Balls and Dice and Coins

Suppose we throw 𝑚 balls independently into 𝑛 bins. Assume each ball is 
equally likely to land in any of the 𝑛 bins.

This is also a more general framing of some previous problems, e.g.

● Rolling a 4-sided die twice: 𝑚 = 2, 𝑛 = 4.

● Flipping a coin 16 times, 𝑚 = ?, 𝑛 = ?.



Example: Buckets and Balls and Dice and Coins

Suppose we throw 𝑚 balls independently into 𝑛 bins. Assume each ball is 
equally likely to land in any of the 𝑛 bins.

This is also a more general framing of some previous problems, e.g.

● Rolling a 4-sided die twice: 𝑚 = 2, 𝑛 = 4.

● Flipping a coin 16 times, 𝑚 = 16, 𝑛 = 2.

● Drawing a hand of 5 cards from a deck of 52 cards? 𝑚 = ?, 𝑛 = ?.



Example: Buckets and Balls and Dice and Coins

Suppose we throw 𝑚 balls independently into 𝑛 bins. Assume each ball is 
equally likely to land in any of the 𝑛 bins.

This is also a more general framing of some previous problems, e.g.

● Rolling a 4-sided die twice: 𝑚 = 2, 𝑛 = 4.

● Flipping a coin 16 times, 𝑚 = 16, 𝑛 = 2.

● Drawing a hand of 5 cards from a deck of 52 cards? Doesn’t apply!

○ Drawing a hand is without replacement! Doesn’t match independent 
ball throwing.



Overview of Second Half of the Course

Probability Basics

• Probability Spaces and Events

• Non-uniform Probability Spaces

• Example: Four Biased Coins

• Example: Sixteen Biased Coins 

Trickier Uniform Probability Spaces

• Poker Hands

• Balls and Bins

• The Birthday Paradox (n=50 case)

• The Birthday Paradox (general case)

The Monty Hall Problem

• Simple Analysis

• Sample Space Analysis

Conclusion

The Birthday 
Paradox (n=50 
case)
Lecture 16, CS70 Summer 2025



Birthdays

Suppose we have 50 people in a room. What is the chance that two share a 
birthday? (For simplicity, ignore leap year birthdays, i.e., assume each year 
has 365 days).

What’s your gut feeling?

● Less than 20%?

● Decent chance, say 50%ish?

● Very likely, say >90%?



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365.

In terms of probability spaces:

● What is the cardinality of the set S that we’re drawing from?

● How many samples are we drawing?

● Are we drawing with or without replacement?

● What is the cardinality of the sample space Ω?



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365.

What is the probability space for the possible birthdays?

● What is the cardinality of the set S that we’re drawing from? 365

● How many samples are we drawing? 50

● Are we drawing with or without replacement? With

● What is the cardinality of the sample space Ω?    Ω = 36550

The probability space is again uniform.



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365.

● Cardinality of the sample space Ω? Ω = 36550

Let 𝐴 be the event where two (or more) of the birthdays are the same. Then:

𝑃 𝐴 =
𝐴

Ω

Examples from 𝐴: [1, 1, …], [5, 5, …5, …], [66, 12, 51, 66, …]

Problem: How the heck do we figure out 𝐴 ?



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365.

● Cardinality of the sample space Ω? Ω = 36550

Let 𝐴 be the event where two (or more) of the birthdays are the same. Hard 
to compute 𝐴 . 

As often the case, ҧ𝐴 is easier to compute.

● Example from ҧ𝐴 : [55, 1, 67, 2, 99, …, 33, 41], with no repeats.

How many samples are there like this with no repeats?

● Let’s go back to the random experiments framework.



Birthdays with no Repeats

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365 AND THERE ARE NO REPEAT BIRTHDAYS.

Goal: Figure out the size of this sample space.

● What is the cardinality of the set S that we’re drawing from?

● How many samples are we drawing?

● Are we drawing with or without replacement?

● What is the cardinality of this sample space?



Birthdays with no Repeats

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365 AND THERE ARE NO REPEAT BIRTHDAYS.

Goal: Figure out the size of this sample space.

● What is the cardinality of the set S that we’re drawing from? 365

● How many samples are we drawing? 50

● Are we drawing with or without replacement? Without

● What is the cardinality of this sample space?



Birthdays with no Repeats

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365 AND THERE ARE NO REPEAT BIRTHDAYS.

In terms of probability spaces:

● What is the cardinality of the set S that we’re drawing from? 365

● How many samples are we drawing? 50

● Are we drawing with or without replacement? Without

● What is the cardinality of this sample space? 365 × 364 ×⋯× 316

Note that this sample space is just ҧ𝐴, i.e. ҧ𝐴 = 365 × 364 × ⋯× 316



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365. What is the chance that two of those 50 people share the same 
birthday?

Let 𝐴 be the event where two (or more) of the birthdays are the same. Then:

𝑃 𝐴 =
𝐴

Ω
= 1 − 𝑃 ҧ𝐴 = 1 −

ҧ𝐴

Ω

For 𝑘 = 50, ҧ𝐴 = 365 × 364 × ⋯× 316, and Ω = 36550, so

𝑃 𝐴 = 1 −
365 × 364 × ⋯× 316

36550

Can use e.g. 
Wolfram alpha
to compute.

https://www.wolframalpha.com/input?i=%28316*...*364*365%29%2F365.0%5E50


Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365. What is the chance that two of those 50 people share the same 
birthday?

Let 𝐴 be the event where two (or more) of the birthdays are the same. Then:

𝑃 𝐴 =
𝐴

Ω
= 1 − 𝑃 ҧ𝐴 = 1 −

ҧ𝐴

Ω

For 𝑘 = 50, ҧ𝐴 = 365 × 364 × ⋯× 316, and Ω = 36550, so

𝑃 𝐴 = 1 −
365 × 364 ×⋯× 316

36550
≈ 1 − 0.03 ≈ 0.97



Overview of Second Half of the Course

Probability Basics

• Probability Spaces and Events

• Non-uniform Probability Spaces

• Example: Four Biased Coins

• Example: Sixteen Biased Coins 

Trickier Uniform Probability Spaces

• Poker Hands

• Balls and Bins

• The Birthday Paradox (n=50 case)

• The Birthday Paradox (general case)

The Monty Hall Problem

• Simple Analysis

• Sample Space Analysis

Conclusion

The Birthday 
Paradox 
(general case)
Lecture 16, CS70 Summer 2025



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365. What is the chance that two of those 50 people share the same 
birthday?

● Compute by counting number of birthday combinations with no repeats.

ҧ𝐴 = 365 × 364 × ⋯× 316

Suppose we want to generalize to the case where we have 𝑛 people. What is 
ҧ𝐴 in that case? 

𝑃 𝐴 = 1 −
365 × 364 ×⋯× 316

36550
≈ 1 − 0.03 ≈ 0.97



Birthdays

Suppose we have 50 people in a room who all have a birthday between day 1 
and day 365. What is the chance that two of those 50 people share the same 
birthday?

● Compute by counting number of birthday combinations with no repeats.

ҧ𝐴 = 365 × 364 × ⋯× 316

Suppose we want to generalize to the case where we have 𝑛 people. What is 
ҧ𝐴 in that case? 

ҧ𝐴 = 365 × 364 × ⋯× 365 − 𝑛 + 1



Birthdays

Suppose we have 𝑛 people in a room who all have a birthday between day 1 
and day 365. What is the chance that two of those 𝑛 people share the same 
birthday?

𝑃 𝐴 = 1 −
365 × 364 × ⋯× 365 − 𝑛 + 1

365𝑛



Quick Aside: Computing This Function

Suppose we want to compute the results of the function below. 

● Why might it be a bad idea to compute the numerator and denominator 
separately?

● How can we compute the result more efficiently?

𝑃 𝐴 = 1 −
365 × 364 × ⋯× 365 − 𝑛 + 1

365𝑛



Quick Aside: Computing This Function

Suppose we want to compute the results of the function below. 

● Why might it be a bad idea to compute the numerator and denominator 
separately?

○ In many programming languages like Java, we’d get overflow issues.

○ In languages that support huge integers, performance will be slow. 365100

is an 852 bit number, much bigger than 64 bits for typical operations.

● How can we compute the result more efficiently?

○ One idea: Compute product of 
365

365
×

364

365
×

363

365
×⋯

○ You can compute this approximately in constant time (maybe try to come 
up with a technique, happy to discuss at office hours!)

𝑃 𝐴 = 1 −
365 × 364 × ⋯× 365 − 𝑛 + 1

365𝑛



Birthday Paradox Table

For various 𝑛, the probability that at least two people share a birthday is given 
below.

𝑛 𝑃(𝐴) %

1 0 0%

2 0.0027 0.27%

3 0.008 0.8%

4 0.016 1.6%

10 0.117 11.7%

15 0.252 25.2%

20 0.411 41.1%

23 0.507 50.7%

50 0.97 97.0%

60 0.994 99.4%

23 is where we cross 50%



Overview of Second Half of the Course

Probability Basics

• Probability Spaces and Events

• Non-uniform Probability Spaces

• Example: Four Biased Coins

• Example: Sixteen Biased Coins 

Trickier Uniform Probability Spaces

• Poker Hands

• Balls and Bins

• The Birthday Paradox (n=50 case)

• The Birthday Paradox (general case)

The Monty Hall Problem

• Simple Analysis

• Sample Space Analysis

Conclusion

The Monty Hall 
Problem:
Simple Analysis
Lecture 16, CS70 Summer 2025



Probability Spaces and Event Probabilities

Let’s consider a much trickier problem using the same framework as before.



The Monty Hall Problem

Let’s start by imagining a game. In this game there are 3 doors with prizes 
behind them, and you want to win the car.

● One door has a car behind it.

● Two doors have a goat behind them.



The Monty Hall Problem

Let’s start by imagining a game. In this game there are 3 doors with prizes 
behind them, and you want to win the car.

● One door has a car behind it.

● Two doors have a goat behind them.

The rules are as follows:

● You pick one of 3 doors.

● The host reveals what is behind one of the other doors. The answer is 
ALWAYS a goat.

● You get a chance to switch doors after the host shows you the goat.

Let’s try to play a few rounds: 
https://www.rossmanchance.com/applets/2021/montyhall/Monty.html

https://www.rossmanchance.com/applets/2021/montyhall/Monty.html


The Monty Hall Problem

Suppose we’re playing, pick the left door, and we get to this state:

Should you switch doors? (Note: You are ALWAYS shown a goat)



Monty Hall Problem

Strangely the answer is yes - your chance of winning is better if you switch!



Explanation (1/4)

The chance that you were correct with your first guess is 1/3.

Only two possibilities exist:

● You were right (with probability 1/3).

● You were wrong (with probability 2/3).



Explanation (2/4)

Suppose the host opens door 3, how do the probabilities change?

● Chance that your original choice is correct is unchanged. It’s still 1/3.



Explanation (3/4)

Suppose the host opens door 3, how do the probabilities change?

● Chance that your original choice is correct is unchanged. It’s still 1/3.

● Chance that door 3 has the car is now zero.



Explanation (4/4)

Suppose the host opens door 3, how do the probabilities change?

● Chance that your original choice is correct is unchanged. It’s still 1/3.

● Chance that door 3 has the car is now zero.

● Chance that door 2 has the car is now 2/3 (since door 3 can’t have car).



Explanation Summary

The chance that you were correct with your first guess is 1/3.

That is, only two possibilities exist before the door is open:

● You are right (with probability 1/3).

● You are wrong (with probability 2/3).

After opening a door, the chance you were right is STILL 1/3.

● So switching (to the other binary choice) must have a probability of 2/3.



Monty Hall Problem

When this problem was answered in Parade magazine by columnist Marilyn 
vos Savant in 1990, the answer drew huge amounts of angry mail including 
from folks holding PhDs.

Let’s take a walk down memory lane: 
https://web.archive.org/web/20130121183432/http://marilynvossavant.com/g
ame-show-problem/

https://web.archive.org/web/20130121183432/http:/marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http:/marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http:/marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http:/marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http:/marilynvossavant.com/game-show-problem/
https://web.archive.org/web/20130121183432/http:/marilynvossavant.com/game-show-problem/


Overview of Second Half of the Course

Probability Basics

• Probability Spaces and Events

• Non-uniform Probability Spaces

• Example: Four Biased Coins

• Example: Sixteen Biased Coins 

Trickier Uniform Probability Spaces

• Poker Hands

• Balls and Bins

• The Birthday Paradox (n=50 case)

• The Birthday Paradox (general case)

The Monty Hall Problem

• Simple Analysis

• Sample Space Analysis

Conclusion

The Monty Hall 
Problem:
Sample Space 
Analysis
Lecture 16, CS70 Spring 2025



Explanation in Terms of Sample Spaces

We can also think about this problem in terms of a sample space where we 
draw 3 samples from the set S = {1, 2, 3}:

● 𝑖: the door with the car prize (randomly chosen by TV show crew)

● 𝑗: the door that you select (randomly chosen by you)

● 𝑘: the door that gets opened (randomly chosen by host, with caveat that 
they will never select the door with the car or the door chosen by you)
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● 𝑖: the door with the car prize (randomly chosen by TV show crew)

● 𝑗: the door that you select (randomly chosen by you)

● 𝑘: the door that gets opened (randomly chosen by host, with caveat that 
they will never select the door with the car or the door chosen by you)

Our usual questions:

● What is the cardinality of the set S that we’re drawing from?

● How many samples are we drawing?

● Are we drawing with or without replacement?

● What is the cardinality of this sample space?



Explanation in Terms of Sample Spaces

We can also think about this problem in terms of a sample space where we 
draw 3 samples from the set S = {1, 2, 3}:

● 𝑖: the door with the car prize (randomly chosen by TV show crew)

● 𝑗: the door that you select (randomly chosen by you)

● 𝑘: the door that gets opened (randomly chosen by host, with caveat that 
they will never select the door with the car or the door chosen by you)

Our usual questions:

● What is the cardinality of the set S that we’re drawing from? 3

● How many samples are we drawing? 3

● Are we drawing with or without replacement? Neither. 𝑗 is drawn with 
replacement, and 𝑘 is drawn without replacement (after 𝑖 and 𝑗).

● What is the cardinality of this sample space? See next slide.



The Sample Space for Monty Hall
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The Sample Space for Monty Hall
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The Sample Space for Monty Hall
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So what? How is this useful for 
understanding what to do?

Have to consider the final and 
deterministic step – our strategy.



The Sample Space for Monty Hall + Not Switching Strategy
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The Sample Space for Monty Hall + Switching Strategy
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Quick Note on Monty Hall

The first argument from earlier (on the left below) is much easier to follow 
than the sample space argument (on the right below). 

● Both are rigorous. First is clearer.

● Why bother with the second argument? To show the universal 
applicability of the sample space framework.



Overview of Second Half of the Course

Probability Basics

• Probability Spaces and Events

• Non-uniform Probability Spaces

• Example: Four Biased Coins

• Example: Sixteen Biased Coins 

Trickier Uniform Probability Spaces

• Poker Hands

• Balls and Bins

• The Birthday Paradox (n=50 case)

• The Birthday Paradox (general case)

The Monty Hall Problem

• Simple Analysis

• Sample Space Analysis

Conclusion

Conclusion
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Conclusion

Probability is hard!

● Intuitions can be wildly wrong.

● Rigor is critical for correctness.

Recall the key steps in all our calculations (framed slightly differently): 

● Determine Ω, the set of all possible outcomes.

● Determine P(𝜔), the probability of each outcome 𝜔 ∈ Ω?

○ For uniform probability spaces, P 𝜔 = 1/ Ω

● Determine the event 𝐴 that we’re interested in.

● Compute the probability of 𝐴 by adding up the probabilities of the sample 
points contained in it.
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