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Distributions
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RVs

• The Sum of Two Poisson RVs

• Poisson as the Limit of Binomial RVs



Multiple Random Variables on the Same Sample Space

Consider the sample space of flipping three coins:

Ω = {𝑇𝑇𝑇, 𝑇𝑇𝐻, 𝑇𝐻𝑇, 𝑇𝐻𝐻, 𝐻𝑇𝑇, 𝐻𝑇𝐻, 𝐻𝐻𝑇, 𝐻𝐻𝐻}

Sometimes, we define multiple random variables on the same sample space.

Suppose 𝑋 𝜔 maps each to the number of heads in the sample, 𝑍 𝜔 is a binary 
random variable that is 1 if the first flip is a heads.

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0

• 𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

Quick question: Think of events defined by 𝑋 and 𝑍 – are they independent?
We’ll get back to this later – checking intuition for now!



Multiple Random Variables on the Same Sample Space

Suppose 𝑋 𝜔 maps each to the number of heads in the sample, 𝑍 𝜔 is a binary 
random variable that is 1 if the first flip is a heads. Examples:

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0 𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

The joint distribution of two discrete random variables 𝑋1 and 𝑋2 is the collection 
of values 𝑎, 𝑏 , 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 : 𝑎 ∈ range 𝑋1 𝑏 ∈ range(𝑋2) . 

Example for 𝑋1 = 𝑋, 𝑋2 = 𝑍:
𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0

2 1

3 0

3 1

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0

0 1

1 0

1 1



Multiple Random Variables on the Same Sample Space

Suppose 𝑋 𝜔 maps each to the number of heads in the sample, 𝑍 𝜔 is a binary 
random variable that is 1 if the first flip is a heads. Examples:

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0 𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

The joint distribution of two discrete random variables 𝑋1 and 𝑋2 is the collection 
of values 𝑎, 𝑏 , 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 : 𝑎 ∈ range 𝑋1 𝑏 ∈ range(𝑋2) . 

Example for 𝑋1 = 𝑋, 𝑋2 = 𝑍:
𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0

2 1

3 0

3 1

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1

1 0

1 1



Multiple Random Variables on the Same Sample Space

Suppose 𝑋 𝜔 maps each to the number of heads in the sample, 𝑍 𝜔 is a binary 
random variable that is 1 if the first flip is a heads. Examples:

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0 𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

The joint distribution of two discrete random variables 𝑋1 and 𝑋2 is the collection 
of values 𝑎, 𝑏 , 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 : 𝑎 ∈ range 𝑋1 𝑏 ∈ range(𝑋2) . 

Example for 𝑋1 = 𝑋, 𝑋2 = 𝑍:
𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0

2 1

3 0

3 1

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0

1 1



Multiple Random Variables on the Same Sample Space

Suppose 𝑋 𝜔 maps each to the number of heads in the sample, 𝑍 𝜔 is a binary 
random variable that is 1 if the first flip is a heads. Examples:

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0 𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

The joint distribution of two discrete random variables 𝑋1 and 𝑋2 is the collection 
of values 𝑎, 𝑏 , 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 : 𝑎 ∈ range 𝑋1 𝑏 ∈ range(𝑋2) . 

Example for 𝑋1 = 𝑋, 𝑋2 = 𝑍:
𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0

2 1

3 0

3 1

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1

What other (a, b) has probability 1/4?



Multiple Random Variables on the Same Sample Space

Suppose 𝑋 𝜔  maps each to the number of heads in the sample, 𝑍 𝜔  is a binary 
random variable that is 1 if the first flip is a heads. Examples:

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0             𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

The joint distribution of two discrete random variables 𝑋1 and 𝑋2 is the collection 
of values 𝑎, 𝑏 , 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 : 𝑎 ∈ range 𝑋1  𝑏 ∈ range(𝑋2) . 

Example for 𝑋1 = 𝑋, 𝑋2 = 𝑍:
𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT



Joint Random Variables and Partitions

Joint random variables (also) partition a sample space.

Ω = 

TTT   TTH
THT   THH
HTT   HTH
HHT   HHH 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT



Marginal Probability

Given a joint distribution 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 , the distribution 𝑃 𝑋1 = 𝑎  of 𝑋1 is 
called the marginal distribution of 𝑋1. We can compute the marginal distribution 
by summing over all values of 𝑋2. 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

𝑃 𝑋1 = 𝑎 = ෍

𝑏∈range 𝑋2

𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏

𝑎 𝑃 𝑋 = 𝑎 𝜔

0

1

2

3

Example, can compute 
𝑃(𝑋 = 𝑎) from 
𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 .



Marginal Probability

Given a joint distribution 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 , the distribution 𝑃 𝑋1 = 𝑎  of 𝑋1 is 
called the marginal distribution of 𝑋1. We can compute the marginal distribution 
by summing over all values of 𝑋2. 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

𝑃 𝑋1 = 𝑎 = ෍

𝑏∈range 𝑋2

𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏

Example, can compute 
𝑃(𝑋 = 𝑎) from 
𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 .

𝑎 𝑃 𝑋 = 𝑎 𝜔

0

1

2

3



Marginal Probability

Given a joint distribution 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 , the distribution 𝑃 𝑋1 = 𝑎  of 𝑋1 is 
called the marginal distribution of 𝑋1. We can compute the marginal distribution 
by summing over all values of 𝑋2. 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

𝑃 𝑋1 = 𝑎 = ෍

𝑏∈range 𝑋2

𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏

Example, can compute 
𝑃(𝑋 = 𝑎) from 
𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 .

𝑎 𝑃 𝑋 = 𝑎 𝜔

0 1/8 TTT

1

2

3



Marginal Probability

Given a joint distribution 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 , the distribution 𝑃 𝑋1 = 𝑎  of 𝑋1 is 
called the marginal distribution of 𝑋1. We can compute the marginal distribution 
by summing over all values of 𝑋2. 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

𝑃 𝑋1 = 𝑎 = ෍

𝑏∈range 𝑋2

𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏

𝑎 𝑃 𝑋 = 𝑎 𝜔

0 1/8 TTT

1

2

3

Example, can compute 
𝑃(𝑋 = 𝑎) from 
𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 .

What is 𝑃(𝑋 = 1)?
• Which rows 

above will be 
pink?



Marginal Probability

Given a joint distribution 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 , the distribution 𝑃 𝑋1 = 𝑎  of 𝑋1 is 
called the marginal distribution of 𝑋1. We can compute the marginal distribution 
by summing over all values of 𝑋2. 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

𝑃 𝑋1 = 𝑎 = ෍

𝑏∈range 𝑋2

𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏

𝑎 𝑃 𝑋 = 𝑎 𝜔

0 1/8 TTT

1 3/8 TTH, THT, HTT

2

3

Example, can compute 
𝑃(𝑋 = 𝑎) from 
𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 .



Marginal Probability

Given a joint distribution 𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏 , the distribution 𝑃 𝑋1 = 𝑎  of 𝑋1 is 
called the marginal distribution of 𝑋1. We can compute the marginal distribution 
by summing over all values of 𝑋2. 

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

𝑃 𝑋1 = 𝑎 = ෍

𝑏∈range 𝑋2

𝑃 𝑋1 = 𝑎, 𝑋2 = 𝑏

𝑎 𝑃 𝑋 = 𝑎 𝜔

0 1/8 TTT

1 3/8 TTH, THT, HTT

2 3/8 THH, HTH, HHT

3 1/8 HHH

Example, can compute 
𝑃(𝑋 = 𝑎) from 
𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 .
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• Memoryless Property of Geometric 
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• Poisson as the Limit of Binomial RVs

 



Independence and Events (review)

Suppose we have two events 𝐴1 and 𝐴2 in the same sample space.

What does it mean for these two events to be independent?

True or false?

• The events share no outcomes, i.e., the Venn diagram has no overlap.

• 𝑃 𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 × 𝑃 𝐴2 True!

False!



Independence and Events (review)

Ω = 

TTT   TTH
THT   THH
HTT   HTH
HHT   HHH 

𝐴1: First flip is heads.
𝐴2: Third flip is heads.

𝑃 𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 × 𝑃 𝐴2

Suppose heads comes up 
33% of the time:
• 𝑃 𝐴1 ∩ 𝐴2 = 1/9
• 𝑃 𝐴1 = 1/3
• 𝑃 𝐴2 = 1/3

Suppose we have two events 𝐴1 and 𝐴2 in the same sample space.

What does it mean for these two events to be independent?

True or false?

• The events share no outcomes, i.e., the Venn diagram has no overlap.  False!

• 𝑃 𝐴1 ∩ 𝐴2 = 𝑃 𝐴1 × 𝑃 𝐴2    True!



Independent Random Variables

Recall that a random variable taking a specific value is just an event (set of 
outcomes).

Random variables 𝑋 and 𝑌 on the same probability space are said to be 
independent if the events 𝑋 = 𝑎 and 𝑌 = 𝑏 are independent for all values a, b. 

• This means: 𝑃 𝑋 = 𝑎, 𝑌 = 𝐵 = 𝑃 𝑋 = 𝑎 ⋅ 𝑃 𝑌 = 𝑏 ,  ∀𝑎 ∈ range 𝑋 , 𝑏 ∈ range(𝑌)



Example 1: Rolling two dice

Example: Rolling two fair six-sided dice where 𝑋 is the result of first roll, and 𝑌 
is the result of the second roll.

These are independent, i.e. we have that:

𝑃 𝑋 = 𝑎, 𝑌 = 𝐵 = 𝑃 𝑋 = 𝑎 ⋅ 𝑃 𝑌 = 𝑏 ,  ∀𝑎 ∈ range 𝑋 , 𝑏 ∈ range(𝑌) 

That is, for 𝑎, 𝑏 ∈ {1, 2, 3, 4, 5, 6}, we have that:

• 𝑃 𝑋 = 𝑎, 𝑌 = 𝑏 = 1/36

• 𝑃 𝑋 = 𝑎 = 1/6

• 𝑃 𝑌 = 𝑏 = 1/6

• 𝑃 𝑋 = 𝑎 ⋅ 𝑃 𝑌 = 𝑏 = 1/36



Example 2: Rolling Two Dice (again)

Example: Suppose we roll two fair six-sided dice where 𝑋 is the result of first 
roll, and 𝑆 is the sum of the two rolls.

Are these independent?



Example 2: Rolling Two Dice (again)

Example: Suppose we roll two fair six-sided dice where 𝑋 is the result of first 
roll, and 𝑆 is the sum of the two rolls.

These random variables are not independent!

• There exist choices a and b such that the probability of event 𝑃 𝑋 = 𝑎, 𝑆 = 𝑏  
is not equal to the product of the probabilities of events 𝑃 𝑋 = 𝑎) ⋅ 𝑃(𝑆 = 𝑏 . 

Example: 𝑃 𝑋 = 1, 𝑆 = 8 = 0, but 𝑃 𝑋 = 1 = 1/6 and 𝑃 𝑆 = 8 = 5/36

• These two events are not independent.



Example 3: Flipping 3 coins – our initial example

Suppose 𝑋 𝜔  maps each to the number of heads in the sample, 𝑍 𝜔  is a binary 
random variable that is 1 if the first flip is a heads. Examples:

• 𝑋 𝑇𝑇𝑇 = 0, Z 𝑇𝑇𝑇 = 0             𝑋 𝐻𝑇𝐻 = 2, Z 𝐻𝑇𝐻 = 1

Joint distribution:

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

2 0 1/8 THH

2 1 1/4 HTH, HHT

3 0 0 ∅

3 1 1/8 HHH

𝑎 𝑏 𝑃 𝑋 = 𝑎, 𝑍 = 𝑏 𝜔

0 0 1/8 TTT

0 1 0 ∅

1 0 1/4 TTH, THT

1 1 1/8 HTT

Independent? Justification? 𝑃(𝑋 = 0, 𝑍 = 1) = 0  
   … but 𝑃(𝑋 = 0) = 1/8  and 𝑃(𝑍 = 1) = 1/2



Conditional Probability of Events and Random Variables

Suppose we have random variables 𝑋1 through 𝑋5 corresponding to 5 coin flips, 
where 𝑋𝑖 is 1 if the 𝑖th flip is heads. Suppose that 𝑆 is the number of heads, i.e., 
the random variable 𝑆 has range {0, 1, 2, 3, 4, 5}

Naturally, we can write expressions like: 

𝑃 𝑆 = 5 𝑋1 = 1)

There’s nothing mathematically new here, this just means the probability of the 
event S = 5 given that 𝑋1 = 1.

If coin comes up heads with probability 𝑝, then 𝑃 𝑆 = 5 𝑋1 = 1) = 𝑝4



Random Variables and the Product Rule

Similarly, the product rule applies to events involving random variables.

Again, for our coin example, suppose we have random variables 𝑋1 through 𝑋5 
corresponding to 5 coin flips, where 𝑋𝑖 is 1 if the 𝑖th flip is heads. Suppose that 
𝑆 is the number of heads, i.e., the random variable 𝑆 has range {0, 1, 2, 3, 4, 5}

Example: 𝑃 𝑆 = 5 ∩ 𝑋1 = 1 = 𝑃 𝑆 = 5 𝑋1 = 1) × 𝑃 𝑋1 = 1

• 𝑃 𝑆 = 5 ∩ 𝑋1 = 1 = 𝑝5

• 𝑃 𝑆 = 5 𝑋1 = 1) = 𝑝4

• 𝑃 𝑋1 = 1 = 𝑝



Mutual Independence

We can define mutual independence of three random variables as follows. We 
saw that random variables 𝑋, 𝑌, and 𝑍 are mutually independent if:

𝑃 𝑋 = 𝑎, 𝑌 = 𝑏, 𝑍 = 𝑐 = 𝑃 𝑋 = 𝑎 ⋅ 𝑃 𝑌 = 𝑏 ⋅ 𝑃 𝑍 = 𝑐

You can generalize this definition to any number of random variables.

∀𝑎 ∈ range 𝑋 , 𝑏 ∈ range 𝑌 , 𝑐 ∈ range(𝑍)



i.i.d. Variables

A common phrase you’ll see used in the real world is “independent and 
identically distributed” random variables, also called i.i.d. 

• Here, independent is used to mean mutually independent.

Example: If we roll a die 13 times, the resulting variables 𝑋1 through 𝑋13 are 
“independent and identically distributed”. 

Example: If we take 10 cardboard boxes from an assembly line and test their 
crush strength in the same way, the resulting observations 𝑋1 through 𝑋10 are 
i.i.d.



Linearity of 
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Expectation of Two Dice

Let S = 𝑋 + 𝑌 be the result after rolling two six-sided dice. What is 𝐸 𝑆 ?

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6
𝑎 𝑃 𝑆 = 𝑎

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36



Expectation of Two Dice

Let S = 𝑋 + 𝑌 be the result after rolling two six dided dice. What is 𝐸 𝑆 ?

The annoying way: 𝐸 𝑆 = 2 ×
1

36
+ 3 ×

2

36
+ 4 ×

3

36
+ ⋯ + 11 ×

2

36
+ 12 ×

1

36
= 7

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6
𝑎 𝑃 𝑆 = 𝑎

2 1/36

3 2/36

4 3/36

5 4/36

6 5/36

7 6/36

8 5/36

9 4/36

10 3/36

11 2/36

12 1/36

Here we’re 
explicitly summing 
over the entire 
range of our 
random variable 𝑆.



Linearity of Expectation, and Example 1: Two Dice

Note: This is the most important part of the lecture today!

For any two random variables 𝑋 and 𝑌, 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌 .

• This is true for any two random variables, even if not independent.

Will prove in a moment. First let’s consider dice:

• If 𝑆 = 𝑋 + 𝑌, then 𝐸 𝑆 = 𝐸 𝑋 + 𝐸 𝑌 . 

• 𝐸 𝑋 =
1+2+3+4+5+6

6
= 3.5

• So 𝐸 𝑆 = 3.5 + 3.5 = 7    (far easier!)



Prelude: The Mega-Verbose Form for Expectation

Recall that underlying expectation is a sum over all outcomes (even if we don’t 
use this formulation much in practice): 

𝐸 𝑋 = ෍

𝜔∈Ω

𝑋 𝜔 × 𝑃 𝜔

For two dice, it would look something like this, summing explicitly over all 36 
outcomes. The verbosity just makes summing more annoying.

𝐸 𝑆 = 𝑆 1, 1 ×
1

36
+ 𝑆 1, 2 ×

1

36
+ ⋯ + 𝑆 6, 6 ×

1

36

But for our proof of linearity of expectation, it will be more direct.



Proof of Linearity of Expectation

𝐸 𝑋 = ෍

𝜔∈Ω

𝑋 𝜔 × 𝑃 𝜔

If 𝑆 = 𝑋 + 𝑌, we can write 𝐸 𝑆  as:

= ෍

𝜔∈Ω

𝑋 𝜔 + 𝑌 𝜔 × 𝑃 𝜔  

= ෍

𝜔∈Ω

𝑋 𝜔 × 𝑃 𝜔  + ෍

𝜔∈Ω

𝑌 𝜔 × 𝑃 𝜔  

𝐸 𝑋 + 𝑌 = 𝐸 𝑆 = ෍

𝜔∈Ω

𝑆 𝜔 × 𝑃 𝜔  

= 𝐸 𝑋 + 𝐸 𝑌



Linearity of Expectation

We can also show that 𝐸 𝑐𝑋 = 𝑐𝐸 𝑋 , where 𝑐 is some constant. We won’t 
prove this (left as an exercise in the notes).

When we say “Expectation is Linear”, we mean that 𝐸 𝑋 + 𝑌 = 𝐸 𝑋  + 𝐸 𝑌 , and 
𝐸 𝑐𝑋 = 𝑐𝐸 𝑋 .

Note: These two facts can also be combined into one statement, which we also 
won’t prove, but which follows naturally from the other two facts:

  
𝐸 𝑎𝑋 + 𝑏𝑌 = 𝑎𝐸 𝑋 + 𝑏𝐸 𝑌



Example 2: Binomial RV Expectation

Suppose we want to compute the expectation of a random variable 
𝑋~Binomial(𝑛, 𝑝) which has a distribution given by:

𝑃 𝑋 = 𝑖 =
𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖

 

One way is to use the usual expectation formula: 

𝐸 𝑋 = ෍

𝑖=0

𝑛

𝑖 ×
𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖

This is tedious.



Example 2: Binomial RV Expectation

Suppose we want to compute the expectation of a random variable 
𝑋~Binomial(𝑛, 𝑝) which has a distribution given by:

𝑃 𝑋 = 𝑖 =
𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖

 

A better approach is to keep in mind that a binomial random variable is just the 
sum 𝐵1 + 𝐵2 + ⋯ + 𝐵𝑛 where Bi~Bernoulli(𝑝).

Since E 𝐵𝑖 = 𝑝, we have that 𝐸 𝑋 = 𝐸 𝐵1 + 𝐸 𝐵2 + ⋯ + 𝐸 𝐵𝑛

= 𝑝 + 𝑝 + ⋯ + 𝑝 = 𝑛𝑝



Example 3: Fixed Points

In the previous lecture, we showed the distribution for shuffling 3 students 
homework and handing it back to them randomly is as shown in this figure.

• Can compute expectation of number of students who get their own 

homework back as 𝐸 𝑋 = 1 ×
1

2
+ 3 ×

1

6
= 1.

Let’s try to find the expectation for the case of 𝑛 students.



Example 3: Fixed Points

Let 𝑋𝑛 be the number of students who receive their own homework. 

Let 𝐼𝑖 be a random variable which is 1 if a student gets their own homework, and 
0 otherwise.
• Note, such a random variable is often called an “indicator random variable”. It is 1 when some 

condition is true, and false otherwise.

• Indicator random variables combined with linearity of expectation is very powerful.

Then 𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛.

Note: These random variables as NOT independent. Example: If students 1 
through n-1 get their own homework, then student n also gets their own 
homework.



Example 3: Fixed Points

Let 𝑋𝑛 be the number of students who receive their own homework. 

Let 𝐼𝑖 be a random variable which is 1 if a student gets their own homework, and 
0 otherwise.

Then 𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛.

What is 𝐸 𝑋𝑛 ?

• Hint: What is 𝐸 𝐼𝑖 ?



Example 3: Fixed Points

Let 𝑋𝑛 be the number of students who receive their own homework. 

Let 𝐼𝑖 be a random variable which is 1 if a student gets their own homework, and 
0 otherwise.

Then 𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛.

What is 𝐸 𝑋𝑛 ?

• Hint: What is 𝐸 𝐼𝑖 ? 
• The chance a student gets their own homework is 1/𝑛. That is, each 

indicator variable is Ii~Bernoulli(1/𝑛). So 𝐸 𝐼𝑖 = 1/𝑛

• Since 𝐸 𝑋𝑛 = 𝐸 𝐼1 + 𝐸 𝐼2 + ⋯ + 𝐸 𝐼𝑛 , we have 𝐸 𝑋𝑛 = 𝑛 × 1/𝑛 = 1

Are the 𝐼𝑘’s independent?
 No!

Does it matter?
 No!
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Geometric Random Variables

Recall that a geometric random variable 𝑋 has probabilities given by:

𝑃 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝  for 𝑖 = 1, 2, …

A geometric random variable models the process of waiting for an event to 
occur for the first time:

• Flipping a coin until you get heads

• Operating a system until it fails

• Betting until you win
  “The lottery is a tax on people who are bad at math.”



Geometric Random Variables and the Memoryless Property

The memoryless property

• It basically means: Even if you’ve waited a long time, the chance of the event 
occurring soon isn’t any better.

• Example: You’re flipping a coin and it came up tails 10 times in a row. The 
chance of the next heads isn’t better just because you had 10 tails.

• Example: You’re playing poker and have gotten 5 terrible hands in a row. The 
chance of getting a good hand is the same, and it doesn’t matter that you’ve 
had 5 terrible hands.

Note: The “Gambler’s Fallacy” – and lucky (or unlucky) streaks….



Geometric Random Variables and the Memoryless Property

The memoryless property

• It basically means: Even if you’ve waited a long time, the chance of the event 
occurring soon isn’t any better.

In terms of probability, we can state this as “If we’ve already tossed a coin 𝑚 
times without getting a head, the probability that we need 𝑛 additional tosses is 
the same as if we hadn’t tossed the first 𝑚 coins at all.”

Or symbolically we have:

𝑃 𝑋 > 𝑛 + 𝑚 𝑋 > 𝑚 = 𝑃 𝑋 > 𝑛



Geometric Random Variables and the Memoryless Property

The memoryless property

• It basically means: Even if you’ve waited a long time, the chance of the event 
occurring soon isn’t any better.

Proof of P 𝑋 > 𝑛 + 𝑚 𝑋 > 𝑚 = 𝑃 𝑋 > 𝑛

P 𝑋 > 𝑛 + 𝑚 𝑋 > 𝑚 =
𝑃 𝑋 > 𝑛 + 𝑚

𝑃 𝑋 > 𝑚

=
1 − 𝑝 𝑛+𝑚

1 − 𝑝 𝑚

= 1 − 𝑝 𝑛

= 𝑃 𝑋 > 𝑛

Wait – isn’t this supposed to
be an intersection?

Yes… and it is… see why?
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The Poisson Random Variable

Reminder: If 𝑋~Poisson 𝜆 , then the distribution is given by:

𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
𝑒−𝜆,  for 𝑖 = 0, 1, 2, …



The Sum of Independent Poisson RVs

In the previous lecture, we mentioned that if 𝑋~Poisson(𝜆1) and 𝑌~Poisson 𝜆2 , 
and 𝑆 = 𝑋 + 𝑌, then 𝑆~Poisson 𝜆1 + 𝜆2 .

• This makes intuitive sense, but let’s prove using the idea of joint distributions.

Before we start, recall the Binomial Theorem:

𝑎 + 𝑏 𝑛 = ෍

𝑘=0

𝑛
𝑛

𝑘
𝑎𝑛−𝑘𝑏𝑘

Example: 𝑎 + 𝑏 4 = 𝑎4 + 4𝑎3𝑏 + 6𝑎2𝑏2 + 4𝑎𝑏3 + 𝑏4

Or alternately: 𝑎 + 𝑏 4 = 4
0

𝑎4 + 4
1

𝑎3𝑏 + 4
2

𝑎2𝑏2 + 4
3

𝑎𝑏3 + 4
4

𝑏4



The Sum of Independent Poisson RVs

In the previous lecture, we mentioned that if 𝑋~Poisson(𝜆) and 𝑌~Poisson 𝜇 , 
and 𝑆 = 𝑋 + 𝑌, then 𝑆~Poisson 𝜆 + 𝜇 . For all 𝑘 ∈ 0, 1, 2, … , we have:

𝑃 𝑆 = 𝑘 = ෍

𝑗=0

𝑘

𝑃 𝑋 = 𝑗, 𝑌 = 𝑘 − 𝑗

= ෍

𝑗=0

𝑘

𝑃 𝑋 = 𝑗 ⋅ 𝑃 𝑌 = 𝑘 − 𝑗

= ෍

𝑗=0

𝑘
𝜆𝑗

𝑗!
𝑒−𝜆

𝜇𝑘−𝑗

𝑘 − 𝑗 !
𝑒−𝜇

= 𝑒− 𝜆+𝜇
1

𝑘!
෍

𝑗=0

𝑘
𝑘!

𝑗! 𝑘 − 𝑗 !
𝜆𝑗𝜇𝑘−𝑗

= 𝑒− 𝜆+𝜇 ෍

𝑗=0

𝑘
𝜆𝑗𝜇𝑘−𝑗

𝑗! 𝑘 − 𝑗 !



The Sum of Independent Poisson RVs

In the previous lecture, we mentioned that if 𝑋~Poisson(𝜆) and 𝑌~Poisson 𝜇 , 
and 𝑆 = 𝑋 + 𝑌, then 𝑆~Poisson 𝜆 + 𝜇 . For all 𝑘 ∈ 0, 1, 2, … , we have:

𝑃 𝑆 = 𝑘 = ෍

𝑗=0

𝑘

𝑃 𝑋 = 𝑗, 𝑌 = 𝑘 − 𝑗

= 𝑒− 𝜆+𝜇
1

𝑘!
෍

𝑗=0

𝑘
𝑘!

𝑗! 𝑘 − 𝑗 !
𝜆𝑗𝜇𝑘−𝑗

= 𝑒− 𝜆+𝜇
1

𝑘!
𝜆 + 𝜇 𝑘

𝑎 + 𝑏 𝑛 = ෍

𝑘=0

𝑛
𝑛

𝑘
𝑎𝑛−𝑘𝑏𝑘

=
𝜆 + 𝜇 𝑘

𝑘!
𝑒− 𝜆+𝜇

𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
𝑒−𝜆,  for 𝑖 = 0, 1, 2, …
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Poisson Distribution

The distribution of a Poisson random variable is given by:

𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
𝑒−𝜆,  for 𝑖 = 0, 1, 2, …

Unlike our other RVs, we never derived this expression. Let’s derive it from 
scratch.

• Fact from Calculus:       lim
𝑛→∞

1 +
1

𝑛

𝑛
= 𝑒 ⟹  lim

𝑛→∞
1 −

𝑥

𝑛

𝑛
= 𝑒−𝑥



Modeling Calls with a Binomial Distribution

As a thought experiment, let’s imagine we want to model the number of phone calls 
that users of a mobile network will initiate per unit time. We have a vast number of 
users, any of whom can make a call.

Suppose we pick a unit time of 1 minutes. Let’s try modeling the number of calls as 
a binomial random variable.

• 𝑖th coin flip is whether a call is initiated in the 𝑖th time interval.

• 𝑛 is number of intervals, e.g., 𝑛 = 60, we split minute into 60 intervals of 1s each.

• 𝑝 is the chance of a call in any interval. Assumed independent.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

10 20 30 40 50



Modeling Calls with a Binomial Distribution

Suppose we pick a unit time of 1 minutes. Let’s try modeling the number of calls 
as a binomial random variable. 

• 𝑖th coin flip is whether a call is initiated in the 𝑖th time interval.

• 𝑝 is the chance of getting a call in any interval. Assumed independent.

• For example, if 𝑛 = 60, we split a minute into 60 intervals of 1s each.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Why might a Binomial random variable not work for this modeling process?

• What could happen in the world that this model cannot handle?

10 20 30 40 50



Modeling Calls with a Binomial Distribution

Suppose we pick a unit time of 1 minutes. Let’s try modeling the number of calls 
as a binomial random variable. 

• 𝑖th coin flip is whether a call is initiated in the 𝑖th time interval.

• 𝑝 is the chance of getting a call in any interval. Assumed independent.

• For example, if 𝑛 = 60, we split a minute into 60 intervals of 1s each.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Why might a Binomial random variable not work for this modeling process?

• We might get two calls in the same interval, e.g., a call at 3.3s and 3.8s.

• So what should we do about this?

10 20 30 40 50



Modeling Calls with a Binomial Distribution

Suppose we pick a unit time of 1 minutes. Let’s try modeling the number of calls 
as a binomial random variable. 

• 𝑖th coin flip is whether a call is initiated in the 𝑖th time interval.

• 𝑝 is the chance of getting a call in any interval. Assumed independent.

• For example, if 𝑛 = 60, we split a minute into 60 intervals of 1s each.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Why might a Binomial random variable not work for this modeling process?

• We might get two calls in the same interval, e.g., a call at 3.3s and 3.8s.

• So what should we do about this? Pick a smaller interval.

10 20 30 40 50



Adjusting Time Intervals

Assume that we know that we receive 𝜆 calls per minute on average.

If we split the minute into 𝑛 time intervals (e.g., 𝑛 = 60 means 1 second 
intervals), and we model the number of calls 𝑋 as a Binomial random variable, 
which can we say below?

a) 𝑋~Binomial 𝑛, 𝜆

b) 𝑋~Binomial 𝑛,
1

𝜆

c) 𝑋~Binomial 𝑛,
𝜆

𝑛

d) 𝑋~Binomial 𝑛,
𝑛

𝜆



Adjusting Time Intervals

Assume that we know that we receive 𝜆 calls per minute on average.

If we split the minute into 𝑛 time intervals (e.g., 𝑛 = 60 means 1 second 
intervals), and we model the number of calls 𝑋 as a Binomial random variable, 
which can we say below?

• 𝑋~Binomial 𝑛,
𝜆

𝑛

Chance of a call coming in during a time interval is going to be number of calls 
per minutes divided by number of time intervals per minute.

• Example: 𝜆 = 100 calls per minute, and 𝑛 = 60,000,000, then probability of a 

call in any microsecond is 𝑝 =
100

60,000,000
.

• Note: We want to pick 𝑛 so large that the probability of two events in one 
interval is negligible.



Example – a large 𝑛

We’re modeling the number of calls as 𝑋~Binomial 𝑛,
𝜆

𝑛
.

Example: If 𝑛 = 60,000,000 time intervals and 𝜆 = 120 calls per minute, then the 
probability that the number of calls in a given minute is equal to 100 is given by 
the binomial distribution:

𝑃 𝑋 = 100 =
60,000,000

100

120

60,000,000

100

1 −
120

60,000,000

60,000,000−100

This is an awkward computation. Luckily:

• As 𝑛 gets larger, the model is increasingly accurate (less likely that we get two 
calls being initiated in the same time interval).

• In the limit as 𝑛 → ∞, this expression is simpler.



The Limit as 𝑛 → ∞

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when 𝑛 
is large all clustered together. And 
remember out end-goal!



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖
⋅ 1 −

𝜆

𝑛

𝑛



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖 ⋅ 1 −
𝜆

𝑛

−𝑖

⋅ 1 −
𝜆

𝑛

𝑛



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖 ⋅ 1 −
𝜆

𝑛

−𝑖

⋅ 1 −
𝜆

𝑛

𝑛

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖 =
𝑛 ⋅ 𝑛 − 1 ⋅⋅⋅ 𝑛 − 𝑖 + 1 ⋅ 𝑛 − 𝑖 !

𝑛 − 𝑖 !
⋅

1

𝑛𝑖
=

𝑛

𝑛
⋅

𝑛 − 1

𝑛
⋅⋅⋅

𝑛 − 𝑖 + 1

𝑛
→ 1

The limit of blue subexpression is:



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖 ⋅ 1 −
𝜆

𝑛

−𝑖

⋅ 1 −
𝜆

𝑛

𝑛

1 −
𝜆

𝑛

𝑛

→ 𝑒−𝜆 Calculus fact from beginning of analysis…

The limit of blue subexpression is 1.

What is the limit of the gold?



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖 ⋅ 1 −
𝜆

𝑛

−𝑖

⋅ 1 −
𝜆

𝑛

𝑛

The limit of blue subexpression is 1, and the limit of the gold is 𝑒−𝜆.

What is the limit of the purple?

1 −
𝜆

𝑛

−𝑖

→ 1 − 0 −𝑖 = 1



The Large N Limit

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖

=
𝑛!

𝑖! 𝑛 − 𝑖 !
⋅

𝜆

𝑛

𝑖

1 −
𝜆

𝑛

𝑛−𝑖

=
𝜆𝑖

𝑖!

This rearrangement of terms       
may seem arbitrary. Rough goal: 
Get terms that will simplify when n 
is large all clustered together.

𝑛!

𝑛 − 𝑖 !
⋅

1

𝑛𝑖 ⋅ 1 −
𝜆

𝑛

−𝑖

⋅ 1 −
𝜆

𝑛

𝑛

The limit of blue subexpression is 1, the limit of the gold is 𝑒−𝜆, limit of purple is 1.

Plugging these in we have:
→

𝜆𝑖

𝑖!
 𝑒−𝜆



Poisson Distribution

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖
.

In the limit as 𝑛 → ∞, this becomes 𝑋~Poisson 𝜆 , i.e., 𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
 𝑒−𝜆



Binomial vs Poisson Distribution (Call Center Example)

If 𝑋~Binomial 𝑛,
𝜆

𝑛
, we have: 𝑃 𝑋 = 𝑖 = 𝑛

𝑖
⋅

𝜆

𝑛

𝑖
1 −

𝜆

𝑛

𝑛−𝑖
.

In the limit as 𝑛 → ∞, this becomes 𝑋~Poisson 𝜆 , i.e.,

Example: For our call center example, we had 𝑋~Binomial 60,000,000,
120

60,000,000

If instead we model as 𝑋~Poisson(120), we have:

𝑃 𝑋 = 100 =
60,000,000

100

120

60,000,000

100

1 −
120

60,000,000

60,000,000−100

𝑃 𝑋 = 100 =
120100

100!
𝑒−120

These two values are 
close if you compute 
them! We won’t.

𝑃 𝑋 = 𝑖 =
𝜆𝑖

𝑖!
 𝑒−𝜆



Summary of the Poisson Distribution

A Poisson random variable tells you the number of events that occur per unit 
time. 

The critical assumptions to be Poisson are:

• Knowing the number of events in one time interval does not provide any 
information about any other disjoint time interval.

• The number of events that occur per unit time are some average constant 𝜆.

The specific modeling choice that yields the Poisson distribution is to model the 
number of occurrences over a sequence of very short time intervals as a 
binomial.

• If 𝑛 is sufficiently large / 𝑝 is sufficiently small, the Binomial distribution can 
be approximated by the Poisson distribution with parameter 𝜆 = 𝑛𝑝.
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