
Motivating Puzzle

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant at that center with equal probability.

● If we eat at a Moroccan restaurant, what is the chance we picked center 1?

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant



Motivating Puzzle

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant from the list with equal probability.

● If we eat at a Moroccan restaurant     ,what’s the chance we picked center 1?

Might be tempting to say that the chance is 2/3 since 2 out of 3 Moroccan 
restaurants are in center 1, but this is wrong. We’ll come back to this problem 
later…

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total Probability 
Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

Summary

Conditional 
Probability of a 
Sample
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Fruit and Bins, Review #1: Chance of a Specific Outcome

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾
1 2 3 4



Fruit and Bins, Review #1: Chance of a Specific Outcome

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

1

2

3

What is the chance that the durian goes in α, the peach goes in α, the 
orange goes in γ, and finally the strawberry goes in α, i.e., what is the 
probability that we get 𝜔 = 𝛼𝛼𝛾𝛼?

4



Fruit and Bins, Review #1: Chance of a Specific Outcome

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

What is the chance that we get 𝜔 = 𝛼𝛼𝛾𝛼? 
• This is sampling with replacement where order matters, i.e., total 

number of outcomes is 34 = 81. Thus, chance is 1/81.

Ω = 81

𝜔: 𝛼𝛼𝛾𝛼
𝑷 𝜔 = 1/81

1

2

3

4

4



Fruit and Bins, Review #2: Chance of an Event

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Ω = 81

Let B be the event where second bin is empty, i.e., there are no 𝛽s.

What is 𝑃 𝐵 ?



Fruit and Bins, Review #2: Chance of an Event

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Ω = 81

Let B be the event where second bin is empty, i.e., there are no 𝛽s.

What is 𝑃 𝐵 ?

● Count 𝐵 , the number of outcomes with no 𝛽 and divide that by Ω = 34.



Fruit and Bins, Review #2: Chance of an Event

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Ω = 81

Let B be the event where second bin is empty, i.e., there are no 𝛽s.

What is 𝑃 𝐵 ?

● Count 𝐵 , the number of outcomes with no 𝛽 and divide that by Ω = 34.

● 𝐵 = 24 (this is the balls and bins problem), so P B =
B

Ω
=

24

34
=

16

81
.



Fruit and Bins: Conditional Probability of an Outcome

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Ω = 81

What is the chance that we get 𝜔=𝛼𝛼𝛾𝛼 if we somehow already know that 
there are no 𝛽s?

● As before, B be the event where there are no 𝛽s, and we know 𝐵 = 16.



Fruit and Bins: Conditional Probability of an Outcome

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

What is the chance that we get 𝜔=𝛼𝛼𝛾𝛼 if we somehow already know that 
there are no 𝛽s?

● As before, B be the event where there are no 𝛽s, and we know 𝐵 = 16.

● What is 𝑷(𝜔=𝛼𝛼𝛾𝛼|𝐵)? Read this as the conditional probability of 𝜔=𝛼𝛼𝛾𝛼, 
given that the event B is true. Here a vertical bar means “given that”.

Ω = 81

𝐵

𝜔: 𝛼𝛼𝛾𝛼
𝑷 𝜔|𝐵 = ? ? ?



Fruit and Bins: Conditional Probability of an Outcome

Suppose we have 4 fruits that we randomly throw into 3 large bins, durian 
first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Ω = 81

𝐵

𝜔: 𝛼𝛼𝛾𝛼
𝑷 𝜔|𝐵 = ? ? ?

What is the chance that we get 𝜔=𝛼𝛼𝛾𝛼 if we somehow already know that 
there are no 𝛽s?

● As before, B be the event where there are no 𝛽s, and we know 𝐵 = 16.

● What is 𝑷(𝜔=𝛼𝛼𝛾𝛼|𝐵)? Read this as the conditional probability of 𝜔=𝛼𝛼𝛾𝛼, 
given that the event B is true. Here a vertical bar means “given that”.

○ This is one out of 16 outcomes, so 𝑷(𝜔=𝛼𝛼𝛾𝛼|𝐵) is 1/16.



The Conditional Probability Formula

If 𝜔 is a single outcome in 𝐵, the following is always true:

𝑃 𝜔|𝐵 =
𝑃 𝜔

𝑃 𝐵

For our three bins example:

● 𝑃 𝜔 = 1/81

● 𝑃 𝐵 = 16/81

● 𝑃 𝜔 𝐵 =
1

81
÷

16

81
=

1

16



The Conditional Probability Formula

If 𝜔 is a single outcome in 𝐵, the following is always true:

𝑃 𝜔|𝐵 =
𝑃 𝜔

𝑃 𝐵

What if 𝜔 ∉ 𝐵 – what is 𝑃 𝜔 𝐵 ?



The Conditional Probability Formula

If 𝜔 is a single outcome in 𝐵, the following is always true:

𝑃 𝜔|𝐵 =
𝑃 𝜔

𝑃 𝐵

What if 𝜔 ∉ 𝐵 – what is 𝑃 𝜔 𝐵 ? 0



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total Probability 
Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

• Summary

Conditional 
Probability of an 
Event
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Another Fruits and Bins Problem: Warmup #1

Again, suppose we have 4 fruits that we randomly throw into 3 large bins, 
durian first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Let A be the event where the first bin contains at least 3 fruits. What is 𝑃(𝐴)?



Another Fruits and Bins Problem: Warmup #1

Again, suppose we have 4 fruits that we randomly throw into 3 large bins, 
durian first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Let A be the event where the first bin contains at least 3 fruits. What is 𝑃(𝐴)?
• This is just 8 × 1/81 + 1/81 = 9/81.

𝜸𝜶𝜶𝜶
𝜶𝜸𝜶𝜶
𝜶𝜶𝜶𝜸
𝜶𝜶𝜸𝜶

𝜷𝜶𝜶𝜶
𝜶𝜷𝜶𝜶
𝜶𝜶𝜷𝜶
𝜶𝜶𝜶𝜷

Chance of 3 𝛼s and 
1 something else.

Chance of 4 𝛼s.

A

Ω =
𝜶𝜶𝜶𝜶



Another Fruits and Bins Problem: Warmup #2

Again, suppose we have 4 fruits that we randomly throw into 3 large bins, 
durian first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Let A be the event where the first bin contains at least 3 fruits, and let B be 
the event where the second bin is empty. What is 𝑃 𝐴 ∩ 𝐵 ?

𝜸𝜶𝜶𝜶
𝜶𝜸𝜶𝜶
𝜶𝜶𝜶𝜸
𝜶𝜶𝜸𝜶

𝜷𝜶𝜶𝜶
𝜶𝜷𝜶𝜶
𝜶𝜶𝜷𝜶
𝜶𝜶𝜶𝜷

𝜶𝜶𝜶𝜶
A

BΩ =

Area of interest

Hint: 𝐴 is given below.



Another Fruits and Bins Problem: Warmup #2

Again, suppose we have 4 fruits that we randomly throw into 3 large bins, 
durian first, then peach, then orange, then strawberry.

𝛼 𝛽 𝛾

Let A be the event where the first bin contains at least 3 fruits, and let B be 
the event where the second bin is empty. What is 𝑃 𝐴 ∩ 𝐵 ?
• 5/81

𝜸𝜶𝜶𝜶
𝜶𝜸𝜶𝜶
𝜶𝜶𝜶𝜸
𝜶𝜶𝜸𝜶

𝜷𝜶𝜶𝜶
𝜶𝜷𝜶𝜶
𝜶𝜶𝜷𝜶
𝜶𝜶𝜶𝜷

𝜶𝜶𝜶𝜶
A

BΩ =

Area of interest

Answer: 𝐴 ∩ 𝐵 is 𝐴 without the red items. 



Another Fruits and Bins Problem: Summary So Far

𝛾

Let A be the event where the first bin contains at least 3 fruits, and let B be 
the event where the second bin is empty. Things we know:
• Ω = 81 𝑃 𝜔 = 1/81
• 𝐴 = 9 𝑃 𝐴 = 9/81
• 𝐵 = 16 𝑃 𝐵 = 16/81 𝑃 𝜔 𝐵 = 1/16
• 𝐴 ∩ 𝐵 = 5 𝑃 𝐴 ∩ 𝐵 = 5/81

A

BΩ =



Another Fruits and Bins Problem: Conditional Probability of an Event

𝛾

Let A be the event where the first bin contains at least 3 fruits, and let B be 
the event where the second bin is empty. Things we know:
• Ω = 81 𝑃 𝜔 = 1/81
• 𝐴 = 9 𝑃 𝐴 = 9/81
• 𝐵 = 16 𝑃 𝐵 = 16/81 𝑃 𝜔 𝐵 = 1/16
• 𝐴 ∩ 𝐵 = 5 𝑃 𝐴 ∩ 𝐵 = 5/81

Question: What is 𝑃 𝐴 𝐵 ? Which is correct?
A. 𝑃 𝐴 𝐵 = σ𝜔∈𝐴𝑃 𝜔 𝐵
B. 𝑃 𝐴 𝐵 = σ𝜔∈𝐵𝑃 𝜔 𝐵
C. 𝑃 𝐴 𝐵 = σ𝜔∈𝐴∪𝐵𝑃 𝜔 𝐵
D. 𝑃 𝐴 𝐵 = σ𝜔∈𝐴∩𝐵𝑃 𝜔 𝐵

A

BΩ =



Another Fruits and Bins Problem: Conditional Probability of an Event

𝛾

Let A be the event where the first bin contains at least 3 fruits, and let B be 
the event where the second bin is empty. Things we know:
• Ω = 81 𝑃 𝜔 = 1/81
• 𝐴 = 9 𝑃 𝐴 = 9/81
• 𝐵 = 16 𝑃 𝐵 = 16/81 𝑃 𝜔 𝐵 = 1/16
• 𝐴 ∩ 𝐵 = 5 𝑃 𝐴 ∩ 𝐵 = 5/81

Question: What is 𝑃 𝐴 𝐵 ? Which is correct?
A. 𝑃 𝐴 𝐵 = σ𝜔∈𝐴𝑃 𝜔 𝐵
B. 𝑃 𝐴 𝐵 = σ𝜔∈𝐵𝑃 𝜔 𝐵
C. 𝑃 𝐴 𝐵 = σ𝜔∈𝐴∪𝐵𝑃 𝜔 𝐵
D. 𝑃 𝐴 𝐵 = σ𝜔∈𝐴∩𝐵𝑃 𝜔 𝐵

Technically, A and D are both correct.
• D is the best answer. 
• Outcomes outside of 𝐵 have probability 𝑃 𝜔 𝐵 equal to zero.

A

BΩ =

Area of interest



Another Fruits and Bins Problem: Conditional Probability of an Event

𝛾

Let A be the event where the first bin contains at least 3 fruits, and let B be 
the event where the second bin is empty. Things we know:
• Ω = 81 𝑃 𝜔 = 1/81
• 𝐴 = 9 𝑃 𝐴 = 9/81
• 𝐵 = 16 𝑃 𝐵 = 16/81 𝑃 𝜔 𝐵 = 1/16
• 𝐴 ∩ 𝐵 = 5 𝑃 𝐴 ∩ 𝐵 = 5/81

Since 𝑃 𝐴 𝐵 = σ𝜔∈𝐴∩𝐵𝑃 𝜔 𝐵

We have 5 outcomes in 𝐴 ∩ 𝐵, so 𝑃 𝐴 𝐵 = 5 ×
1

16
=

5

16

A

BΩ =

Area of interest



Formula for Conditional Probability of Events

𝛾

We usually write this equation 𝑃 𝐴 𝐵 = σ𝜔∈𝐴∩𝐵𝑃 𝜔 𝐵 differently.

A

BΩ =

Area of interest

= ෍

𝜔∈𝐴∩𝐵

𝑃 𝜔

𝑃 𝐵
𝑃 𝐴 𝐵 = σ𝜔∈𝐴∩𝐵𝑃(𝜔|𝐵)

=
𝑃 𝐴 ∩ 𝐵

𝑃(𝐵)
=
σ𝜔∈𝐴∩𝐵𝑃 𝜔

𝑃 𝐵

Or simply:

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵



Definition 14.1 from the Notes

For events 𝐴, 𝐵 ⊆ Ω in the same probability space such that 𝑃 𝐵 > 0, the 
conditional probability of 𝐴 given 𝐵 is:

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵

This expression is very common in the real world. Know it well.



Example Using Conditional Probability Formula: Dealing Cards

Suppose we are dealt an ace in cards and want to know the chance our next 
card will also be an ace. Here:

● 𝐵: Event that first card was an ace.

● 𝐴: Event that second card was an ace.

Let’s show that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
.

● 𝑃 𝐵 = 4/52 since 4 out of 52 cards is an ace.

● 𝑃 𝐴 ∩ 𝐵 =
12

52×51
since there are 52 × 51 ways of drawing two cards, and 

4 × 3 = 12 ways of getting two aces.

● Thus, chance that next card will be an ace is 12

52×51
/
4

52
=

3

51

Can also reason 
directly: One ace is 
gone, so 3 out of 
51 cards are aces, 
so 𝑃 𝐴 𝐵 = 3/51



Back to the Shopping Center Puzzle

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant from the list with equal probability.

● If we eat at a Moroccan restaurant     ,what’s the chance we picked center 1?

Hint, let 𝐶1 be the event we picked center 1, and 𝐶2 be the event we picked 
center 2. Then:

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant

𝑃 𝐶1 ) =
𝑃 𝐶1 ∩

𝑃



Back to the Shopping Center Puzzle

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant from the list with equal probability.

● If we eat at a Moroccan restaurant     ,what’s the chance we picked center 1?

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant

𝐶1 𝐶2

Ω =

𝑃 𝐶2 = 0.5𝑃 𝐶1 = 0.5

1/4
1/10

1/4

1/10

1/10

1/10

1/10
=
2/10

9/20
=
4

9

=
1/10 + 1/10

1/10 + 1/10 + 1/4

𝑃 𝐶1 ) =
𝑃 𝐶1 ∩

𝑃



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total 
Probability Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

• Summary

Bayes Rule and 
the Total 
Probability Rule 
(TPR)
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Bayesian Inference

Bayesian Inference: A technique for updating knowledge based on 
observation.

● Conditional probability is an important concept for making this possible.

In this context:

● 𝑃(𝐴): Assessment of the likelihood of 𝐴 without making any observations, 
also known as a prior probability.

● 𝑃(𝐴|𝐵): Assessment of the likelihood of 𝐴 given the observation 𝐵, also 
known as a posterior probability. Includes the knowledge we gained from 
the observation.



Motivating Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected with the Coronavirus, and 𝐵 be 
the event where a person tests positive on some test.

Suppose we know the following about the test:

● When taken by a person who is infected, comes up positive 90% of the 
time, and negative 10% of the time (false negatives).

If you test positive, what is the chance you are actually infected?

● Not enough information!

𝐴: Infected
𝐵: Tests Positive



In Terms of Conditional Probability

Let 𝐴 be the event where a person is infected with the Coronavirus, and 𝐵 be 
the event where a person tests positive on some test.

Suppose we know the following about the test:

● 𝑃 𝐵|𝐴 : When taken by a person who is infected, comes up positive 90% 
of the time, and negative 10% of the time (false negatives).

If you test positive, what is the chance you are actually infected? 𝑃(𝐴|𝐵)

● Not enough information! No reason that 𝑃 𝐴 𝐵 = 𝑃(𝐵|𝐴)

𝑃 𝐵|𝐴 = 0.9 𝐴: Infected
𝐵: Tests Positive



What If We Know the False Positive Rate?

Suppose we have a test for Coronavirus where we know:

● 𝑃 𝐵|𝐴 : When taken by a person who is infected, comes up positive 90% 
of the time, and negative 10% of the time (false negatives).

● 𝑃 𝐵| ҧ𝐴 : When taken by a person who is not infected, comes up positive 
20% of the time (false positives), and negative 80% of the time.

If you test positive, what is the chance you are actually infected?

● Not enough information!

𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2 𝐴: Infected
𝐵: Tests Positive



Example: Coronavirus Testing

Suppose we have a test for Coronavirus where we know:

● 𝑃 𝐵|𝐴 : When taken by a person who is infected, comes up positive 90% 
of the time, and negative 10% of the time (false negatives).

● 𝑃 𝐵| ҧ𝐴 : When taken by a person who is not infected, comes up positive 
20% of the time (false positives), and negative 80% of the time.

𝑃 𝐴 : Suppose that 5% of the people in a region currently have Coronavirus. 

If you (in that region) test positive, what is the chance you are actually 
infected?

● Now we finally know enough! The answer, it may surprise you is 19%. Let’s 
talk about how I computed that answer.

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2 𝐴: Infected
𝐵: Tests Positive



Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected and 𝐵 be the event where a 
person tests positive. Then we know:

Using this information, we want to compute 𝑃 𝐴 𝐵 , i.e., the chance that if a 
person tests positive that they have Coronavirus.

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
.

● Need to somehow compute these two quantities: 𝑃 𝐴 ∩ 𝐵 and 𝑃 𝐵 !

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2

𝐴: Infected
𝐵: Tests Positive



Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected and 𝐵 be the event where a 
person tests positive. Then we know:

Using this information, we want to compute 𝑃 𝐴 𝐵 , i.e., the chance that if a 
person tests positive that they have Coronavirus.

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
. Computing 𝑃(𝐴 ∩ 𝐵) is easy: 

● We know that 𝑃 𝐵 𝐴 =
𝑃 𝐴∩𝐵

𝑃 𝐴

● Therefore, 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴 = 0.9 × 0.05 = 0.045

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2

𝐴: Infected
𝐵: Tests Positive



Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected and 𝐵 be the event where a 
person tests positive. Then we know:

Using this information, we want to compute 𝑃 𝐴 𝐵 , i.e., the chance that if a 
person tests positive that they have Coronavirus.

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
=

0.045

𝑃 𝐵
. Computing 𝑃(𝐵) is a little trickier: 

● 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 + 𝑃 ҧ𝐴 ∩ 𝐵

● 𝑃 ҧ𝐴 ∩ 𝐵 = 𝑃 𝐵 ҧ𝐴 𝑃 ҧ𝐴

= 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

= 0.2 1 − 0.05 = 0.19

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2

𝐴 ∩ 𝐵

A
Ω =

B

ҧ𝐴 ∩ 𝐵

𝑃 𝐴 ∩ 𝐵 = 0.045



Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected and 𝐵 be the event where a 
person tests positive. Then we know:

Using this information, we want to compute 𝑃 𝐴 𝐵 , i.e., the chance that if a 
person tests positive that they have Coronavirus.

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
=

0.045

𝑃 𝐵
. Computing 𝑃(𝐵) is a little trickier: 

● 𝑃 𝐵 = 𝑃 𝐴 ∩ 𝐵 + 𝑃 ҧ𝐴 ∩ 𝐵 = 0.045 + 0.19 = 0.235

● 𝑃 ҧ𝐴 ∩ 𝐵 = 𝑃 𝐵 ҧ𝐴 𝑃 ҧ𝐴

= 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

= 0.2 1 − 0.05 = 0.19

A

𝐴 ∩ 𝐵

Ω =
B

ҧ𝐴 ∩ 𝐵

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2 𝑃 𝐴 ∩ 𝐵 = 0.045



Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected and 𝐵 be the event where a 
person tests positive. Then we know:

Using this information, we want to compute 𝑃 𝐴 𝐵 , i.e., the chance that if a 
person tests positive that they have Coronavirus.

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
=

0.045

0.235
= 0.191, i.e., 19%. 

A

𝐴 ∩ 𝐵

Ω =
B

ҧ𝐴 ∩ 𝐵

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2 𝑃 𝐴 ∩ 𝐵 = 0.045



Example: Coronavirus Testing

Let 𝐴 be the event where a person is infected and 𝐵 be the event where a 
person tests positive. Then we know:

Using this information, we want to compute 𝑃 𝐴 𝐵 , i.e., the chance that if a 
person tests positive that they have Coronavirus.

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴∩𝐵

𝑃 𝐵
=

0.045

0.235
= 0.191, i.e., 19%. 

A

𝐴 ∩ 𝐵

Ω =
B

ҧ𝐴 ∩ 𝐵

In other words, even though the test has a 90% 
true positive rate and only a 20% false negative 
rate, if we get a positive result, we only have a 
19% chance of having Coronavirus.

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2 𝑃 𝐴 ∩ 𝐵 = 0.045



…Or Entirely Symbolically

We can also write what we’ve just done symbolically. Given 𝑃 𝐴 , 𝑃 𝐵|𝐴 , 

𝑃 𝐵| ҧ𝐴 , we can compute 𝑃 𝐴 𝐵 as follows:

We know that 𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵

=
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐴 ∩ 𝐵 + 𝑃 ҧ𝐴 ∩ 𝐵

=
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 ҧ𝐴 ∩ 𝐵

=
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

=
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃(𝐵)

Note: Formulas are great. Memorizing formulas not so much. Remember where this comes from.



…Or Entirely Symbolically

We can also write what we’ve just done symbolically. Given 𝑃 𝐴 , 𝑃 𝐵|𝐴 , 

𝑃 𝐵| ҧ𝐴 , we can compute 𝑃 𝐴 𝐵 as follows:

We know that 𝑃 𝐴 𝐵 =

Example: 

𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵
=

𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

𝑃 𝐴 = 0.05 𝑃 𝐵|𝐴 = 0.9 𝑃 𝐵| ҧ𝐴 = 0.2

𝑃 𝐴 𝐵 =
0.9 × 0.05

0.9 × 0.05 + 0.2 × 1 − 0.05
= 0.191



Bayes Rule and the Total Probability Rule

We’ve just derived two commonly used formulas:

Bayes Rule:

Total Probability Rule: 

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

Note: this is just 𝑃 ҧ𝐴
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Example: Applying the Total Probability Rule

Suppose you are trying to enter a country and there are two immigration 
officers A and Nota. Let 𝐵 be the event where you are allowed entry. Let 𝐴 be 
the event where you are interviewed by officer A, and ҧ𝐴 is the event you are 
interview by Nota.

Suppose officer A will let you in with probability 20% and Nota with probability 
70%. Suppose that you will be assigned officer A with probability 60% and 
officer Nota with probability 40%. What is 𝑃 𝐵 ?

𝑃 𝐵 = 𝑃 𝐴 𝐵𝑋 𝑃 𝐵𝑋 + 𝑃 𝐴 𝐵𝑌 𝑃 𝐵𝑌 = 0.6 × 0.2 + 0.4 × 0.7 = 0.4

𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

𝑃 𝐵 𝐴 = 0.2
𝑃 𝐵 ҧ𝐴 = 0.7



Example: Applying the Total Probability Rule

Suppose you are trying to enter a country and there are two immigration 
officers A and Nota. Let 𝐵 be the event where you are allowed entry. Let 𝐴 be 
the event where you are interviewed by officer A, and ҧ𝐴 is the event you are 
interview by Nota.

Suppose officer A will let you in with probability 20% and Nota with probability 
70%. Suppose that you will be assigned officer A with probability 60% and 
officer Nota with probability 40%. What is 𝑃 𝐵 ?

𝑃 𝐵 = 0.2 × 0.6 + 0.7 × 0.4 = 0.4𝑃 𝐴 𝐵𝑋 𝑃 𝐵𝑋 + 𝑃 𝐴 𝐵𝑌 𝑃 𝐵𝑌
= 0.6 × 0.2 + 0.4 × 0.7 = 0.4

𝑃 𝐵 𝐴 = 0.2
𝑃 𝐵 ҧ𝐴 = 0.7

𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴



Shopping Center Puzzle Using Bayes Rule

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant from the list with equal probability.

● If we eat at a Moroccan restaurant     ,what’s the chance we picked center 1?

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant

𝑃 𝐶1 ) =
𝑃 | 𝐶1 𝑃(𝐶1)

𝑃



Shopping Center Puzzle Using Bayes Rule

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant from the list with equal probability.

● If we eat at a Moroccan restaurant     ,what’s the chance we picked center 1?

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant

𝑃 𝐶1 ) =
𝑃 | 𝐶1 𝑃(𝐶1)

𝑃

=
0.4 × 0.5

𝑃



Shopping Center Puzzle Using Bayes Rule

Suppose we have two shopping centers.

Suppose we pick a center randomly with probability 50%, and then pick a 
restaurant from the list with equal probability.

● If we eat at a Moroccan restaurant     ,what’s the chance we picked center 1?

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant

𝑃 𝐶1 ) =
𝑃 | 𝐶1 𝑃(𝐶1)

𝑃

=
0.4 × 0.5

𝑃

=
0.4 × 0.5

0.4 × 0.5 + 0.5 × 0.5
=

0.2

0.20 + 0.25
=

0.2

0.45
= 4/9
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Multiple Events

Suppose we have more than 2 shopping centers:

To handle such situations, let’s define a “partition of an event”.

We say that an event A is partitioned into n events 𝐴1, … , 𝐴𝑛 if:

● 𝐴 = 𝐴1 ∪ 𝐴2 ∪⋯∪ 𝐴𝑛

● 𝐴𝑖 ∪ 𝐴𝑗 = ∅ for all 𝑖 ≠ 𝑗. That is, the events are mutually exclusive.

For the example, above we have three events, one for each shopping center.

Shopping center 1:

3 Indian restaurants
2 Moroccan restaurants

Shopping center 2:

1 Indian restaurant
1 Moroccan restaurant

Shopping center 3:

1 Indian restaurant
1 Moroccan restaurant



Total Probability Rule

Our TPR (total probability rule) for events A and B was:

When considering a partition 𝐴1, … , 𝐴𝑛 of the sample space Ω. The TPR for an 
event B is:

Question: Why are these two formulas basically saying the same thing?

𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

𝑃 𝐵 =෍

𝑖=1

𝑛

𝑃 𝐵 ∩ 𝐴𝑖



Total Probability Rule

Our TPR (total probability rule) for events A and B was:

When considering a partition 𝐴1, … , 𝐴𝑛 of the sample space Ω. The TPR for an 
event B is:

Can also write this as: 

𝑃 𝐵 = 𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

𝑃 𝐵 =෍

𝑖=1

𝑛

𝑃 𝐵 ∩ 𝐴𝑖

𝑃 𝐵 =෍

𝑖=1

𝑛

𝑃 𝐵 𝐴𝑖 𝑃 𝐴𝑖

Partitions Ω into two events, 𝐴1 = 𝐴 and 𝐴2 = ҧ𝐴



Bayes Rule

For two events A and B, Bayes rule was:

When considering a partition 𝐴1, … , 𝐴𝑛 of the sample space Ω, Bayes Rule is:

In both cases, you can naturally replace 𝑃(𝐵) by the TPR.

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐴𝑖 𝐵 =
𝑃 𝐵|𝐴𝑖 𝑃 𝐴𝑖

𝑃 𝐵



Bayes Rule

For two events A and B, Bayes rule was:

When considering a partition 𝐴1, … , 𝐴𝑛 of the sample space Ω, Bayes Rule is:

In both cases, you can naturally replace 𝑃(𝐵) by the TPR.

● For partitions of space into 𝐴 and ҧ𝐴, P B = 𝑃 𝐵|𝐴 𝑃 𝐴 + 𝑃 𝐵 ҧ𝐴 1 − 𝑃 𝐴

● For partitions into 𝐴1, … , 𝐴𝑛, 𝑃 𝐵 = σ𝑖=1
𝑛 𝑃 𝐵 𝐴𝑖 𝑃 𝐴𝑖

𝑃 𝐴 𝐵 =
𝑃 𝐵|𝐴 𝑃 𝐴

𝑃 𝐵

𝑃 𝐴𝑖 𝐵 =
𝑃 𝐵|𝐴𝑖 𝑃 𝐴𝑖

𝑃 𝐵
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Independence

Earlier, we talked about how the probability of two events is sometimes the 
product of their individual probabilities.

For example, consider rolling a weighted four-sided die twice, where the 
probability of a 1 is 5/8. 

● Here, 𝐴1 is the event that the first die is a 1, and we know that 𝑃 𝐴1 = 5/8.

● 𝐴2 is the event that the second die is a 1, and we know that 𝑃 𝐴2 = 5/8.

● We said that the probability of both events happening was                      
𝑃 𝐴1 ∩ 𝐴2 =

5

8
×

5

8
=

25

64
.

What is notable about these two events is that they are independent!

● The outcome of each roll does not affect the other.



Independence More Formally

Two events A and B are said to be independent if:

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃 𝐵

Let’s consider what this implies about 𝑃 𝐴 𝐵 .

That is, knowing B tells us literally nothing new about A.

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
𝑃 𝐴 × 𝑃(𝐵)

𝑃 𝐵
= 𝑃(𝐴)



Mutual Independence

We can also define the mutual independence of more than 2 events. Let’s 
start with 3 events: 𝐴1, 𝐴2, and 𝐴3.

These 3 events are mutually independent if all of the following are true:

𝑃 𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 × 𝑃 𝐴2
𝑃 𝐴1 ∩ 𝐴3 = 𝑃 𝐴1 × 𝑃 𝐴3
𝑃 𝐴2 ∩ 𝐴3 = 𝑃 𝐴2 × 𝑃 𝐴3

𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 = 𝑃 𝐴1 × 𝑃 𝐴2 × 𝑃 𝐴3



Coin Flipping

Example: Imagine we flip a fair coin twice. Define the events below:

● 𝐴1: First flip is heads.

● 𝐴2: Second flip is heads.

● 𝐴3: Both flips are the same.

Questions:

● Are these events pairwise independent?

● Are they mutually independent (satisfy all four constraints below)?

𝑃 𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 × 𝑃 𝐴2
𝑃 𝐴1 ∩ 𝐴3 = 𝑃 𝐴1 × 𝑃 𝐴3
𝑃 𝐴2 ∩ 𝐴3 = 𝑃 𝐴2 × 𝑃 𝐴3

𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 = 𝑃 𝐴1 × 𝑃 𝐴2 × 𝑃 𝐴3



Coin Flipping

Example: Imagine we flip a fair coin twice. Define the events below:

● 𝐴1: First flip is heads.

● 𝐴2: Second flip is heads.

● 𝐴3: Both flips are the same.

Questions:

● Are these events pairwise independent? Yes!
○ Knowing first flip is heads says nothing about second being heads (and vice 

versa).

○ Knowing first flip heads says nothing about both flips being same (and v-v).

○ Knowing second flip heads says nothing about both flips being same (and v-v).

● Are they mutually independent (satisfy all four constraints)?



Coin Flipping

Example: Imagine we flip a fair coin twice. Define the events below:

● 𝐴1: First flip is heads.

● 𝐴2: Second flip is heads.

● 𝐴3: Both flips are the same.

Questions:

● Are these events pairwise independent? Yes!

● Are they mutually independent (satisfy all four constraints)?
○ No. For example, if you know first and second flips are heads, you know that 

both flips are the same.



Generalizing to 4 Events

We can expand our definition of mutually independent. For four events, we’d 
have 11 constraints: Six pairwise, four three-way, one four-way.

𝑃 𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 × 𝑃 𝐴2
𝑃 𝐴1 ∩ 𝐴3 = 𝑃 𝐴1 × 𝑃 𝐴3
𝑃 𝐴1 ∩ 𝐴4 = 𝑃 𝐴1 × 𝑃 𝐴4
𝑃 𝐴2 ∩ 𝐴3 = 𝑃 𝐴2 × 𝑃 𝐴3
𝑃 𝐴2 ∩ 𝐴4 = 𝑃 𝐴2 × 𝑃 𝐴4
𝑃 𝐴3 ∩ 𝐴4 = 𝑃 𝐴3 × 𝑃 𝐴4

𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 = 𝑃 𝐴1 × 𝑃 𝐴2 × 𝑃 𝐴3
𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴4 = 𝑃 𝐴1 × 𝑃 𝐴2 × 𝑃 𝐴4
𝑃 𝐴1 ∩ 𝐴3 ∩ 𝐴4 = 𝑃 𝐴1 × 𝑃 𝐴3 × 𝑃 𝐴4
𝑃 𝐴2 ∩ 𝐴3 ∩ 𝐴4 = 𝑃 𝐴2 × 𝑃 𝐴3 × 𝑃 𝐴4

𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ∩ 𝐴4 = 𝑃 𝐴1 × 𝑃 𝐴2 × 𝑃 𝐴3 × 𝑃 𝐴4



Generalizing to N Events

We can expand our definition of mutually independent. For N events, we 
have 2𝑛 − 𝑛 − 1: 𝑛

2
pairwise, 𝑛

3
three-way, 𝑛

4
four-way,…

Can represent with compact notation that is a bit awkward. Define 𝐼 to be the 
set of all subsets of {1, … , 𝑛} with size 𝐼 ≥ 2. Then: 

𝑃 ሩ

𝑖∈𝐼

𝐴𝑖 =ෑ

𝑖∈𝐼

𝑃(𝐴𝑖)

The notes give an even more awkward definition (definition 14.5) in terms of 
each event and its complement. We won’t cover this. It represents the exact 
same idea.
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Why Care About Intersections of Events?

In engineering, we often care about the probability of the intersection (or 
unions) of events. Example, if 𝐴1, …𝐴𝑛 are all the things that have to go right, 
chance of success is 𝑃(ځ𝑖=1

𝑛 𝐴𝑖). 



What if Events Aren’t Independent?

Suppose we want to compute 𝑃(ځ𝑖=1
𝑛 𝐴𝑖), but the events are not independent?

● We can’t just multiply 𝑃 𝐴 by 𝑃 𝐵 .

● Example: 𝐴: Both heads, 𝐵: First coin heads. 𝑃 𝐴 ∩ 𝐵 ≠ 1/4 × 1/2

If there are only two events, we can take advantage of our definition of 
conditional probability:

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃 𝐵 𝐴

Coin example above:

● 𝑃 𝐴 ∩ 𝐵 = 1/4 × 1

● This is because 𝑃 𝐵 𝐴 = 1.



What if Events Aren’t Independent?

Suppose we want to compute 𝑃(ځ𝑖=1
𝑛 𝐴𝑖), but the events are not independent?

● For two events: 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃 𝐵 𝐴

For events 𝐴1, … , 𝐴𝑛:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 ? ? ? ×

What do you think is the next term?



What if Events Aren’t Independent?

Suppose we want to compute 𝑃(ځ𝑖=1
𝑛 𝐴𝑖), but the events are not independent?

● For two events: 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃 𝐵 𝐴

For n events 𝐴1, … , 𝐴𝑛, we have the Product Rule:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 ×⋯

Next term is 𝑃 𝐴3 𝐴1 ∩ 𝐴2 .

Why?

● 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 = 𝑃 𝐴1 ∩ 𝐴2

● 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 ∩ 𝐴2 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3



What if Events Aren’t Independent?

Suppose we want to compute 𝑃(ځ𝑖=1
𝑛 𝐴𝑖), but the events are not independent?

● For two events: 𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃 𝐵 𝐴

For n events 𝐴1, … , 𝐴𝑛, we have the Product Rule:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1
𝑛−2 𝐴𝑖 × 𝑃 𝐴𝑛 ∩𝑖=1

𝑛−1 𝐴𝑖

If we keep going, we get the expression above. 

This makes intuitive sense, but let’s prove that it is true.



Product Rule Proof

For n events 𝐴1, … , 𝐴𝑛, we have the Product Rule:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖

= 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1
𝑛−2 𝐴𝑖 × 𝑃 𝐴𝑛 ∩𝑖=1

𝑛−1 𝐴𝑖

Proof by induction. Base Case: 𝑛 = 1

● Trivially: 𝑃 𝐴1 = 𝑃 𝐴1



Product Rule Proof

For n events 𝐴1, … , 𝐴𝑛, we have the Product Rule:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖

= 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1
𝑛−2 𝐴𝑖 × 𝑃 𝐴𝑛 ∩𝑖=1

𝑛−1 𝐴𝑖

Proof by induction. Assume inductive hypothesis for 𝑛 − 1 and prove it holds 
for 𝑛.

● Assume 𝑃 𝑖=1ځ
𝑛−1𝐴𝑖 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1

𝑛−2 𝐴𝑖

● We know 𝑃 𝑖=1ځ
𝑛 𝐴𝑖 = 𝑃 𝐴𝑛 ∩ 𝑖=1ځ

𝑛−1𝐴𝑖

○ Why?



Product Rule Proof

For n events 𝐴1, … , 𝐴𝑛, we have the Product Rule:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖

= 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1
𝑛−2 𝐴𝑖 × 𝑃 𝐴𝑛 ∩𝑖=1

𝑛−1 𝐴𝑖

Proof by induction. Assume inductive hypothesis for 𝑛 − 1 and prove it holds 
for 𝑛.

● Assume 𝑃 𝑖=1ځ
𝑛−1𝐴𝑖 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1

𝑛−2 𝐴𝑖

● We know 𝑃 𝑖=1ځ
𝑛 𝐴𝑖 = 𝑃 𝐴𝑛 ∩ 𝑖=1ځ

𝑛−1𝐴𝑖
= 𝑃(𝐴𝑛| 𝑖=1ځ

𝑛−1𝐴𝑖)× 𝑃 𝑖=1ځ
𝑛−1𝐴𝑖

Why?



Product Rule Proof

For n events 𝐴1, … , 𝐴𝑛, we have the Product Rule:

𝑃 ሩ

𝑖=1

𝑛

𝐴𝑖

= 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3|𝐴1 ∩ 𝐴2 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1
𝑛−2 𝐴𝑖 × 𝑃 𝐴𝑛 ∩𝑖=1

𝑛−1 𝐴𝑖

Proof by induction. Assume inductive hypothesis for 𝑛 − 1 and prove it holds 
for 𝑛.

● Assume 𝑃 𝑖=1ځ
𝑛−1𝐴𝑖 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1

𝑛−2 𝐴𝑖

● We know 𝑃 𝑖=1ځ
𝑛 𝐴𝑖 = 𝑃 𝐴𝑛 ∩ 𝑖=1ځ

𝑛−1𝐴𝑖

= 𝑃(𝐴𝑛| 𝑖=1ځ
𝑛−1𝐴𝑖)× 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴𝑛−1 ∩𝑖=1

𝑛−2 𝐴𝑖

= 𝑃(𝐴𝑛| 𝑖=1ځ
𝑛−1𝐴𝑖)× 𝑃 𝑖=1ځ

𝑛−1𝐴𝑖

QED



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total 
Probability Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

• Summary

Product Rule 
Applications
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Example One: Chance of a Flush in Poker

The chain rule makes some probability calculations easier. Consider trying to 
calculate the probability of a heart flush. Recall that a flush is all 5 cards 
having the same suit.

Using our new framework, if 𝐴 is the event where we get a heart flush, and 
𝐴𝑖 is the event where the ith draw is a heart:

𝑃 𝐴 = 𝑃 ሩ

𝑖=1

5

𝐴𝑖

Example Flushes: {A , 2 , 5 , K , Q } {5 , A , 2 , Q , K }



Example One: Chance of a Flush in Poker

If 𝐴 is the event where we get a heart flush, and 𝐴𝑖 is the event where the ith
draw is a heart:

𝑃 𝐴 =ሩ

𝑖=1

5

𝐴𝑖

We can write this using the product rule as:

𝑃 𝐴 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴5 𝑖ځ
4𝐴𝑖

We have that 𝑃 𝐴1 =
13

52
=

1

4
.

What about 𝑃(𝐴2|𝐴1)?

Example Flushes: {A , 2 , 5 , K , Q } {5 , A , 2 , Q , K }



Example One: Chance of a Flush in Poker

If 𝐴 is the event where we get a heart flush, and 𝐴𝑖 is the event where the ith
draw is a heart:

𝑃 𝐴 =ሩ

𝑖=1

5

𝐴𝑖

We can write this using the product rule as:

𝑃 𝐴 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴5 𝑖ځ
4𝐴𝑖

We have that 𝑃 𝐴1 =
13

52
=

1

4
.

What about 𝑃(𝐴2|𝐴1)? 𝑃 𝐴2 𝐴1 =
12

51

Example Flushes: {A , 2 , 5 , K , Q } {5 , A , 2 , Q , K }



Example One: Chance of a Flush in Poker

If 𝐴 is the event where we get a heart flush, and 𝐴𝑖 is the event where the ith
draw is a heart:

𝑃 𝐴 =ሩ

𝑖=1

5

𝐴𝑖

We can write this using the product rule as:

𝑃 𝐴 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×⋯× 𝑃 𝐴5 𝑖ځ
4𝐴𝑖

𝑃 𝐴 =
13

52
×
12

51
×
11

50
×
10

49
×
9

48
= 0.005

Easier than counting number of flushes and dividing by number of hands (?)

Example Flushes: {A , 2 , 5 , K , Q } {5 , A , 2 , Q , K }



Example Two: Monty Hall

Can think of Monty Hall in terms of the product rule.

Let:

● 𝐶𝑖 be the event that contestant chooses door i.

● 𝑃𝑖 be the event that the prize is behind door i.

● 𝐻𝑖 be the event that the host shows the goat behind door i.



Example Two: Monty Hall

Can think of Monty Hall in terms of the product rule.

Let:

● 𝐶𝑖 be the event that contestant chooses door i.

● 𝑃𝑖 be the event that the prize is behind door i.

● 𝐻𝑖 be the event that the host shows the goat behind door i.

Example: 𝑃 𝐶1 ∩ 𝑃2 ∩ 𝐻3 = 𝑃 𝐶1 × 𝑃 𝑃2 𝐶1 × 𝑃 𝐻3 𝐶1 ∩ 𝑃2

● 𝑃 𝐶1 =
1

3



Example Two: Monty Hall

Can think of Monty Hall in terms of the product rule.

Let:

● 𝐶𝑖 be the event that contestant chooses door i.

● 𝑃𝑖 be the event that the prize is behind door i.

● 𝐻𝑖 be the event that the host shows the goat behind door i.

Example: 𝑃 𝐶1 ∩ 𝑃2 ∩ 𝐻3 = 𝑃 𝐶1 × 𝑃 𝑃2 𝐶1 × 𝑃 𝐻3 𝐶1 ∩ 𝑃2

● 𝑃 𝐶1 =
1

3
, 𝑃 𝑃2 𝐶1 =

1

3



Example Two: Monty Hall

Can think of Monty Hall in terms of the product rule.

Let:

● 𝐶𝑖 be the event that contestant chooses door i.

● 𝑃𝑖 be the event that the prize is behind door i.

● 𝐻𝑖 be the event that the host shows the goat behind door i.

Example: 𝑃 𝐶1 ∩ 𝑃2 ∩ 𝐻3 = 𝑃 𝐶1 × 𝑃 𝑃2 𝐶1 × 𝑃 𝐻3 𝐶1 ∩ 𝑃2

● 𝑃 𝐶1 =
1

3
, 𝑃 𝑃2 𝐶1 =

1

3
, 𝑃 𝐻3 𝐶1 ∩ 𝑃2 = 1

● Thus, 𝑃 𝐶1 ∩ 𝑃2 ∩ 𝐻3 = 1/9

See notes for more exploration of this idea.



Example Three: Coin Tosses

As an example of a degenerate case, let’s consider 3 independent coin 
tosses using the product rule.

Let 𝐴 be the event that all three tosses are heads.

𝑃 𝐴 = 𝑃 𝐴1 ×



Example Three: Coin Tosses

As an example of a degenerate case, let’s consider 3 independent coin 
tosses using the product rule.

Let 𝐴 be the event that all three tosses are heads.

𝑃 𝐴 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 ×



Example Three: Coin Tosses

As an example of a degenerate case, let’s consider 3 independent coin 
tosses using the product rule.

Let 𝐴 be the event that all three tosses are heads.

𝑃 𝐴 = 𝑃 𝐴1 × 𝑃 𝐴2 𝐴1 × 𝑃 𝐴3 𝐴2 ∩ 𝐴1

= 𝑃 𝐴1 × 𝑃 𝐴2 × 𝑃 A3

=
1

2
×
1

2
×
1

2

=
1

8



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total 
Probability Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

• Summary

Unions of Events
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The Three Four-Sided Dice Game

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

Claim: The probability of winning is 75%

● 𝑃 𝐴 = 𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 = 3 ×
1

4
=

3

4

Is this claim correct?



The Three Four-Sided Dice Game

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

Claim: The probability of winning is 75%

● 𝑃 𝐴 = 𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 = 3 ×
1

4
=

3

4

Is this claim correct? No!

● Imagine we roll four fair four-sided dice.

● This argument would imply the chance of winning is 4 × 1

4
= 1

● Or that the probability of winning with 6 dice is 1.5.



Overlapping Events

The issue is that the events are not disjoint.

● Two events are disjoint if they share no sample points.

Consider the sample space for three die four-sided die rolls:

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444



Overlapping Events

The issue is that the events are not disjoint.

● Two events are disjoint if they share no sample points.

Consider the sample space for three die four-sided die rolls:

𝐴1 is the event where first die is 4.

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444



Overlapping Events

The issue is that the events are not disjoint.

● Two events are disjoint if they share no sample points.

Consider the sample space for three die four-sided die rolls:

𝐴1 is the event where first die is 4.

𝐴2 is the event where second die is 4.

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

𝑃 𝐴1 ∪ 𝐴2 ≠ 𝑃 𝐴1 + 𝑃 𝐴2

Some points are in both 
events, so adding 
probabilities double counts 
some of the points!



Solution: Use Inclusion-Exclusion Formula from Counting Lecture

We’ll need to use the inclusion-exclusion formula from the counting lecture.

Reminder, this formula told us about the size of the union of arbitrary subsets 
of the same finite set A. Specifically:

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

𝑘=1

𝑛

−1 𝑘−1 ෍

𝑆⊆ 1,…,𝑛 : 𝑆 =𝑘

ሩ

𝑖∈S

𝐴𝑖

Reminder: This big scary formula is very intuitive. 

● Won’t cover from scratch today – review counting lecture
○ Recall that for 𝑛 = 2: 𝐴1 ∪ 𝐴2 = 𝐴1 + 𝐴2 − |𝐴1 ∩ 𝐴2|



Using the Principle of Inclusion-Exclusion in the Context of Probability

The PIE formula lets us count the size of the intersection of several 
potentially overlapping subsets:

𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

𝑘=1

𝑛

−1 𝑘−1 ෍

𝑆⊆ 1,…,𝑛 : 𝑆 =𝑘

ሩ

𝑖∈S

𝐴𝑖

Naturally, we can use this to compute the probability of the intersection of 
events.

𝑃 𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

𝑘=1

𝑛

−1 𝑘−1 ෍

𝑆⊆ 1,…,𝑛 : 𝑆 =𝑘

𝑃 ሩ

𝑖∈S

𝐴𝑖



Using the PIE for Three Fair Four-Sided Dice

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

−𝑃 𝐴1 ∩ 𝐴2 − 𝑃 𝐴1 ∩ 𝐴3 − 𝑃 𝐴2 ∩ 𝐴3

+𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3

= 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3



Using the PIE for Three Fair Four-Sided Dice

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

● What is 𝑃 𝐴1 ∩ 𝐴2 ?

−𝑃 𝐴1 ∩ 𝐴2 − 𝑃 𝐴1 ∩ 𝐴3 − 𝑃 𝐴2 ∩ 𝐴3

+𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3

𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 1/4 + 1/4 + 1/4



Using the PIE for Three Fair Four-Sided Dice

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

● What is 𝑃 𝐴1 ∩ 𝐴2 ? Probability of getting two fours on independent die 
rolls, so 1/4 × 1/4 = 1/16

−1/16 − 1/16 − 1/16

+𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3

𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 1/4 + 1/4 + 1/4



Using the PIE for Three Fair Four-Sided Dice

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

● What is 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ? 

−1/16 − 1/16 − 1/16

+𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3

𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 1/4 + 1/4 + 1/4



Using the PIE for Three Fair Four-Sided Dice

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

● What is 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 ? 1/64

−1/16 − 1/16 − 1/16

+1/64

𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 1/4 + 1/4 + 1/4



Using the PIE for Three Fair Four-Sided Dice

Suppose we roll three fair four-sided dice.

● We win if we get at least one 4.

● Overall probability is: 3
4
−

3

16
+

1

64
=

48

64
−

12

64
+

1

64
=

37

64

This all worked because 𝑃 𝑖𝐴𝑖ځ = ς𝑖 𝑃 𝐴𝑖 for independent events, which 
let us easily compute values like 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 .

−1/16 − 1/16 − 1/16

+1/64

𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 = 1/4 + 1/4 + 1/4



Visualization of our Usage of the PIE

Let’s see a visual picture. 

First, we added 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 , giving us 48/64. 

● However, we’ve double counted and triple counted some points!

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

Times each point is counted

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   2
0   0   0   1
0   0   0   1
0   0   0   1
1   1   1   2

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   2
1   1   1   2
1   1   1   2
1   1   1   2
2   2   2   3

Sample points



Visualization of our Usage of the PIE

First we added 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 , giving us 48/64. 

● So then we subtracted 𝑃 𝐴1 ∩ 𝐴2 = 4/64 to avoid double counting 𝐴1 ∩ 𝐴2. 

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

Times each point is counted

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   2
0   0   0   1
0   0   0   1
0   0   0   1
1   1   1   2

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   2
1   1   1   2
1   1   1   2
1   1   1   2
1   1   1   2

Sample points



Visualization of our Usage of the PIE

First we added 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 , giving us 48/64. 

● So then we subtracted 𝑃 𝐴1 ∩ 𝐴2 = 4/64 to avoid double counting 𝐴1 ∩ 𝐴2. 

● Then we subtracted 𝑃 𝐴2 ∩ 𝐴3 = 4/64 to avoid double counting 𝐴2 ∩ 𝐴3.

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

Times each point is counted

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   1
0   0   0   1
0   0   0   1
0   0   0   1
1   1   1   1

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   1
1   1   1   2
1   1   1   2
1   1   1   2
1   1   1   1

Sample points

Note the bottom right point is now added three times and subtracted two times.



Visualization of our Usage of the PIE

First we added 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 , giving us 48/64. 

● So then we subtracted 𝑃 𝐴1 ∩ 𝐴2 = 4/64 to avoid double counting 𝐴1 ∩ 𝐴2. 

● Then we subtracted 𝑃 𝐴2 ∩ 𝐴3 = 4/64 to avoid double counting 𝐴2 ∩ 𝐴3.

● Then we subtracted 𝑃 𝐴1 ∩ 𝐴3 = 4/64 to avoid double counting 𝐴1 ∩ 𝐴3.

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

Times each point is counted

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   1
0   0   0   1
0   0   0   1
0   0   0   1
1   1   1   1

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   1
1   1   1   1
1   1   1   1
1   1   1   1
1   1   1   0

Sample points

Note the bottom right point is now added three times and subtracted three times.



Visualization of our Usage of the PIE

First we added 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 , giving us 48/64. 

● So then we subtracted 𝑃 𝐴1 ∩ 𝐴2 = 4/64 to avoid double counting 𝐴1 ∩ 𝐴2. 

● Then we subtracted 𝑃 𝐴2 ∩ 𝐴3 = 4/64 to avoid double counting 𝐴2 ∩ 𝐴3.

● Then we subtracted 𝑃 𝐴1 ∩ 𝐴3 = 4/64 to avoid double counting 𝐴1 ∩ 𝐴3.

Lastly, we add back in 𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3 , giving us 48−4−4−4+1
64

=
37

64

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

Times each point is counted

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   1
0   0   0   1
0   0   0   1
0   0   0   1
1   1   1   1

0   0   0   1
0   0   0   1 
0   0   0   1
1   1   1   1
1   1   1   1
1   1   1   1
1   1   1   1
1   1   1   1

Sample points



Exercise: Union of Independent Events

Just like the notes, I’ve gone through and computed 𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 using 
the PIE.

The notes don’t mention it, but there is a much simpler way to compute this 
union that takes more direct advantage of the fact that these three events are 
independent.

● See if you can figure it out.

−𝑃 𝐴1 ∩ 𝐴2 − 𝑃 𝐴1 ∩ 𝐴3 − 𝑃 𝐴2 ∩ 𝐴3

+𝑃 𝐴1 ∩ 𝐴2 ∩ 𝐴3

= 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total 
Probability Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

• Summary

Unions of Events 
(Large N)
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The Principle of Inclusion/Exclusion

Mathematically, we can use PIE to compute the probability of intersections.

Practically, this becomes challenging even for modestly sized values of 𝑛.

Example: Suppose we have 100 events and want to compute the probability 
of their union.

● Have to add (or subtract) every pairwise, three-way, four-way, etc. 
probability.

● From the counting lecture, we know there are 2𝑛 − 1 such terms, because 
𝑛
1
+ 𝑛

2
+⋯+ 𝑛

𝑛
= 2𝑛 − 1

● 2100 is too long to wait for an answer
○ Note: Age of the universe is ≈ 259 seconds



Inclusion-Exclusion: Mutually Exclusive Events

This isn’t a problem if our events are mutually exclusive, i.e., 𝑃 𝐴𝑖 ∩ 𝐴𝑗 = 0

for all 𝑖 ≠ 𝑗, or equivalently 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for all 𝑖 ≠ 𝑗.

We’ve actually already used this fact before.

Example: Computing the probability of a flush.

● 𝐴1: flush, 𝐴2: flush, 𝐴3: flush, 𝐴4: flush

● Flushes in different suits are clearly disjoint!
○ 𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ∪ 𝐴4 = 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 + 𝑃 𝐴4



Inclusion-Exclusion: Approximation

For non-mutually exclusive events, we can also truncate the summation:

𝑃 𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

𝑘=1

𝑛𝑠

−1 𝑘−1 ෍

𝑆⊆ 1,…,𝑛 : 𝑆 =𝑘

𝑃 ሩ

𝑖∈S

𝐴𝑖

Let 𝑛𝑠 < 𝑛 be the maximum value of 𝑘 through which we sum.

● If 𝑛𝑠 is odd, the computed value is an overestimate.

● If 𝑛𝑠 is even, the computed value is an underestimate.

Example: For our dice game with 3 four sided-dice:

● 𝑛𝑠 = 1, 𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ≈ 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 [overestimate]

● 𝑛𝑠 = 2, 𝑃 𝐴1 ∪ 𝐴2 ∪ 𝐴3 ≈ 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3

−𝑃 𝐴1 ∩ 𝐴2 − 𝑃 𝐴2 ∩ 𝐴3 − 𝑃(𝐴1 ∩ 𝐴3)

[underestimate]



Inclusion-Exclusion: Approximation

For non-mutually exclusive events, we can also truncate the summation:

𝑃 𝐴1 ∪⋯∪ 𝐴𝑛 = ෍

𝑘=1

𝑛𝑠

−1 𝑘−1 ෍

𝑆⊆ 1,…,𝑛 : 𝑆 =𝑘

𝑃 ሩ

𝑖∈S

𝐴𝑖

Let 𝑛𝑠 < 𝑛 be the maximum value of 𝑘 through which we sum.

● If 𝑛𝑠 is odd, the computed value is an overestimate.

● If 𝑛𝑠 is even, the computed value is an underestimate.

As 𝑛𝑠 grows, the quality of our estimate gets better.



Inclusion-Exclusion: The Union Bound

The union bound (also called Boole’s inequality) comes from a special case 
of our approximation, specifically the case where 𝑛𝑠 = 1.

● Example, for the dice game, just summing 𝑃 𝐴1 + 𝑃 𝐴2 + 𝑃 𝐴3 .

The union bound states:

𝑃 𝐴1 ∪⋯∪ 𝐴𝑛 ≤෍

𝑖=1

𝑛

𝑃 𝐴𝑖

Proving this is given as an exercise in the notes.

● Can also go further and prove that as you increase 𝑛𝑠, you switch 
between overestimates to underestimates, and they just keep getting 
better.



Conditional Probabilities:

• Conditional Probability of a Sample

• Conditional Probability of an Event

Bayesian Inference

• Bayes Rule and the Total 
Probability Rule (TPR)

• Applications of Bayes and TPR

• Generalized Bayes and TPR

Combinations of Events

• Independence

• Intersections and The Product Rule

• Product Rule Applications

• Unions of Events

• Unions of Events (Large N)

Summary

Summary
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Summary of the Lecture 17

We covered three distinct topics:

● Defining the conditional probability of outcomes and events.

● Bayesian inference:
○ Especially important: Total Probability Rule and Bayes Rule

● Combinations of events
○ Easy when the events are independent.

○ Intersections of non-independent events: Use product rule.

○ Unions of non-independent events: Can use principle of inclusion/exclusion, 
though it blows up exponentially. Truncate for an approximation.

■ Unions of independent events: Didn’t explicitly discuss, but these are easy to 
compute without the PIE. See the slide “Exercise: Union of Independent Events”
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