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Measure Experiment Outcomes

Sample spaces can be big – three 4-sided die rolls:

… and overly detailed. Often interested in some measurement on the outcome.

Example: How many 4s were rolled?
111 → 0 142 → 1

434 → 2 444 → 3

111 112 113 114
121 122 123 124
131 132 133 134
141 142 143 144
211 212 213 214
221 222 223 224
231 232 233 234
241 242 243 244

311 312 313 314
321 322 323 324
331 332 333 334
341 342 343 344
411 412 413 414
421 422 423 424
431 432 433 434
441 442 443 444

64 different outcomes

4 possible values of interest (0..3)



Measure Experiment Outcomes

Sample spaces can be big – handing papers back randomly to 100 students:

… and overly detailed. Often interested in some measurement on the outcome.

Example: How many students received their own paper?
 23, 58, 92, 37, 21, … , 42 → 0
 72, 2, 28, 33, 91, … , 78 → 1
 72, 2, 15, 4, 82, … , 99 → 2
 1, 2, 3, 4, 5, 6, … , 100 → 100

23, 58, 92, 37, 21, … , 42
72, 2, 28, 33, 91, … , 78
72, 2, 15, 4, 82, … , 99
1, 2, 3, 4, 5, 6, … , 100
…

100! ≈ 9.33 × 10157 different outcomes

101 possible values of interest (0..100)



Random Variables: Informally

Idea: Define a variable to represent the measurement/value of interest.

Suppose we flip a fair coin 4 times. Let 𝑋 be the number of heads we see.

What is 𝑋?
• Given a specific outcome: A value between 0 and 3.

• In general: Some indeterminate value between 0 and 3.

What is 𝑋 + 3?
• Some indeterminate value between 3 and 7.

What is 𝑋 − 𝑋?
• 0      (note: repeated use of 𝑋 means measured on the same outcome)

What is 𝑋2?
• Some indeterminate value from {0, 1, 4, 9, 16}.



Random Variables: Informally

Suppose we take homework from 100 students and randomly give each student 
one homework. Let 𝑋 be the number of students who get their own homework.

What is 𝑋?
• Some indeterminate value between 0 and 100

Is X more likely to be 1 or 3?
• Much more likely to be 1

What is 𝑋 on average?   (we need to define what “on average” means….)
• This turns out to be 1 



Random Variables: Informally

Suppose we flip a fair coin 4 times. Let 𝑋 be the number of heads we see.

• Consider all outcomes – each results in a specific value for 𝑋:

ω 𝑋

TTTT 0
HTTT, THTT, TTHT, TTTH 1
HHTT, HTHT, HTTH, THHT, THTH, TTHH 2
HHHT, HHTH, HTHH, THHH 3
HHHH 4



Random Variable: Formally

A Random Variable X on a sample space is a function that maps Ω → ℝ, i.e., 
𝑋(𝜔) is a real number for every 𝜔 ∈ Ω.

Example, for coin flips: 𝑋 𝑇𝑇𝑇𝑇 = 0,      𝑋 𝐻𝐻𝑇𝐻 = 3,    …

𝜔 ∈ Ω 0 ∈ ℝ

ω 𝑋

TTTT 0
HTTT, THTT, TTHT, TTTH 1
HHTT, HTHT, HTTH, THHT, THTH, TTHH 2
HHHT, HHTH, HTHH, THHH 3
HHHH 4

So despite the name, a random variable is really a function.



Formal Random Variable Example 2

Imagine rolling two six sided dice. Let X be their sum.

• 𝑋 1, 1 = 2
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Formal Random Variable Example 2

Imagine rolling two six-sided dice. Let X be their sum.

• 𝑋 1, 2 = 3 and 𝑋 2,1 = 3
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Formal Random Variable Example 2

Imagine rolling two six-sided dice. Let X be their sum.

• The domain of 𝑋 is the set of all tuples of integers (𝑖, 𝑗) where 1 ≤ 𝑖, 𝑗 ≤ 6.

• The range of 𝑋 is 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 .

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6



Formal Random Variable Example 3

Consider the sample space of all sequences of coin flips consisting of a run of 
tails followed by one heads.

Let 𝑋 be the number of flips until we get our first heads.
• 𝑋 𝐻 = 1

• 𝑋 𝑇𝐻 = 2

• 𝑋 𝑇𝑇𝑇𝑇𝑇𝐻 = 6

The domain of 𝑋 is infinitely large, it’s any number of tails followed by heads.

The range of 𝑋 is ℕ+.

Note engineering application: “Heads” means system failure – 𝑋 is time to failure….
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Random Variables and Events

Let 𝑦 be any number in the range of a random variable 𝑋. Consider the set:

𝐴𝑦 = 𝜔 ∈ Ω: 𝑋 𝜔 = 𝑦

Observation: This set is an event in the sample space, because it a subset of Ω.

 Sometimes called the “pre-image of 𝑦”



Random Variables and Events

Let 𝑦 be any number in the range of a random variable 𝑋. Consider the set:

𝐴𝑦 = 𝜔 ∈ Ω: 𝑋 𝜔 = 𝑦

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6 Observation: This set 𝐴𝑦 is an event in the 
sample space, because it a subset of Ω.

Example for two dice:
• 𝐴9 = {𝜔 ∈ Ω ∶ 𝑋 𝜔 = 9} 

Samples in this event: (6, 3), (5, 4), (4, 5), (3, 6)



Random Variables and Events

Let 𝑎 be any number in the range of a random variable 𝑋. Consider the set:

𝐴𝑦 = 𝜔 ∈ Ω: 𝑋 𝜔 = 𝑦

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6 Observation: This set 𝐴𝑦 is an event in the 
sample space, because it a subset of Ω.

Example for two dice:
• 𝐴9 = {𝜔 ∈ Ω ∶ 𝑋 𝜔 = 9} 

Other ways to “name” this event:
• 𝑋−1 9
• 𝑋 = 9  (we’ll use this in our class)



Random Variables and Events

Let 𝑎 be any number in the range of a random variable 𝑋. Consider the set:

𝐴𝑦 = 𝜔 ∈ Ω: 𝑋 𝜔 = 𝑦

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6

𝑋−1 9

𝐴9

𝑋 = 9

𝜔 ∈ Ω ∶ 𝑋 𝜔 = 9

All four of these are different 
ways of referring to the same 
event.



Random Variables and Events

Let 𝑎 be any number in the range of a random variable 𝑋. Consider the set:

𝐴𝑦 = 𝜔 ∈ Ω: 𝑋 𝜔 = 𝑦

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6 Since this is an event, we can also ask for the 
probability of this event, e.g. What is 𝑃(𝑋 = 𝑎)?

Example:

𝑃 𝑋 = 9 = ෍

𝜔∈"𝑋=9"

𝑃(𝜔) = 4/36



Random Variables and Partitions

A random variable 𝑋 partitions the sample space into events. Why?

• The domain of 𝑋 is the entire sample space.

• 𝑋 is a function, so every sample is assigned to exactly one set.

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6

Reminder: A partition of a set is 
defined as a set of sets whose union 
is the entire sample space, and 
whose pairwise intersections are ∅.

𝑋 = 6

𝑋 = 9

𝑋 = 12
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Distribution of a Random Variable

The distribution of a random variable 𝑋 is the collection of values

𝑎, 𝑃 𝑋 = 𝑎 : 𝑎 ∈ range 𝑋

                                                                 

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6 Example: If 𝑋 is the sum of two six-sided 
dice, the distribution of 𝑋 is:
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Distribution of a Random Variable

The distribution of a random variable 𝑋 is the collection of values

𝑎, 𝑃 𝑋 = 𝑎 : 𝑎 ∈ range 𝑋

                                                                 

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6
𝑎 𝑃 𝑋 = 𝑎

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

Can also show the 
distribution of 𝑋 as a table:



Distribution of a Random Variable

The distribution of a random variable 𝑋 is the collection of values

𝑎, 𝑃 𝑋 = 𝑎 : 𝑎 ∈ range 𝑋

                                                                 

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6

Can also show the 
distribution of 𝑋 as a plot:



Distribution Example 2: Tossing 100 Coins

Toss 100 coins. Let 𝑋 be the number of heads.

• Reminder: 𝑋 is a function that maps samples to reals, e.g., 𝑋 𝐻𝐻𝐻 … 𝐻 = 100

Distribution of 𝑋: 𝑃 𝑋 = 𝑎 =
# outcomes with 𝑎 heads

Ω
=

100
𝑎

2100



Distribution Example 3: Handing Back Assignments

Random Experiment: Suppose we take homework from 3 students, and 
randomly give each student one homework. Let 𝑋 be the number of students 
who get their own homework.

Ω = {123, 132, 213, 231, 312, 321}
3 1 1 0 0 1𝑋
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Distributions and Expectation

Random Experiment: Pick a random student from CS70. 𝑋 is their grade on the 
first midterm.

What are some interesting questions we might ask about 𝑋?

• What is the distribution of 𝑋?

• What is the average of 𝑋? We’ll call this the expectation of X.

• What is the standard deviation of 𝑋?



Expectation Informally

https://joshh.ug/cs70/four_coin_flips_expectation_simulator.html

Let’s do a little experiment and flip 4 coins. Let 𝑋 be the number of heads. We’ll 
count:

• How many times we get each value 𝑎 from {0, 1, 2, 3, 4}.

• The average of the values we get.

https://joshh.ug/cs70/four_coin_flips_expectation_simulator.html

https://joshh.ug/cs70/four_coin_flips_expectation_simulator.html


Simulation Results (Done Previously)

Out of 20 flips, the average 
number of heads per flip was 1.7.

0 + 2 + 3 + 1 + 2 + 2 + ⋯ + 2

20
= 1.7

1, 2, and 3 were the most common 
value, occurring 25% of the time.



Simulation Results (Done Previously)

Out of 150 flips, the average 
number of heads per flip was 1.99.

0 + 2 + 3 + 1 + 2 + 2 + ⋯ + 1

150
= 1.99

2 was the most common value, 
occurring 40% of the time.

Note: As the number of trials 
grows, the histogram looks 
increasingly like the distribution for 
the random variable 𝑋.



Simulation Results (Done Previously)

Note: As the number of trials 
grows, the histogram looks 
increasingly like the distribution for 
the random variable 𝑋.

Question: If we know the exact 
distribution for 𝑋, how can we 
compute the average or 
expectation of 𝑋?

• This is the average value that 
the simulation will eventually 
converge to (given enough 
samples).



Expectation (Formally)

The expectation of a random variable is defined as:

𝐸 𝑋 = ෍

𝑎∈range(𝑋)

𝑎 × 𝑃 𝑋 = 𝑎

Example: Flipping four coins.

• 𝐸 𝑋 = 0 × 1/16 +1 × 4/16 +2 × 6/16 +3 × 4/16 +4 × 1/16

ω 𝑎 𝑃(𝑋 = 𝑎)

TTTT 0 1/16

HTTT, THTT, TTHT, TTTH 1 4/16

HHTT, HTHT, HTTH, THHT, THTH, TTHH 2 6/16

HHHT, HHTH, HTHH, THHH 3 4/16

HHHH 4 1/16



Expectation (Formally)

The expectation of a random variable is defined as:

𝐸 𝑋 = ෍

𝑎∈range(𝑋)

𝑎 × 𝑃 𝑋 = 𝑎

Example: Flipping four coins.

• 𝐸 𝑋 = 0

ω 𝑎 𝑃(𝑋 = 𝑎)

TTTT 0 1/16

HTTT, THTT, TTHT, TTTH 1 4/16

HHTT, HTHT, HTTH, THHT, THTH, TTHH 2 6/16

HHHT, HHTH, HTHH, THHH 3 4/16

HHHH 4 1/16

+4/16 +12/16 +12/16 +4/16



Expectation (Formally)

The expectation of a random variable is defined as:

𝐸 𝑋 = ෍

𝑎∈range(𝑋)

𝑎 × 𝑃 𝑋 = 𝑎

Example: Flipping four coins.

• 𝐸 𝑋 = 32/16 = 2

ω 𝑎 𝑃(𝑋 = 𝑎)

TTTT 0 1/16

HTTT, THTT, TTHT, TTTH 1 4/16

HHTT, HTHT, HTTH, THHT, THTH, TTHH 2 6/16

HHHT, HHTH, HTHH, THHH 3 4/16

HHHH 4 1/16



Alternate Equivalent Definition

The expectation is:

𝐸 𝑋 = ෍

𝑎∈range(𝑋)

𝑎 × 𝑃 𝑋 = 𝑎

We can also write this expression in terms of a sum over all outcomes 𝜔 ∈ Ω.

= ෍

𝑎∈range(𝑋)

𝑎 × ෍

𝜔:𝑋 𝜔 =𝑎

𝑃 𝜔

= ෍

𝑎∈range(𝑋)

෍

𝜔:𝑋 𝜔 =𝑎

𝑎 × 𝑃(𝜔) 

= ෍

𝑎∈range(𝑋)

෍

𝜔:𝑋 𝜔 =𝑎

𝑋 𝜔 × 𝑃(𝜔) 

= ෍

𝜔∈Ω

𝑋 𝜔 × 𝑃 𝜔  
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Bernoulli Random Variable

A Bernoulli random variable has a distribution given by the equation below, 
where 0 ≤ 𝑝 ≤ 1.

Example: Suppose we flip a coin that comes up heads 75% of the time. Let 𝑋 be 
1 if the coin comes up heads, and 0 if it comes up tails.

• We’d say “𝑋 is distributed as a Bernoulli random variable with 𝑝 = 0.75”

• Or in writing we can say “𝑋~Bernoulli(0.75)”.
• This is just shorthand for saying “X is distributed as a Bernoulli random 

variable with 𝑝 = 0.75.

𝑃 𝑋 = 𝑎 = ቊ
𝑝,  if 𝑎 = 1
1 − 𝑝, if 𝑎 = 0



Bernoulli Random Variables and Expectation

Suppose 𝑋~Bernoulli(0.5). What is 𝐸[𝑋]?

We have that 𝐸 𝑋 = 0 × 𝑃 𝑋 = 0 + 1 × 𝑃 𝑋 = 1 .

• 𝑃 𝑋 = 0 = 1 − 𝑝 = 0.5

• 𝑃 𝑋 = 1 = 𝑝 = 0.5 

So: 𝐸 𝑋 = 0 × 0.5 + 1 × 0.5 = 0.5

• Note: The expected value of 𝑋 is a value that 𝑋 can never equal
“Expected” is something we can’t actually expect – English is different from math!

𝐸 𝑋 = ෍

𝑎∈range(𝑋)

𝑎 × 𝑃 𝑋 = 𝑎 𝑃 𝑋 = 𝑎 = ቊ
𝑝,  if 𝑎 = 1
1 − 𝑝, if 𝑎 = 0



Bernoulli Random Variables and Expectation

Suppose 𝑋~Bernoulli(𝑝). What is 𝐸[𝑋]?

We have that 𝐸 𝑋 = 0 × 𝑃 𝑋 = 0 + 1 × 𝑃 𝑋 = 1 .

• 𝑃 𝑋 = 0 = 1 − 𝑝

• 𝑃 𝑋 = 1 = 𝑝

So: 𝐸 𝑋 = 0 × 1 − 𝑝 + 1 × 𝑝 = 𝑝

• That is, the expected value of a Bernoulli random variable is just the 
probability that it is 1 (i.e., that the “coin flip” comes up “heads”).

𝐸 𝑋 = ෍

𝑎∈range(𝑋)

𝑎 × 𝑃 𝑋 = 𝑎 𝑃 𝑋 = 𝑎 = ቊ
𝑝,  if 𝑎 = 1
1 − 𝑝, if 𝑎 = 0



The Sum of Two Bernoulli Random Variables

Suppose 𝑋1~Bernoulli(𝑝) and 𝑋2~Bernoulli 𝑝 . Suppose they are independent.

Let 𝑌 = 𝑋1 + 𝑋2.

• What is the distribution of 𝑌?

• What is 𝐸 𝑌 ?



The Sum of Two Bernoulli Random Variables

Suppose 𝑋1~Bernoulli(𝑝) and 𝑋2~Bernoulli 𝑝 . Suppose they are independent.

Let 𝑌 = 𝑋1 + 𝑋2.

• What is the distribution of 𝑌?
• To get 𝑎 = 2, both Bernoulli RVs must be 1.
• To get 𝑎 = 1, one Bernoulli RV is 1, and the other is 0.
• To get 𝑎 = 0, both Bernoulli RVs must be 0.

• What is 𝐸 𝑌 ?

𝑃 𝑋 = 𝑎 = ൞

𝑝2,  if 𝑎 = 2
2𝑝(1 − 𝑝), if 𝑎 = 1

1 − 𝑝 2,  if 𝑎 = 0



The Sum of Two Bernoulli Random Variables

Suppose 𝑋1~Bernoulli(𝑝) and 𝑋2~Bernoulli 𝑝 . Suppose they are independent.

Let 𝑌 = 𝑋1 + 𝑋2.

• What is the distribution of 𝑌?
• To get 𝑎 = 2, both Bernoulli RVs must be 1.
• To get 𝑎 = 1, one Bernoulli RV is 1, and the other is 0.
• To get 𝑎 = 0, both Bernoulli RVs must be 0.

• What is 𝐸 𝑌 ?
𝐸 𝑌 = 2 × 𝑝2 + 1 × 2𝑝 1 − 𝑝 + 0 × 1 − 𝑝 2

𝑃 𝑋 = 𝑎 = ൞

𝑝2,  if 𝑎 = 2
2𝑝(1 − 𝑝), if 𝑎 = 1

1 − 𝑝 2,  if 𝑎 = 0

= 2𝑝2 + 2𝑝 − 2𝑝2

= 2𝑝



Binomial 
Random 
Variables
Lecture 19, CS70 Summer 2025

Random Variables

• The Idea and Definition

• Random Variables and Events

• The Distribution of a Random Variable

• Expectation

Common Distributions

• Bernoulli Distribution

• Binomial Distribution

•Geometric Distribution

• Poisson Distribution

Summary



Binomial Distribution

The Binomial distribution models counting the number of heads if we flip 𝑛 
coins that come up heads with probability 𝑝.

Let’s work out the distribution by considering a specific example. Suppose that 
𝑋~Binomial(𝑛 = 5, 𝑝)

• 𝑃 𝐻𝐻𝑇𝐻𝑇 = 𝑝 ⋅ 𝑝 ⋅ 1 − 𝑝 ⋅ 𝑝 ⋅ 1 − 𝑝 = 𝑝3 1 − 𝑝 2

• 𝑃 𝑇𝑇𝐻𝐻𝐻 = 1 − 𝑝 ⋅ 1 − 𝑝 ⋅ 𝑝 ⋅ 𝑝 ⋅ 𝑝 = 𝑝3 1 − 𝑝 2



Binomial Distribution

The Binomial distribution models counting the number of heads if we flip 𝑛 
coins that come up heads with probability 𝑝.

Let’s work out the distribution by considering a specific example. Suppose that 
𝑋~Binomial(𝑛 = 5, 𝑝)

• 𝑃 𝐻𝐻𝑇𝐻𝑇 = 𝑝 ⋅ 𝑝 ⋅ 1 − 𝑝 ⋅ 𝑝 ⋅ 1 − 𝑝 = 𝑝3 1 − 𝑝 2

• 𝑃 𝑇𝑇𝐻𝐻𝐻 = 1 − 𝑝 ⋅ 1 − 𝑝 ⋅ 𝑝 ⋅ 𝑝 ⋅ 𝑝 = 𝑝3 1 − 𝑝 2

• 𝑃 𝑋 = 3 = # of sequences with 3 heads 𝑝3 1 − 𝑝 2

=
5

3
𝑝3 1 − 𝑝 2



Binomial Distribution

The Binomial distribution models counting the number of heads if we flip 𝑛 
coins that come up heads with probability 𝑝.

Let’s work out the distribution by considering a specific example. Suppose that 
𝑋~Binomial(𝑛 = 5, 𝑝)

• 𝑃 𝑋 = 𝑖 = # of sequences with i heads 𝑝𝑖 1 − 𝑝 5−𝑖

=
5

𝑖
𝑝𝑖 1 − 𝑝 5−𝑖 for 𝑖 =  0, 1, 2, 3, 4, 5



Binomial Distribution

The Binomial distribution models counting the number of heads if we flip 𝑛 
coins that come up heads with probability 𝑝.

Let’s work out the distribution by considering a specific example. Suppose that 
𝑋~Binomial(𝑛, 𝑝)

• 𝑃 𝑋 = 𝑖 = # of sequences with i heads 𝑝𝑖 1 − 𝑝 𝑛−𝑖

=
𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖

for 𝑖 =  0, 1, 2, … , 𝑛



Binomial Distribution

The Binomial distribution models counting the number of heads if we flip 𝑛 
coins that come up heads with probability 𝑝.

Suppose that 𝑋~Binomial(𝑛, 𝑝)

• 𝑃 𝑋 = 𝑖 = 𝑛
𝑖

𝑝𝑖 1 − 𝑝 𝑛−𝑖

Exercise: Verify that σ𝑖=0
𝑛 𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖 = 1.

We’ll cover the expectation of a Binomial RV next lecture.

• You can do it using the usual sum, but that’s much messier than the nicer 
approach from the next lecture.

for 𝑖 =  0, 1, 2, … , 𝑛
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Geometric Distribution

Imagine a random experiment where we repeatedly flip a coin with a probability 
of heads equal to 𝑝 until we get heads. The flips are independent.

• Let 𝑋 be the number of flips.

This distribution is called the geometric distribution, i.e., 𝑋~Geometric 𝑝

In the coin flipping example, what are the domain and range of 𝑋?

• Domain: Any sequence of 0 or more tails, followed by a heads.

• Range: Any integer greater than or equal to 1, i.e., ℕ+

What is 𝑃 𝑋 = 1 ?

• 𝑃 𝑋 = 1 = 𝑝



Geometric Distribution

Imagine a random experiment where we repeatedly flip a coin with a probability 
of heads equal to 𝑝 until we get heads. The flips are independent.

• Let 𝑋 be the number of flips.

This distribution is called the geometric distribution, i.e., 𝑋~Geometric 𝑝

What is 𝑃 𝑋 = 𝑖 ?

• 𝑃 𝑋 = 2 = 1 − 𝑝 ⋅ 𝑝

• 𝑃 𝑋 = 3 = 1 − 𝑝 2 ⋅ 𝑝

• 𝑃 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1 ⋅ 𝑝



Verifying that the Probabilities Sum to 1

Imagine a random experiment where we repeatedly flip a coin with a probability 
of heads equal to 𝑝 until we get heads. The flips are independent.

• Let 𝑋 be the number of flips.

This distribution is called the geometric distribution, i.e., 𝑋~Geometric 𝑝

• 𝑃 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝 for 𝑖 = 1,2, …

Let’s verify that the probabilities sum to 1.

෍

𝑖=1

∞

𝑃 𝑋 = 𝑖 = ෍

𝑖=1

∞

1 − 𝑝 𝑖−1𝑝 =
𝑝

1 − 1 − 𝑝

෍

𝑛=0

∞

𝑟𝑛 =
1

1 − 𝑟

= 𝑝 ෍

𝑖=1

∞

1 − 𝑝 𝑖−1 =
𝑝

𝑝
= 1



Expectation of a Geometric Random Variable

If 𝑋~Geometric 𝑝 , what is 𝐸 𝑋 ? This is a fun one.

• 𝑃 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝 for 𝑖 = 1,2, …

𝐸 𝑋 = 𝑝 + 2 1 − 𝑝 𝑝 + 3 1 − 𝑝 2𝑝 + ⋯

1 − 𝑝 𝐸 𝑋 = (1 − 𝑝)𝑝 + 2 1 − 𝑝 2𝑝 + 3 1 − 𝑝 3𝑝 + ⋯

First, multiply both sides by 1 − 𝑝

Then, subtract the bottom equation from the top:

𝐸 𝑋 − 1 − 𝑝 𝐸 𝑋 = 𝑝 + 2 1 − 𝑝 𝑝 + 3 1 − 𝑝 2𝑝 + ⋯

− 1 − 𝑝 𝑝 − 2 1 − 𝑝 2𝑝 − ⋯

𝑝𝐸 𝑋 = 𝑝 + 1 − 𝑝 𝑝 + 1 − 𝑝 2𝑝 + ⋯
This is just σ𝑖=1

∞ 𝑃(𝑋 = 𝑖)

𝑝𝐸 𝑋 = 1 𝐸 𝑋 = 1/𝑝



Expectation of a Geometric Random Variable

If 𝑋~Geometric 𝑝 , what is 𝐸 𝑋 ? This is a fun one.

• 𝑃 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝 for 𝑖 = 1,2, …

• 𝐸 𝑋 = 1/𝑝

In this week’s discussion, you’ll get a chance to build some deeper intuition with 
geometric random variables, including the “memoryless” property.
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Poisson Distribution

Suppose we want to know how many alpha particles will be emitted by a 
radiation source. Let 𝑋 be the number of emissions per unit time.

Assumptions:

• The average number of emissions is 𝜆 alpha particles per unit time.

• Emissions in disjoint time intervals are independent, e.g. if 2 particles were 
emitted in the interval [0, 2], this tells us absolutely nothing about how many 
were emitted in the interval [2.1, 4].

If assumptions hold, 𝑋~Poisson(𝜆). 𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
𝑒−𝜆,  for 𝑖 = 0, 1, 2, …



Poisson Distribution Example

Suppose we want to know how many alpha particles will be emitted by a 
radiation source. Let 𝑋 be the number of emissions per unit time.

Suppose we model this radiation source as 𝑋~Poisson(𝜆), where 𝜆 = 2 
emissions per minute.

• What is the probability of seeing 3 emissions in any given minute?

𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
𝑒−𝜆,  for 𝑖 = 0, 1, 2, …

𝑃 𝑋 = 3 =
23

3!
𝑒−2 =

8

6
𝑒−2 ≈ 18.04%



Useful Poisson Distribution Facts

The Poisson distribution comes from the large 𝑛 limit for Binomial RVs.

• That is, can think of 𝜆𝑖

𝑖!
𝑒−𝜆 as arising from an infinite number of Bernoulli trials.

• We’ll cover this in the next lecture. For today it’s just magic.

The expected value of a Poisson random variable is 𝜆.

• This is by design! 𝜆 was defined as the average number of events per unit time.

If we add independent 𝑋~Poisson 𝜆  and 𝑌~Poisson 𝜇 , and 𝑍 = 𝑋 + 𝑌, then 
𝑍~Poisson(𝜆 + 𝜇).

• We’re not equipped to prove this yet. This will come next lecture.



Poisson Distribution Example 2

Suppose we have two radiation sources. We model one as 𝑋1~Poisson(𝜆1), and 
the other as 𝑋2~Poisson(𝜆2).

• If 𝜆1 = 2 emissions per minute, and 𝜆2 = 5 emissions per minute, what is the 
chance that the total number of emissions in a given minute is 4 emissions? 

Earlier, we said that the sum of two RVs is also Poisson. So 𝑆 = 𝑋1 + 𝑋2 is a 
random variable where 𝑆~Poisson(7).

𝑃 𝑆 = 4 =
74

4!
𝑒−7 ≈ 9.1%

𝑃 𝑆 = 𝑖 =
𝜆𝑖

𝑖!
𝑒−𝜆,  for 𝑖 = 0, 1, 2, …



Poisson Distribution Example 3

Suppose we want to know how many alpha particles will be emitted by a 
radiation source. Let 𝑋 be the number of emissions per unit time.

Suppose we model this radiation source as 𝑋~Poisson(𝜆), where 𝜆 = 2 
emissions per minute.

• What is the probability that we get 100 emissions in an hour?



Poisson Distribution Example 3

Suppose we want to know how many alpha particles will be emitted by a 
radiation source. Let 𝑋 be the number of emissions per unit time.

Suppose we model this radiation source as 𝑋~Poisson(𝜆), where 𝜆 = 2 
emissions per minute.

• What is the probability that we get 100 emissions in an hour?

• Need to convert our units. 2 emissions per minute is 120 emissions per hour.
• Can we really just multiply like this?  Yes!  Reason: Next lecture. 

• Let 𝑌 be 𝑋, but in units of emissions per hour. Then Y~Poisson(120).

𝑃 𝑌 = 100 =
120100

100!
𝑒−120𝑃 𝑌 = 𝑖 =

𝜆𝑖

𝑖!
𝑒−𝜆

≈ 0.6%



Poisson Distribution Example 3 (Alternate Solution)

Suppose we want to know how many alpha particles will be emitted by a 
radiation source. Let 𝑋 be the number of emissions per unit time.

Suppose we model this radiation source as 𝑋~Poisson(𝜆), where 𝜆 = 2 
emissions per minute.

• What is the probability that we get 100 emissions in an hour?

• The number of emissions per hour can be thought of as the sum of 60 
independent RVs that are ~Poisson(𝜆). 

• Let 𝑆 be this sum. Then 𝑆~Poisson(120).

𝑃 𝑆 = 100 =
120100

100!
𝑒−120𝑃 𝑆 = 𝑖 =

𝜆𝑖

𝑖!
𝑒−𝜆

≈ 0.6%
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Summary

Today we introduced the concept of a random variable.

• A function that maps outcomes to real numbers, e.g., 𝑋(HHHH)=4.

• A random variable partitions a sample space. Each event in the partition is 
just the set of samples that yield a specific value.

• The distribution of a random variable 𝑋 is the set of all values in the range of 
𝑋, along with the probability of those values.

• The expectation of a random variable is the weighted (by probability) sum of 
values of 𝑋

• This is also the limit of the average value if we average over a larger and 
larger number of random experiments with that RV.



Summary

We saw four important RVs:

• Bernoulli: Biased coin flips.

• Binomial: The sum of 𝑛 biased coin flips.

• Geometric: The number of times we flip a coin before we get the first heads.

• Poisson: A model for the number of events when:
• We know the average number of events per unit time.
• Knowing the number of events in some time interval tells us absolutely 

nothing about the number of events in a disjoint time interval.
• We’ll relate this back to Binomial RVs in the next lecture.
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