Referred to last time...

https://3d.xkcd.com/435/

Joint Distributions and Marginal Distributions

Lecture 20, CS70 Summer 2025

RVs and Probability Concepts

- Joint Distributions and Marginal Distributions
- Independent RVs and Conditional Probability and RVs
- Linearity of Expectation

Additional Info on Important Distributions

- Memoryless Property of Geometric RVs
- The Sum of Two Poisson RVs
- Poisson as the Limit of Binomial RVs

Consider the sample space of flipping three coins:

$$\Omega = \{TTT, TTH, THT, THH, HTT, HTH, HHT, HHH\}$$

Sometimes, we define multiple random variables on the same sample space.

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads.

- X(TTT) = 0, Z(TTT) = 0
- X(HTH) = 2, Z(HTH) = 1

Quick question: Think of events defined by X and Z – are they independent? We'll get back to this later – checking intuition for now!

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads. Examples:

•
$$X(TTT) = 0$$
, $Z(TTT) = 0$

$$X(HTH) = 2$$
, $Z(HTH) = 1$

The joint distribution of two discrete random variables X_1 and X_2 is the collection of values $\{((a,b), P(X_1 = a, X_2 = b)): a \in \text{range}(X_1) b \in \text{range}(X_2)\}.$

а	b	P(X=a,Z=b)	ω
0	0		
0	1		
1	0		
1	1		

а	b	P(X=a,Z=b)	ω
2	0		
2	1		
3	0		
3	1		

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads. Examples:

•
$$X(TTT) = 0$$
, $Z(TTT) = 0$

$$X(HTH) = 2$$
, $Z(HTH) = 1$

The joint distribution of two discrete random variables X_1 and X_2 is the collection of values $\{((a,b), P(X_1 = a, X_2 = b)): a \in \text{range}(X_1) b \in \text{range}(X_2)\}.$

a	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1		
1	0		
1	1		

а	b	P(X=a,Z=b)	ω
2	0		
2	1		
3	0		
3	1		

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads. Examples:

•
$$X(TTT) = 0$$
, $Z(TTT) = 0$

$$X(HTH) = 2$$
, $Z(HTH) = 1$

The joint distribution of two discrete random variables X_1 and X_2 is the collection of values $\{((a,b), P(X_1 = a, X_2 = b)): a \in \text{range}(X_1) b \in \text{range}(X_2)\}.$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0		
1	1		

а	b	P(X=a,Z=b)	ω
2	0		
2	1		
3	0		
3	1		

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads. Examples:

•
$$X(TTT) = 0$$
, $Z(TTT) = 0$

$$X(HTH) = 2$$
, $Z(HTH) = 1$

The joint distribution of two discrete random variables X_1 and X_2 is the collection of values $\{((a,b), P(X_1 = a, X_2 = b)): a \in \text{range}(X_1) b \in \text{range}(X_2)\}.$

What other (a, b) has probability 1/4?

a	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1		

а	b	P(X=a,Z=b)	ω
2	0		
2	1		
3	0		
3	1		

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads. Examples:

•
$$X(TTT) = 0$$
, $Z(TTT) = 0$

$$X(HTH) = 2$$
, $Z(HTH) = 1$

The joint distribution of two discrete random variables X_1 and X_2 is the collection of values $\{((a,b), P(X_1 = a, X_2 = b)): a \in \text{range}(X_1) b \in \text{range}(X_2)\}.$

a	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

а	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	HTH, HHT
3	0	0	Ø
3	1	1/8	HHH

Joint Random Variables and Partitions

Joint random variables (also) partition a sample space.

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

а	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	HTH, HHT
3	0	0	Ø
3	1	1/8	ННН

Given a joint distribution $P(X_1 = a, X_2 = b)$, the distribution $P(X_1 = a)$ of X_1 is called the marginal distribution of X_1 . We can compute the marginal distribution by summing over all values of X_2 .

 $P(X_1 = a) = \sum_{b \in \text{range}(X_2)} P(X_1 = a, X_2 = b)$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

а	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	нтн, ннт
3	0	0	Ø
3	1	1/8	HHH

a	P(X = a)	ω
0		
1		
2		
3		

Given a joint distribution $P(X_1 = a, X_2 = b)$, the distribution $P(X_1 = a)$ of X_1 is called the marginal distribution of X_1 . We can compute the marginal distribution by summing over all values of X_2 .

 $P(X_1 = a) = \sum_{b \in \text{range}(X_2)} P(X_1 = a, X_2 = b)$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

а	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	нтн, ннт
3	0	0	Ø
3	1	1/8	ННН

а	P(X=a)	ω
0		
1		
2		
3		

Given a joint distribution $P(X_1 = a, X_2 = b)$, the distribution $P(X_1 = a)$ of X_1 is called the marginal distribution of X_1 . We can compute the marginal distribution by summing over all values of X_2 .

 $P(X_1 = a) = \sum_{b \in \text{range}(X_2)} P(X_1 = a, X_2 = b)$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

a	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	нтн, ннт
3	0	0	Ø
3	1	1/8	ННН

a	P(X=a)	ω
0	1/8	TTT
1		
2		
3		

Given a joint distribution $P(X_1 = a, X_2 = b)$, the distribution $P(X_1 = a)$ of X_1 is called the marginal distribution of X_1 . We can compute the marginal distribution by summing over all values of X_2 .

 $P(X_1 = a) = \sum_{b \in \text{range}(X_2)} P(X_1 = a, X_2 = b)$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

а	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	нтн, ннт
3	0	0	Ø
3	1	1/8	ННН

Example, can compute P(X = a) from P(X = a, Z = b).

а	P(X=a)	ω
0	1/8	TTT
1		
2		
3		

What is P(X = 1)?

Which rows above will be pink?

Given a joint distribution $P(X_1 = a, X_2 = b)$, the distribution $P(X_1 = a)$ of X_1 is called the marginal distribution of X_1 . We can compute the marginal distribution by summing over all values of X_2 .

 $P(X_1 = a) = \sum_{b \in \text{range}(X_2)} P(X_1 = a, X_2 = b)$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

а	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	нтн, ннт
3	0	0	Ø
3	1	1/8	ННН

а	P(X=a)	ω
0	1/8	TTT
1	3/8	TTH, THT, HTT
2		
3		

Given a joint distribution $P(X_1 = a, X_2 = b)$, the distribution $P(X_1 = a)$ of X_1 is called the marginal distribution of X_1 . We can compute the marginal distribution by summing over all values of X_2 .

 $P(X_1 = a) = \sum_{b \in \text{range}(X_2)} P(X_1 = a, X_2 = b)$

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

a	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	нтн, ннт
3	0	0	Ø
3	1	1/8	HHH

а	P(X=a)	ω
0	1/8	TTT
1	3/8	TTH, THT, HTT
2	3/8	THH, HTH, HHT
3	1/8	ННН

Independent RVs and Conditional Probability and RVs

Lecture 20, CS70 Summer 2025

RVs and Probability Concepts

- Joint Distributions and Marginal Distributions
- Independent RVs and Conditional Probability and RVs
- Linearity of Expectation

Additional Info on Important Distributions

- Memoryless Property of Geometric RVs
- The Sum of Two Poisson RVs
- Poisson as the Limit of Binomial RVs

Independence and Events (review)

Suppose we have two events A_1 and A_2 in the same sample space.

What does it mean for these two events to be independent?

True or false?

- The events share no outcomes, i.e., the Venn diagram has no overlap. False!
- $P(A_1 \cap A_2) = P(A_1) \times P(A_2)$ True!

Independence and Events (review)

Suppose we have two events A_1 and A_2 in the same sample space.

What does it mean for these two events to be independent?

True or false?

- The events share no outcomes, i.e., the Venn diagram has no overlap. False!
- $P(A_1 \cap A_2) = P(A_1) \times P(A_2)$ True!

 A_1 : First flip is heads.

 A_2 : Third flip is heads.

$$P(A_1 \cap A_2) = P(A_1) \times P(A_2)$$

Suppose heads comes up 33% of the time:

- $P(A_1 \cap A_2) = 1/9$
- $P(A_1) = 1/3$
- $P(A_2) = 1/3$

Independent Random Variables

Recall that a random variable taking a specific value is just an event (set of outcomes).

Random variables X and Y on the same probability space are said to be independent if the events X = a and Y = b are independent for all values a, b.

• This means: $P(X = a, Y = B) = P(X = a) \cdot P(Y = b)$, $\forall a \in \text{range}(X), b \in \text{range}(Y)$

Example 1: Rolling two dice

Example: Rolling two fair six-sided dice where X is the result of first roll, and Y is the result of the second roll.

These are independent, i.e. we have that:

$$P(X = a, Y = B) = P(X = a) \cdot P(Y = b), \quad \forall a \in \text{range}(X), b \in \text{range}(Y)$$

That is, for $a, b \in \{1, 2, 3, 4, 5, 6\}$, we have that:

- P(X = a, Y = b) = 1/36
- P(X = a) = 1/6
- P(Y = b) = 1/6
- $P(X = a) \cdot P(Y = b) = 1/36$

Example 2: Rolling Two Dice (again)

Example: Suppose we roll two fair six-sided dice where *X* is the result of first roll, and *S* is the sum of the two rolls.

Are these independent?

Example 2: Rolling Two Dice (again)

Example: Suppose we roll two fair six-sided dice where *X* is the result of first roll, and *S* is the sum of the two rolls.

These random variables are not independent!

• There exist choices a and b such that the probability of event P(X = a, S = b) is not equal to the product of the probabilities of events $P(X = a) \cdot P(S = b)$.

Example: P(X = 1, S = 8) = 0, but P(X = 1) = 1/6 and P(S = 8) = 5/36

These two events are not independent.

Example 3: Flipping 3 coins – our initial example

Suppose $X(\omega)$ maps each to the number of heads in the sample, $Z(\omega)$ is a binary random variable that is 1 if the first flip is a heads. Examples:

•
$$X(TTT) = 0$$
, $Z(TTT) = 0$

$$X(HTH) = 2$$
, $Z(HTH) = 1$

Joint distribution:

а	b	P(X=a,Z=b)	ω
0	0	1/8	TTT
0	1	0	Ø
1	0	1/4	TTH, THT
1	1	1/8	HTT

a	b	P(X=a,Z=b)	ω
2	0	1/8	THH
2	1	1/4	HTH, HHT
3	0	0	Ø
3	1	1/8	ННН

Independent?

Justification?

$$P(X = 0, Z = 1) = 0$$

... but $P(X = 0) = 1/8$ and $P(Z = 1) = 1/2$

Conditional Probability of Events and Random Variables

Suppose we have random variables X_1 through X_5 corresponding to 5 coin flips, where X_i is 1 if the ith flip is heads. Suppose that S is the number of heads, i.e., the random variable S has range $\{0, 1, 2, 3, 4, 5\}$

Naturally, we can write expressions like:

$$P(S = 5 \mid X_1 = 1)$$

There's nothing mathematically new here, this just means the probability of the event S = 5 given that $X_1 = 1$.

If coin comes up heads with probability p, then $P(S = 5 | X_1 = 1) = p^4$

Random Variables and the Product Rule

Similarly, the product rule applies to events involving random variables.

Again, for our coin example, suppose we have random variables X_1 through X_5 corresponding to 5 coin flips, where X_i is 1 if the ith flip is heads. Suppose that S is the number of heads, i.e., the random variable S has range $\{0, 1, 2, 3, 4, 5\}$

Example: $P(S = 5 \cap X_1 = 1) = P(S = 5 \mid X_1 = 1) \times P(X_1 = 1)$

- $P(S = 5 \cap X_1 = 1) = p^5$
- $P(S = 5 \mid X_1 = 1) = p^4$
- $P(X_1 = 1) = p$

Mutual Independence

We can define mutual independence of three random variables as follows. We saw that random variables X, Y, and Z are mutually independent if:

$$P(X = a, Y = b, Z = c) = P(X = a) \cdot P(Y = b) \cdot P(Z = c)$$

$$\forall a \in \text{range}(X), b \in \text{range}(Y), c \in \text{range}(Z)$$

You can generalize this definition to any number of random variables.

i.i.d. Variables

A common phrase you'll see used in the real world is "independent and identically distributed" random variables, also called i.i.d.

Here, independent is used to mean mutually independent.

Example: If we roll a die 13 times, the resulting variables X_1 through X_{13} are "independent and identically distributed".

Example: If we take 10 cardboard boxes from an assembly line and test their crush strength in the same way, the resulting observations X_1 through X_{10} are i.i.d.

Linearity of Expectation

Lecture 20, CS70 Summer 2025

RVs and Probability Concepts

- Joint Distributions and Marginal Distributions
- Independent RVs and Conditional Probability and RVs
- Linearity of Expectation

Additional Info on Important Distributions

- Memoryless Property of Geometric RVs
- The Sum of Two Poisson RVs
- Poisson as the Limit of Binomial RVs

Expectation of Two Dice

Let S = X + Y be the result after rolling two six-sided dice. What is E[S]?

а	P(S=a)
2	1/36
3	2/36
4	3/36
5	4/36
6	5/36
7	6/36
8	5/36
9	4/36
10	3/36
11	2/36
12	1/36

Expectation of Two Dice

Let S = X + Y be the result after rolling two six dided dice. What is E[S]?

The annoying way:
$$E[S] = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + \dots + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = 7$$

Here we're explicitly summing over the entire range of our random variable *S*.

P(S=a)
1/36
2/36
3/36
4/36
5/36
6/36
5/36
4/36
3/36
2/36
1/36

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Linearity of Expectation, and Example 1: Two Dice

Note: This is the most important part of the lecture today!

For any two random variables X and Y, E[X + Y] = E[X] + E[Y].

This is true for any two random variables, even if not independent.

Will prove in a moment. First let's consider dice:

- If S = X + Y, then E[S] = E[X] + E[Y].
- $E[X] = \frac{1+2+3+4+5+6}{6} = 3.5$
- So E[S] = 3.5 + 3.5 = 7 (far easier!)

Prelude: The Mega-Verbose Form for Expectation

Recall that underlying expectation is a sum over all outcomes (even if we don't use this formulation much in practice):

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \times P(\omega)$$

For two dice, it would look something like this, summing explicitly over all 36 outcomes. The verbosity just makes summing more annoying.

$$E[S] = S((1,1)) \times \frac{1}{36} + S((1,2)) \times \frac{1}{36} + \dots + S((6,6)) \times \frac{1}{36}$$

But for our proof of linearity of expectation, it will be more direct.

Proof of Linearity of Expectation

$$E[X] = \sum_{\omega \in \Omega} X(\omega) \times P(\omega)$$

If S = X + Y, we can write E[S] as:

$$E[X + Y] = E[S] = \sum_{\omega \in \Omega} S(\omega) \times P(\omega)$$

$$= \sum_{\omega \in \Omega} (X(\omega) + Y(\omega)) \times P(\omega)$$

$$= \sum_{\omega \in \Omega} X(\omega) \times P(\omega) + \sum_{\omega \in \Omega} Y(\omega) \times P(\omega)$$

$$= E[X] + E[Y]$$

Linearity of Expectation

We can also show that E[cX] = cE[X], where c is some constant. We won't prove this (left as an exercise in the notes).

When we say "Expectation is Linear", we mean that E[X + Y] = E[X] + E[Y], and E[cX] = cE[X].

Note: These two facts can also be combined into one statement, which we also won't prove, but which follows naturally from the other two facts:

$$E[aX + bY] = aE[X] + bE[Y]$$

Example 2: Binomial RV Expectation

Suppose we want to compute the expectation of a random variable $X \sim \text{Binomial}(n, p)$ which has a distribution given by:

$$P(X=i) = \binom{n}{i} p^{i} (1-p)^{n-i}$$

One way is to use the usual expectation formula:

$$E[X] = \sum_{i=0}^{n} i \times {n \choose i} p^{i} (1-p)^{n-i}$$

This is tedious.

Example 2: Binomial RV Expectation

Suppose we want to compute the expectation of a random variable $X \sim \text{Binomial}(n, p)$ which has a distribution given by:

$$P(X=i) = \binom{n}{i} p^i (1-p)^{n-i}$$

A better approach is to keep in mind that a binomial random variable is just the sum $B_1 + B_2 + \cdots + B_n$ where $B_i \sim Bernoulli(p)$.

Since
$$E[B_i] = p$$
, we have that $E[X] = E[B_1] + E[B_2] + \cdots + E[B_n]$
$$= p + p + \cdots + p = np$$

In the previous lecture, we showed the distribution for shuffling 3 students homework and handing it back to them randomly is as shown in this figure.

• Can compute expectation of number of students who get their own homework back as $E[X] = 1 \times \frac{1}{2} + 3 \times \frac{1}{6} = 1$.

Let's try to find the expectation for the case of n students.

Let X_n be the number of students who receive their own homework.

Let I_i be a random variable which is 1 if a student gets their own homework, and 0 otherwise.

- Note, such a random variable is often called an "indicator random variable". It is 1 when some condition is true, and false otherwise.
- Indicator random variables combined with linearity of expectation is very powerful.

Then
$$X_n = I_1 + I_2 + \cdots + I_n$$
.

Note: These random variables as NOT independent. Example: If students 1 through n-1 get their own homework, then student n also gets their own homework.

Let X_n be the number of students who receive their own homework.

Let I_i be a random variable which is 1 if a student gets their own homework, and 0 otherwise.

Then
$$X_n = I_1 + I_2 + \cdots + I_n$$
.

What is $E[X_n]$?

• Hint: What is $E[I_i]$?

Let X_n be the number of students who receive their own homework.

Let I_i be a random variable which is 1 if a student gets their own homework, and 0 otherwise.

Then
$$X_n = I_1 + I_2 + \cdots + I_n$$
.

Are the I_k 's independent?

Does it matter?

What is $E[X_n]$?

- Hint: What is $E[I_i]$?
 - The chance a student gets their own homework is 1/n. That is, each indicator variable is $I_i \sim \text{Bernoulli}(1/n)$. So $E[I_i] = 1/n$
- Since $E[X_n] = E[I_1] + E[I_2] + \dots + E[I_n]$, we have $E[X_n] = n \times 1/n = 1$

Memoryless Property of Geometric RVs

Lecture 20, CS70 Summer 2025

RVs and Probability Concepts

- Joint Distributions and Marginal Distributions
- Independent RVs and Conditional Probability and RVs
- Linearity of Expectation

Additional Info on Important Distributions

- Memoryless Property of Geometric RVs
- The Sum of Two Poisson RVs
- Poisson as the Limit of Binomial RVs

Geometric Random Variables

Recall that a geometric random variable *X* has probabilities given by:

$$P(X = i) = (1 - p)^{i-1}p$$
 for $i = 1, 2, ...$

A geometric random variable models the process of waiting for an event to occur for the first time:

- Flipping a coin until you get heads
- Operating a system until it fails
- Betting until you win "The lottery is a tax on people who are bad at math."

Geometric Random Variables and the Memoryless Property

The memoryless property

- It basically means: Even if you've waited a long time, the chance of the event occurring soon isn't any better.
- Example: You're flipping a coin and it came up tails 10 times in a row. The chance of the next heads isn't better just because you had 10 tails.
- Example: You're playing poker and have gotten 5 terrible hands in a row. The chance of getting a good hand is the same, and it doesn't matter that you've had 5 terrible hands.

Note: The "Gambler's Fallacy" – and lucky (or unlucky) streaks....

Geometric Random Variables and the Memoryless Property

The memoryless property

• It basically means: Even if you've waited a long time, the chance of the event occurring soon isn't any better.

In terms of probability, we can state this as "If we've already tossed a coin m times without getting a head, the probability that we need n additional tosses is the same as if we hadn't tossed the first m coins at all."

Or symbolically we have:

$$P(X > n + m \mid X > m) = P(X > n)$$

Geometric Random Variables and the Memoryless Property

The memoryless property

• It basically means: Even if you've waited a long time, the chance of the event occurring soon isn't any better.

Proof of
$$P(X > n + m \mid X > m) = P(X > n)$$

$$P(X > n + m \mid X > m) = \frac{P(X > n + m)}{P(X > m)}$$

$$=\frac{(1-p)^{n+m}}{(1-p)^m}$$

$$=(1-p)^n$$

$$= P(X > n)$$

Wait – isn't this supposed to be an intersection?

Yes... and it is... see why?

The Sum of Two Poisson RVs

Lecture 20, CS70 Summer 2025

RVs and Probability Concepts

- Joint Distributions and Marginal Distributions
- Independent RVs and Conditional Probability and RVs
- Linearity of Expectation

Additional Info on Important Distributions

- Memoryless Property of Geometric RVs
- The Sum of Two Poisson RVs
- Poisson as the Limit of Binomial RVs

The Poisson Random Variable

Reminder: If $X \sim Poisson(\lambda)$, then the distribution is given by:

$$P(X = i) = \frac{\lambda^{i}}{i!}e^{-\lambda}$$
, for $i = 0, 1, 2, ...$

The Sum of Independent Poisson RVs

In the previous lecture, we mentioned that if $X \sim \text{Poisson}(\lambda_1)$ and $Y \sim \text{Poisson}(\lambda_2)$, and S = X + Y, then $S \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

• This makes intuitive sense, but let's prove using the idea of joint distributions.

Before we start, recall the Binomial Theorem:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Example: $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$

Or alternately:
$$(a + b)^4 = \binom{4}{0}a^4 + \binom{4}{1}a^3b + \binom{4}{2}a^2b^2 + \binom{4}{3}ab^3 + \binom{4}{4}b^4$$

The Sum of Independent Poisson RVs

In the previous lecture, we mentioned that if $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$, and S = X + Y, then $S \sim \text{Poisson}(\lambda + \mu)$. For all $k \in \{0, 1, 2, ...\}$, we have:

$$P(S = k) = \sum_{j=0}^{k} P(X = j, Y = k - j)$$

$$= \sum_{j=0}^{k} P(X = j) \cdot P(Y = k - j)$$

$$= \sum_{j=0}^{k} \frac{\lambda^{j}}{j!} e^{-\lambda} \frac{\mu^{k-j}}{(k-j)!} e^{-\mu} = e^{-(\lambda+\mu)} \sum_{j=0}^{k} \frac{\lambda^{j} \mu^{k-j}}{j! (k-j)!}$$

$$= e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j! (k-j)!} \lambda^{j} \mu^{k-j}$$

The Sum of Independent Poisson RVs

In the previous lecture, we mentioned that if $X \sim \text{Poisson}(\lambda)$ and $Y \sim \text{Poisson}(\mu)$, and S = X + Y, then $S \sim \text{Poisson}(\lambda + \mu)$. For all $k \in \{0, 1, 2, ...\}$, we have:

$$P(S = k) = \sum_{j=0}^{k} P(X = j, Y = k - j)$$

$$= e^{-(\lambda+\mu)} \frac{1}{k!} \sum_{j=0}^{k} \frac{k!}{j! (k-j)!} \lambda^{j} \mu^{k-j}$$

$$= e^{-(\lambda+\mu)} \frac{1}{k!} (\lambda+\mu)^k$$

$$=\frac{(\lambda+\mu)^k}{k!}e^{-(\lambda+\mu)}$$

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

$$P(X = i) = \frac{\lambda^{i}}{i!} e^{-\lambda}$$
, for $i = 0, 1, 2, ...$

Poisson as the Limit of Binomial RVs

Lecture 20, CS70 Summer 2025

RVs and Probability Concepts

- Joint Distributions and Marginal Distributions
- Independent RVs and Conditional Probability and RVs
- Linearity of Expectation

Additional Info on Important Distributions

- Memoryless Property of Geometric RVs
- The Sum of Two Poisson RVs
- Poisson as the Limit of Binomial RVs

Poisson Distribution

The distribution of a Poisson random variable is given by:

$$P(X = i) = \frac{\lambda^i}{i!} e^{-\lambda}$$
, for $i = 0, 1, 2, ...$

Unlike our other RVs, we never derived this expression. Let's derive it from scratch.

• Fact from Calculus: $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e \implies \lim_{n\to\infty} \left(1-\frac{x}{n}\right)^n = e^{-x}$

As a thought experiment, let's imagine we want to model the number of phone calls that users of a mobile network will initiate per unit time. We have a vast number of users, any of whom can make a call.

Suppose we pick a unit time of 1 minutes. Let's try modeling the number of calls as a binomial random variable.

- *i*th coin flip is whether a call is initiated in the *i*th time interval.
- n is number of intervals, e.g., n = 60, we split minute into 60 intervals of 1s each.
- p is the chance of a call in any interval. Assumed independent.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Suppose we pick a unit time of 1 minutes. Let's try modeling the number of calls as a binomial random variable.

- ith coin flip is whether a call is initiated in the ith time interval.
- p is the chance of getting a call in any interval. Assumed independent.
- For example, if n = 60, we split a minute into 60 intervals of 1s each.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Why might a Binomial random variable not work for this modeling process?

What could happen in the world that this model cannot handle?

Suppose we pick a unit time of 1 minutes. Let's try modeling the number of calls as a binomial random variable.

- ith coin flip is whether a call is initiated in the ith time interval.
- p is the chance of getting a call in any interval. Assumed independent.
- For example, if n = 60, we split a minute into 60 intervals of 1s each.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Why might a Binomial random variable not work for this modeling process?

- We might get two calls in the same interval, e.g., a call at 3.3s and 3.8s.
- So what should we do about this?

Suppose we pick a unit time of 1 minutes. Let's try modeling the number of calls as a binomial random variable.

- ith coin flip is whether a call is initiated in the ith time interval.
- p is the chance of getting a call in any interval. Assumed independent.
- For example, if n = 60, we split a minute into 60 intervals of 1s each.

If a call is initiated at times 3.3s, 10.5s, 14.2s, 30.1s, 38.9s, and 48.3s we have:

Why might a Binomial random variable not work for this modeling process?

- We might get two calls in the same interval, e.g., a call at 3.3s and 3.8s.
- So what should we do about this? Pick a smaller interval.

Adjusting Time Intervals

Assume that we know that we receive λ calls per minute on average.

If we split the minute into n time intervals (e.g., n = 60 means 1 second intervals), and we model the number of calls X as a Binomial random variable, which can we say below?

- *a)* $X \sim \text{Binomial}(n, \lambda)$
- b) $X \sim \text{Binomial}\left(n, \frac{1}{\lambda}\right)$
- c) $X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$
- *d)* $X \sim \text{Binomial}\left(n, \frac{n}{\lambda}\right)$

Adjusting Time Intervals

Assume that we know that we receive λ calls per minute on average.

If we split the minute into n time intervals (e.g., n = 60 means 1 second intervals), and we model the number of calls X as a Binomial random variable, which can we say below?

• $X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$

Chance of a call coming in during a time interval is going to be number of calls per minutes divided by number of time intervals per minute.

- Example: $\lambda=100$ calls per minute, and n=60,000,000, then probability of a call in any microsecond is $p=\frac{100}{60.000,000}$.
- Note: We want to pick n so large that the probability of two events in one interval is negligible.

Example – a large n

We're modeling the number of calls as $X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$.

Example: If n = 60,000,000 time intervals and $\lambda = 120$ calls per minute, then the probability that the number of calls in a given minute is equal to 100 is given by the binomial distribution:

$$P(X = 100) = {60,000,000 \choose 100} \left(\frac{120}{60,000,000}\right)^{100} \left(1 - \frac{120}{60,000,000}\right)^{60,000,000-100}$$

This is an awkward computation. Luckily:

- As *n* gets larger, the model is increasingly accurate (less likely that we get two calls being initiated in the same time interval).
- In the limit as $n \to \infty$, this expression is simpler.

The Limit as $n \to \infty$

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$

$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms may seem arbitrary. Rough goal: $= \frac{\lambda^i}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^i} \right)$ is large all clustered together.

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms may seem arbitrary. Rough goal: $= \frac{\lambda^i}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^i} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^n$ is large all clustered together.

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms \sim may seem arbitrary. Rough goal: is large all clustered together.

may seem arbitrary. Rough goal:
$$= \frac{\lambda^{i}}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^{i}} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^{n} \left(1 - \frac{\lambda}{n} \right)^{-i}$$
 is large all electored together.

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms \ is large all clustered together.

may seem arbitrary. Rough goal:
$$= \frac{\lambda^{i}}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^{i}} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^{n} \left(1 - \frac{\lambda}{n} \right)^{-i}$$
 is large all clustered together.

The limit of blue subexpression is:

$$\left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^i}\right) = \frac{n \cdot (n-1) \cdots (n-i+1) \cdot (n-i)!}{(n-i)!} \cdot \frac{1}{n^i} = \frac{n}{n} \cdot \frac{n-1}{n} \cdots \frac{(n-i+1)}{n} \to 1$$

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms \ is large all clustered together.

may seem arbitrary. Rough goal:
$$= \frac{\lambda^{i}}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^{i}} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^{n} \left(1 - \frac{\lambda}{n} \right)^{-i}$$
 is large all clustered together.

The limit of blue subexpression is 1.

What is the limit of the gold?

$$\left(1-\frac{\lambda}{n}\right)^n \to e^{-\lambda}$$
 Calculus fact

Calculus fact from beginning of analysis...

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms may seem arbitrary. Rough goal: $= \frac{\lambda^i}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^i} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^n \cdot \left(1 - \frac{\lambda}{n} \right)^{-i}$ is large all clustered together.

The limit of blue subexpression is 1, and the limit of the gold is $e^{-\lambda}$.

What is the limit of the purple?

$$\left(1 - \frac{\lambda}{n}\right)^{-i} \to (1 - 0)^{-i} = 1$$

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$
$$= \frac{n!}{i! (n-i)!} \cdot \left(\frac{\lambda}{n}\right)^{i} \left(1 - \frac{\lambda}{n}\right)^{n-i}$$

This rearrangement of terms \ may seem arbitrary. Rough goal: $= \frac{\lambda^i}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^i} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^n \left(1 - \frac{\lambda}{n} \right)^{-i}$ Get terms that will simplify when n is large all clustered together.

$$= \frac{\lambda^{i}}{i!} \left(\frac{n!}{(n-i)!} \cdot \frac{1}{n^{i}} \right) \cdot \left(1 - \frac{\lambda}{n} \right)^{n} \cdot \left(1 - \frac{\lambda}{n} \right)^{-n}$$

The limit of blue subexpression is 1, the limit of the gold is $e^{-\lambda}$, limit of purple is 1.

Plugging these in we have:

$$\rightarrow \frac{\lambda^i}{i!} e^{-\lambda}$$

Poisson Distribution

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$.

In the limit as $n \to \infty$, this becomes $X \sim \text{Poisson}(\lambda)$, i.e., $P(X = i) = \frac{\lambda^i}{i!} e^{-\lambda}$

Binomial vs Poisson Distribution (Call Center Example)

If
$$X \sim \text{Binomial}\left(n, \frac{\lambda}{n}\right)$$
, we have: $P(X = i) = \binom{n}{i} \cdot \left(\frac{\lambda}{n}\right)^i \left(1 - \frac{\lambda}{n}\right)^{n-i}$.

In the limit as $n \to \infty$, this becomes $X \sim \text{Poisson}(\lambda)$, i.e., $P(X = i) = \frac{\lambda^{l}}{i!} e^{-\lambda}$

Example: For our call center example, we had $X \sim \text{Binomial}\left(60,000,000,\frac{120}{60,000,000}\right)$

$$P(X = 100) = {60,000,000 \choose 100} \left(\frac{120}{60,000,000}\right)^{100} \left(1 - \frac{120}{60,000,000}\right)^{60,000,000-100}$$

If instead we model as $X \sim Poisson(120)$, we have:

$$P(X = 100) = \frac{120^{100}}{100!}e^{-120}$$

These two values are close if you compute them! We won't.

Summary of the Poisson Distribution

A Poisson random variable tells you the number of events that occur per unit time.

The critical assumptions to be Poisson are:

- Knowing the number of events in one time interval does not provide any information about any other disjoint time interval.
- The number of events that occur per unit time are some average constant λ .

The specific modeling choice that yields the Poisson distribution is to model the number of occurrences over a sequence of very short time intervals as a binomial.

• If n is sufficiently large / p is sufficiently small, the Binomial distribution can be approximated by the Poisson distribution with parameter $\lambda = np$.