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Back to Balls and Bins

What if we throw balls into bins until every bin has at least one ball?

Or: randomly drawing items of 𝑛 types to test and want to test every type.

Took 10 throws for 6 bins this time.
• In general: What’s the distribution?
• How many throws before 50% probability of all bins having a ball?
• What’s the expected value?



Problem Restatement – Coupon Collecting

In the coupon collecting problem, we imagine a contest where every            
time you buy a box of cereal, there is a coupon in the box.

• 𝑛 different coupons.

• Once you collect all 𝑛 coupons, you can redeem them all for a discount on 
your next cereal.

Let 𝑚 be the number of boxes of cereal you buy. How many boxes of cereal 
must we buy, i.e., how big must 𝑚 get before we have a 50% chance of getting 
all of the coupons?



Coupon Collector: Union Bound for Probability of Missing a Coupon

Define event 𝐴𝑖 as the event where we are missing the 𝑖th coupon, and 𝐴 as the 
event where we are missing at least one coupon. Then:

𝑃 𝐴 = 𝑃 ራ

𝑖=1

𝑛

𝐴𝑖

𝐴𝑖: Pick 𝑚 boxes, coupon ≠ 𝑖 with prob 1 −
1

𝑛
 each box:    𝑃 𝐴𝑖 = 1 −

1

𝑛

𝑚

We want 𝑚50 such that this probability is at most 50%:

Buying this many boxes ensures you have all coupons with probability ≥ 50%.

𝑃 𝐴 ≤ 𝑛 1 −
1

𝑛

𝑚

ln 0.5 − ln(𝑛)

ln 1 −
1
𝑛

= 𝑚500.5 = 𝑛 1 −
1

𝑛

𝑚50



P(67) ~ 50.1%

P(72) ~ 50%

For n = 20 bins

ln 0.5 − ln(20)

ln 1 −
1

20

≈ 72

Coupon Collector: Union Bound vs. Empirical Result

We can see this upper bound overlaid on experiments with 𝑛 = 20.

Can also show that with 𝑛 ln 𝑛 + 𝑛 boxes, missing one with prob ≤ 𝑒−1 ≈ 0.3679 …



Expected Value

What about the expected value of the number of boxes?

Let 𝑋 be the number of cereal boxes we need to buy before we get all 𝑛 
coupons. Our goal: Compute 𝐸 𝑋 .

The first key idea is to define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of 
cereal boxes we need to buy before we get the 𝑖th new coupon (after (𝑖 − 1)st).

• Example: 𝑋1 is always 1 because we always get a new coupon on the first 
purchase (we have no other coupons).



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

• Example: 𝑋1 is always 1 because we always get a new coupon on the first 
purchase (we have no other coupons).

Then suppose we buy:

• 2 cereal boxes while trying to get the 2nd new coupon.

• 3 cereal boxes while trying to get the 3rd new coupon.

• 1 cereal box while trying to get the 4th new coupon (lucky!).

• 9 cereal boxes while trying to get the 5th new coupon (unlucky!).

Then 𝑋 = 1 + 2 + 3 + 1 + 9 + ⋯



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

• Example: 𝑋1 is always 1 because we always get a new coupon on the first 
purchase (we have no other coupons).

What is the distribution for 𝑋2?

• 𝑋2 is how many boxes we need to buy if probability 𝑛−1

𝑛
 of a new coupon.

• That is, each box we buy has probability 𝑛−1

𝑛
 of giving us the new coupon. 

Each box selection is a Bernoulli trial, with probability of success 𝑛−1

𝑛
.

• This is precisely the geometric distribution, i.e., 𝑋2~Geometric
𝑛−1

𝑛



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

• Example: 𝑋1 is always 1 because we always get a new coupon on the first 
purchase (we have no other coupons).

What is E 𝑋𝑖 ?

• 𝑋1 = 1

• 𝑋2~Geometric
𝑛−1

𝑛

What is the distribution for 𝑋3? In other words, how many boxes do we expect 
to buy after second coupon to get the third coupon?

⇒  𝐸 𝑋2 =
𝑛

𝑛 − 1



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

• Example: 𝑋1 is always 1 because we always get a new coupon on the first 
purchase (we have no other coupons).

What is E 𝑋𝑖 ?

• 𝑋1 = 1

• 𝑋2~Geometric
𝑛−1

𝑛
⇒ 𝐸 𝑋2 =

𝑛

𝑛−1

• 𝑋3~Geometric
𝑛−2

𝑛
⇒ 𝐸 𝑋3 =

𝑛

𝑛−2

• …



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

E 𝑋 = 𝐸 𝑋1 + 𝐸 𝑋2 + 𝐸 𝑋3 + ⋯ + 𝐸 𝑋𝑛  

= 𝑛
1

𝑛
+

1

𝑛 − 1
+

1

𝑛 − 2
+ ⋯ +

1

2
+

1

1

E 𝑋 =
𝑛

𝑛
+

𝑛

𝑛 − 1
+

𝑛

𝑛 − 2
+ ⋯ +

𝑛

2
+

𝑛

1

𝐸 𝑋1 = 1 𝐸 𝑋2 =
𝑛

𝑛 − 1
𝐸 𝑋3 =

𝑛

𝑛 − 2
𝐸 𝑋4 =

𝑛

𝑛 − 3
…



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

𝐸 𝑋 = 𝐸 𝑋1 + 𝐸 𝑋2 + 𝐸 𝑋3 + ⋯ + 𝐸 𝑋𝑛  

= 𝑛
1

𝑛
+

1

𝑛 − 1
+

1

𝑛 − 2
+ ⋯ +

1

2
+

1

1

𝐸 𝑋 = 𝑛𝐻𝑛 ≈ 𝑛(ln 𝑛 + 𝛾𝐸)

𝐻𝑛 = ෍

𝑖=1

𝑛
1

𝑖
 ≈  ln 𝑛 + 𝛾𝐸

This is the 𝑛th “Harmonic Number”

where 𝛾𝐸 ≈ 0.5772 … 

The Euler–Mascheroni constant
    ... Yes, that Euler. He got around…



Expected Value

We define 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛, where 𝑋𝑖 is the number of cereal boxes we buy 
while trying to get the 𝑖th new coupon, after getting the (𝑖 − 1)st.

E 𝑋 ≈ 𝑛(ln 𝑛 + 𝛾𝐸)

Example: 𝑛 = 20 gives us ≈ 20(ln 20 + 0.5772) ≈ 71.5



Union Bound Approximations and E[X] as Sum of Geometric RVs

Expected number of cereal boxes to get all coupons: E 𝑋 ≈ 𝑛(ln 𝑛 + 𝛾𝐸) ≈ 71.5

P(67) ~ 50.1%

P(72) ~ 50%

P(80) ~ 36.79%

P(74) ~ 37.5%

𝑚50 = 71.9

𝑚36.79 ≈ 79.9

For n = 20 bins
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Before We Get Going

There’s a random math fact we’ll need later, namely that 

Example: 500 + 𝑎 + 𝑏 + 𝑐 2 = 5002 + 𝑎2 + 𝑏2 + 𝑐2

෍

𝑖=1

𝑛

𝑥𝑖

2

= ෍

𝑖=1

𝑛

𝑥𝑖
2 + 2 ෍

𝑖<𝑗

𝑥𝑖𝑥𝑗

+1000𝑎 + 1000𝑏 + 1000𝑐 + 2𝑎𝑏 + 2𝑎𝑐 + 2𝑏𝑐



Motivation: Random Walks

Suppose we a have a particle that starts at y = 500. Every time step, it either:

• Moves up by 1 with probability ½.

• Moves down by 1 with probability ½. 

For example, the plot below shows a random walk where the x-axis is time, and 
the y-axis is the position of the particle.



Motivation: Random Walks

Suppose we a have a particle that starts at y = 500. Every time step, it either:

• Moves up by 1 with probability ½.

• Moves down by 1 with probability ½. 

Let 𝑌𝑛 be the position of the particle after 𝑛 moves. 

• (Note: 𝑌𝑛 is called a “random process”, though we won’t use this term in 70)

• 𝑌𝑛 = 500 + 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛

We can easily show that 𝐸 𝑌𝑛 = 500:

• 𝐸 𝑌𝑛 = 𝐸 500 + 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛

= 500 + 𝑛𝐸 𝑀1

= 500 + 𝑛 × 0 = 500

𝑃 𝑀𝑖 = 𝑎 = ቊ
1/2,  if 𝑎 = +1
1/2,  if 𝑎 = −1



Motivation: Random Walks

Suppose we a have a particle that starts at y = 500. Every time step, it either:

• Moves up by 1 with probability ½.

• Moves down by 1 with probability ½. 

Let 𝑌𝑛 be the position of the particle after 𝑛 moves. 𝐸 𝑌𝑛 = 500.

𝑃 𝑀𝑖 = 𝑎 = ቊ
1/2,  if 𝑎 = +1
1/2,  if 𝑎 = −1



Motivation: Random Walks

Suppose we a have a particle that starts at y = 500. Every time step, it either:

• Moves up by 3 with probability ½.

• Moves down by 3 with probability ½. 

Let 𝑌𝑛 be the position of the particle after 𝑛 moves. 𝐸 𝑌𝑛 = 500.

𝑃 𝑀𝑖 = 𝑎 = ቊ
1/2,  if 𝑎 = +𝟑
1/2,  if 𝑎 = −𝟑



Motivation: Random Walks

Both of our random walks have an expected value of 500.

• … but our random walk with a larger step size swings more widely.

• If we only use the expectation to summarize the random variable, we 
completely miss this important difference.



Measuring Dispersion

We’d like to measure the dispersion (or spread) of a distribution.

One summary statistic for dispersion is the standard deviation.

Warning: Easy to misinterpret this – a student taking an exam is not a r.v. or outcome
But selecting a random student’s grade out of the class is
Probability theory vs statistics…



Attempt One: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛

As a first attempt, imagine we attempt to define the “difference from the mean”. 

• Difference from the mean: 𝑌𝑛 − 𝐸 𝑌𝑛

The difference from the mean is also random variable.

• A natural summary statistic would be the “expected difference from the 
mean” or 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛 .

• Note: A summary statistic is a number which summarizes a distribution.



Attempt One: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛

As a first attempt, imagine we attempt to define the “difference from the mean”. 

• Expected difference from the mean: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛

Using linearity of expectation, we get:

• 𝐸 𝑌𝑛 − 500 = 𝐸 𝑌𝑛 − 𝐸 500 = 𝐸 𝑌𝑛 − 500 = 500 − 500 = 0.

• Unfortunately, this quantity is on average zero. 

• Positive and negative deviations cancel out.



Attempt Two: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛  

Our next idea: Compute the expected absolute difference from the mean.

• 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛  = 𝐸 𝑌𝑛 − 500  

Now we’re a bit stuck. The absolute value stops us from using linearity of 
expectation to distribute the operator.

• We could start trying to break this into cases, e.g., when 𝑌𝑛 ≤ 500 vs.               
𝑌𝑛 > 500, but for many reasons we won’t pursue this approach.



Attempt Three: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2

An alternate way to convert the distance into a positive value is to square it.

• That is, let’s compute the expected squared difference between 𝑌𝑛 and 𝐸 𝑌𝑛 .

Using linearity of expectation, we can try to compute this quantity.

• 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2 = 𝐸 𝑌𝑛 − 500 2 = 𝐸 𝑌𝑛

2 − 1000𝑌𝑛 + 250,000

= 𝐸 𝑌𝑛
2 − 1000𝐸 𝑌𝑛 + 250,000

= 𝐸 𝑌𝑛
2 − 500,000 + 250,000 = 𝐸 𝑌𝑛

2 − 250,000

Need to compute this somehow.



Attempt Three: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2

Using linearity of expectation, compute expected squared difference from mean.

• 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2 = 𝐸 𝑌𝑛

2 − 250,000

To compute 𝐸 𝑌𝑛
2  , we can write 𝐸 𝑌𝑛

2 = 𝐸 500 + 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛
2  

= 𝐸[5002 + 𝑀1
2 + 𝑀2

2 + ⋯ 𝑀𝑛
2 

+1000𝑀1 + 1000𝑀2 + ⋯ + 1000𝑀𝑛

+2𝑀1𝑀2 + ⋯ + 2𝑀𝑛−1𝑀𝑛] 

Need to compute these



Math Interlude

What are 𝐸 𝑀1
2 , 𝐸 𝑀1 , and 𝐸 𝑀1𝑀2 ?

𝑃 𝑀𝑖 = 𝑎 = ቊ
1/2,  if 𝑎 = +𝟑
1/2, if 𝑎 = −𝟑



Math Interlude

What are 𝐸 𝑀1
2 , 𝐸 𝑀1 , and 𝐸 𝑀1𝑀2 ?

• 𝑀1 is always 3 or -3, so 𝑀1
2 is always 9. Thus, 𝐸 𝑀1

2 = 9.

• 𝑀1 is -3 or 3 with probability ½, so 𝐸 𝑀1 = −3 ×
1

2
+ 3 ×

1

2
= 0.

• 𝑀1𝑀2 can be:

  3 × 3 = 9 with probability ¼

 3 × −3 = −9 with probability ¼

 −3 × 3 = −9 with probability ¼ 

 3 × 3 = 9 with probability ¼ 

     Thus, 𝐸 𝑀1𝑀2 = 9 ×
1

4
− 9 ×

1

4
− 9 ×

1

4
+ 9 ×

1

4
= 0.

𝑃 𝑀𝑖 = 𝑎 = ቊ
1/2,  if 𝑎 = +𝟑
1/2, if 𝑎 = −𝟑



Attempt Three: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2

Using linearity of expectation, we can try to compute this quantity.

• 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2 = 𝐸 𝑌𝑛

2 − 250,000

To compute 𝐸 𝑌𝑛
2  , we can write 𝐸 𝑌𝑛

2 = 𝐸 500 + 𝑀1 + 𝑀2 + ⋯ + 𝑀𝑛
2  

= 𝐸[5002 + 𝑀1
2 + 𝑀2

2 + ⋯ 𝑀𝑛
2 

+1000𝑀1 + 1000𝑀2 + ⋯ + 1000𝑀𝑛

+2𝑀1𝑀2 + ⋯ + 2𝑀𝑛−1𝑀𝑛] 

𝐸 𝑀𝑖
2 = 9

𝐸 𝑀𝑖 = 0

𝐸 𝑀𝑖𝑀𝑗 = 0

= 250,000 + 9𝑛



Attempt Three: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2

An alternate way to convert the distance into a positive value is to square it.

• That is, let’s compute the expected squared difference between 𝑌𝑛 and 𝐸 𝑌𝑛 .

Using linearity of expectation, we can try to compute this quantity.

• 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2 = 𝐸 𝑌𝑛 − 500 2 = 𝐸 𝑌𝑛

2 − 1000𝑌𝑛 + 250,000

= 𝐸 𝑌𝑛
2 − 1000𝐸 𝑌𝑛 + 250,000

= 𝐸 𝑌𝑛
2 − 500,000 + 250,000 = 𝐸 𝑌𝑛

2 − 250,000

Took some deeper thought. This is 250,000 + 9𝑛

= 250,000 + 9𝑛 − 250,000

= 9𝑛



Attempt Three: 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2

An alternate way to convert the distance into a positive value is to square it.

• That is, let’s compute the expected squared difference between 𝑌𝑛 and 𝐸 𝑌𝑛 .

Using linearity of expectation, we can try to compute this quantity.

• 𝐸 𝑌𝑛 − 𝐸 𝑌𝑛
2 = 9𝑛

That is, on average, we can expect that by time step 𝑛, the squared distance 
of the particle from 500 will be around 9𝑛.

• We called this the “expected squared 
difference from the mean”.

• This quantity is commonly known as the 
“variance” of the random variable.



Variance

The variance of a random variable 𝑋 is defined as:

Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2

Note, we sometimes use 𝜇 = 𝐸 𝑋  to avoid messy nested brackets, i.e., 

Var 𝑋 = 𝐸 𝑋 − 𝜇 2
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Variance Property 1

Variance is defined as Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2

Useful Property 1: Can write variance as: Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

Proof: Let 𝜇 = 𝐸 𝑋 , then Var 𝑋 = 𝐸 𝑋 − 𝜇 2

= 𝐸 𝑋2 − 2𝜇𝐸 𝑋 + 𝐸[𝜇2] 

= 𝐸 𝑋2 − 2𝜇2 + 𝜇2

= 𝐸 𝑋2 − 𝜇2

= 𝐸[𝑋2 − 2𝑋𝜇 + 𝜇2]

= 𝐸 𝑋2 − 𝐸 𝑋 2



Variance Property 2

Suppose we have a random variable 𝑋 whose variance is Var 𝑋 . Then 
Var 𝑐𝑋 = 𝑐2Var(𝑥).

Proof: Var 𝑐𝑋 = 𝐸 𝑐𝑋 2 − (𝐸 𝑐𝑋 )2  (by useful property 1)

= 𝐸 𝑐𝑋 2 − 𝑐𝐸 𝑋 2

= 𝐸 𝑐𝑋 2 − 𝑐2𝐸 𝑋 2

= 𝐸 𝑐2𝑋2 − 𝑐2𝐸 𝑋 2

= 𝑐2𝐸 𝑋2 − 𝑐2𝐸 𝑋 2

= 𝑐2Var(𝑋)



Variance Property 3

Suppose we have a random variable 𝑋 whose variance is Var 𝑋 . Then 
Var 𝑐 + 𝑋 = Var(𝑋). 

Proof: Var 𝑐 + 𝑋

= 𝐸 𝑐 + 𝑋 − 𝐸 𝑐] − 𝐸[𝑋 2

= 𝐸 𝑐 + 𝑋 − 𝑐 − 𝐸 𝑋 2

= 𝐸 𝑋 − 𝐸 𝑋 2

= Var(𝑋)

Recall basic definition: Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2

= 𝐸 𝑐 + 𝑋 − 𝐸 𝑐 + 𝑋 2   (by basic definition)



Variance and Standard Deviation

Variance is not in the same units as the original random variable.

• Example: If 𝑋 is a midterm score for a randomly selected student, then Var(𝑋) 
is given in points squared. 

The most natural correction is just to compute the square root of the variance. 
This is called the standard deviation (stdev for short).

• Variance of 2007.1 points squared: less intuitive than stdev of 44.8 points.

Often use 𝜎 as symbol for stdev

Warning again: data-driven (statistics) vs 
model-driven (probability theory) is 
different. Statistics has population variance, 
sample variance (biased and unbiased), … 
not as “clean” as probability.



Useful Properties So Far

Basic definition of variance: Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2

Useful property 1: Can rewrite as Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

Useful property 2: Var 𝑐𝑋 = 𝑐2Var(𝑋)

Useful property 3: Var 𝑐 + 𝑋 = Var(𝑋)

Units of variance are squared units of 𝑋. Can use square root of variance 
(standard deviation) instead.
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Computing the Variance of a Random Variable

When computing the variance of a random variable 𝑋, we need two quantities:

• The expectation 𝐸 𝑋 .

• The expectation of 𝑋2, i.e., 𝐸 𝑋2

Often, but not always, 𝐸 𝑋2  requires some cleverness to compute.



Example 1: Bernoulli RV

Suppose 𝑋~Bernoulli(𝑝). Recall that 𝐸 𝑋 = 𝑝.

Then Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

• Since 𝑋 is always 0 or 1, we have that 𝑋2 = 𝑋, therefore 𝐸 𝑋2 = 𝐸 𝑋 = 𝑝.

• The variance is therefore Var 𝑋 = 𝑝 − 𝐸 𝑋 2 = 𝑝 − 𝑝2

Often this is written in the form 𝑝 1 − 𝑝

Observation, if we pick 𝑝 = 1 (always heads), then the variance is 0.

• This makes sense! If the RV isn’t actually random, there should be no variance.

• Similarly, if 𝑝 is close to 0 or 1, the variance is low, usually get same flip.



Example 2: Rolling a Fair Six-Sided Die

Recall that if 𝑋 is the result of rolling a fair six-sided die, we have that             
𝐸 𝑋 = 7/2.

To compute variance, we just need 𝐸 𝑋2 . This is straightforward:

𝐸 𝑋2 =
1

6
× 12 +

1

6
× 22 +

1

6
× 32 +

1

6
× 42 +

1

6
× 52 +

1

6
× 62

=
1

6
× 12 + 22 + 32 + 42 + 52 + 62

=
91

6



Example 2: Rolling a Fair Six-Sided Die

Recall that if 𝑋 is the result of rolling a fair six-sided die, we have that             
𝐸 𝑋 = 7/2. We also just computed 𝐸 𝑋2 = 91/6

The variance of a six-sided die roll is given by Var x = 𝐸 𝑋2 − 𝐸 𝑋 2

We’ll use this result later today for multiple rolls.

=
91

6
−

7

2

2

=
35

12
≈ 2.92



Example 3: Fixed Points of Permutation

Let 𝑋𝑛 be the number of students who receive their own homework if we take 
homeworks from every student and hand them back randomly.

• Earlier we showed that 𝐸 𝑋𝑛 = 1. 

• How dispersed is this? Do we expect to sometimes get 𝑋𝑛 = 10, 𝑋𝑛 = 20?

As before let 𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework 
back.

To compute variance, we already have 𝐸 𝑋𝑛 . We just need 𝐸 𝑋𝑛
2 .



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

What is 𝐸 𝐼𝑖
2 ?

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = ෍

𝑖=1

𝑛

𝐸[𝐼𝑖
2] + 2 ෍

𝑖<𝑗

𝐸 𝐼𝑖𝐼𝑗

𝑃 𝐼𝑖
2 = 1 = 𝑃 𝐼𝑖 = 1 =

1

𝑛

𝑃 𝐼𝑖
2 = 0 = 𝑃 𝐼𝑖 = 0 =

𝑛 − 1

𝑛

𝐸 𝐼𝑖
2 =

1

𝑛
× 1 =

1

𝑛
 ⟹ ෍

𝑖=1

𝑛

𝐸[𝐼𝑖
2] = 1 



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

What is 𝐸 𝐼𝑖𝐼𝑗 ?

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = 1 + 2 ෍

𝑖<𝑗

𝐸 𝐼𝑖𝐼𝑗



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

But only one of these terms is non-zero:      1 × 1 × 𝑃 𝐼𝑖 = 1, 𝐼𝑗 = 1

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = 1 + 2 ෍

𝑖<𝑗

𝐸 𝐼𝑖𝐼𝑗

𝐸 𝐼𝑖𝐼𝑗 = 0 × 0 × 𝑃 𝐼𝑖 = 0, 𝐼𝑗 = 0 + 0 × 1 × 𝑃 𝐼𝑖 = 0, 𝐼𝑗 = 1 +

+1 × 0 × 𝑃 𝐼𝑖 = 1, 𝐼𝑗 = 0 + 1 × 1 × 𝑃 𝐼𝑖 = 1, 𝐼𝑗 = 1



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

𝐼𝑖 and 𝐼𝑗 are indicators, so for the non-zero term:

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = 1 + 2 ෍

𝑖<𝑗

𝐸 𝐼𝑖𝐼𝑗

𝐸 𝐼𝑖𝐼𝑗 = 1 × 1 × 𝑃 𝐼𝑖 = 1, 𝐼𝑗 = 1

= 𝑃 𝑖 and 𝑗 get their own homework back

=
𝑛 − 2 !

𝑛!
 =  

1

𝑛(𝑛 − 1)



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

𝐼𝑖 and 𝐼𝑗 are indicators, so for the non-zero term :

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = 1 + 2 ෍

𝑖<𝑗

1

𝑛(𝑛 − 1)

𝐸 𝐼𝑖𝐼𝑗 = 1 × 1 × 𝑃 𝐼𝑖 = 1, 𝐼𝑗 = 1

=
𝑛 − 2 !

𝑛!
 =  

1

𝑛(𝑛 − 1)

= 𝑃 𝑖 and 𝑗 get their own homework back



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

What is 2 σ𝑖<𝑗
1

𝑛 𝑛−1
?  There are 𝑛

2
 pairs {𝑖, 𝑗}, each with one ordering 𝑖 < 𝑗, so

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = 1 + 2 ෍

𝑖<𝑗

1

𝑛 𝑛 − 1

2 ෍

𝑖<𝑗

1

𝑛 𝑛 − 1
= 2

𝑛

2
×

1

𝑛(𝑛 − 1)

= 2
𝑛 𝑛 − 1

2
×

1

𝑛(𝑛 − 1)
= 1



Example 3: Fixed Points of Permutation

𝑋𝑛 = 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛, where 𝐼𝑖 means student 𝑖 got their homework back.

We need 𝐸 𝑋𝑛
2 . To get this, we compute 𝐸 𝑋𝑛

2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛
2 . Using 

the same formula from before, we have that: 

After all that work, we’ve learned that 𝐸 𝑋𝑛
2 = 2

𝐸 𝑋𝑛
2 = 𝐸 𝐼1 + 𝐼2 + ⋯ + 𝐼𝑛

2 = 1 + 1 = 2



Example 3: Fixed Points of Permutation

Let 𝑋𝑛 be the number of students who receive their own homework if we take 
homeworks from every student and hand them back randomly.

• Last time we showed that 𝐸 𝑋𝑛 = 1. 

• How dispersed is this? Do we expect to sometimes get 𝑋𝑛 = 10, 𝑋𝑛 = 20?

To compute variance, we know 𝐸 𝑋𝑛 = 1. We now know 𝐸 𝑋𝑛
2 = 2.

What is Var 𝑋𝑛 ? Var 𝑋𝑛 = 𝐸 𝑋𝑛
2 − 𝐸 𝑋𝑛

2

       = 2 − 1

       = 1



Example 3: Fixed Points of Permutation

Let 𝑋𝑛 be the number of students who receive their own homework if we take 
homeworks from every student and hand them back randomly.

• Last time we showed that 𝐸 𝑋𝑛 = 1. 

• And we also know that Var 𝑋𝑛 = 1.

How dispersed is this? Do we expect to sometimes get 𝑋𝑛 = 10, 𝑋𝑛 = 20?

• We don’t expect to get a value near 10, no matter how big 𝑛 gets.

• On average, the number of students who gets their homework back is 1.

• And the variance (and standard deviation) is 1.

• If we were to run a bunch of experiments, the average difference from our 
observation and the mean (1) would be 1. 



Example(s) 4: Geometric and Poisson Random Variables

If 𝑋~Geometric(𝑝), then Var(𝑋) is given 

If 𝑋~Poisson(𝜆), then Var 𝑋 = 𝜆 

The proofs are in the notes – study them there!

• The proof for geometric is especially worth going through. Uses a super-cool 
calculus trick…

Var 𝑋 =
1−𝑝

𝑝2



Quick Note

The notes also discuss the uniform distribution. 

𝑋~Uniform 𝑛

Means that 𝑋 takes on values from the set {1, 2, 3, … , 𝑛} with equal probability. 

The notes give the mean and variance of the uniform distribution without proof. 
I won’t state them here. This slide just exists to make sure you don’t miss this in 
the notes (note 16, page 4).
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Sums of Independent Random Variables

In a previous lecture we already saw that if we have independent random 
variables 𝑋~Poisson 𝜆  and 𝑌~Poisson 𝜇 , and S = 𝑋 + 𝑌, then 𝑆~Poisson 𝜆 + 𝜇 .

• What about the variance of the sum?

In general, summing random variables is a complicated business.

• It’s a notable property that two Poisson RVs sum to be Poisson as well.

• Not (always) true for the sum of Bernoulli, Binomial, Geometric.

As an example, consider summing 𝑛 rolls of fair six-sided dice (next slide).

Var 𝑆 = 𝜆 + 𝜇



From https://mathworld.wolfram.com/Dice.html

Note: The operation that is happening here is 
called “convolution”. We won’t discuss today.



Expected Value and Standard Deviation vs. N

𝒏 𝑬[𝑿] 𝝈 𝑿

1 3.5 1.71

2 7 2.41

3 10.5 2.96

4 14 3.42

5 17.5 3.82



Expected Value and Standard Deviation vs. N

𝒏 𝑬[𝑿] 𝝈 𝑿

1 3.5 1.71

2 7 2.41

3 10.5 2.96

4 14 3.42

5 17.5 3.82

Two interesting observations as 𝑛, the number of 
random variables summed together, increases:
• The mean increases (linearly).
• The distribution concentrates around the mean, i.e., 

the standard deviation grows relatively slow.
• In fact, 𝜎 𝑛 ≈ 1.7 𝑛, or equivalently Var 𝑛 ≈ 2.92𝑛



Expectation and Sums of Independent Random Variables

While we can’t say concisely say much about the distribution of the sum of two 
independent random variables, we can reason about the expectation and 
variance of the sum.

We already know that 𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸 𝑌 .

• Example: Flipping 100 fair coins yields an average of 50 heads.

But what about their variance?

• Example: We saw empirically with dice that rolling 4 dice gives 4 times the 
variance (or 2 times the standard deviation).

• Let’s investigate further.



Expectation and Sums of Independent Random Variables

Claim: If X and Y are independent, then Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 . 

• We need to consider Var 𝑋 + 𝑌 = 𝐸 𝑋 + 𝑌 2 − 𝐸 𝑋 + 𝑌 2

𝐸 𝑋 + 𝑌 2 = 𝐸 𝑋2 + 2𝑋𝑌 + 𝑌2

= 𝐸 𝑋2 + 2𝐸[𝑋𝑌] + 𝐸 𝑌2

𝐸 𝑋 + 𝑌 2 = 𝐸 𝑋 + 𝐸 𝑌 2

= 𝐸 𝑋 2 + 2𝐸 𝑋 𝐸 𝑌 + 𝐸 𝑌 2

= 𝐸 𝑋2 − 𝐸 𝑋 2 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + 𝐸 𝑌2 − 𝐸 𝑌 2

= Var 𝑋 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + Var(𝑌)

With these two quantities expanded, we can write:

Var 𝑋 + 𝑌 = 𝐸 𝑋 + 𝑌 2 − 𝐸 𝑋 + 𝑌 2

To deal with this, let’s take a detour.



Expectation and Sums of Independent Random Variables

Lemma: If X and Y are independent, then 𝐸 𝑋𝑌 = 𝐸 𝑋  𝐸 𝑌 . 

Proof: 𝐸 𝑋𝑌 = ෍

𝑎

෍

𝑏

𝑎𝑏 × 𝑃 𝑋 = 𝑎, 𝑌 = 𝑏

= ෍

𝑎

෍

𝑏

𝑎𝑏 × 𝑃 𝑋 = 𝑎) × 𝑃(𝑌 = 𝑏

= ෍

𝑎

𝑎 × 𝑃 𝑋 = 𝑎 × ෍

𝑏

𝑏 × 𝑃 𝑌 = 𝑏

= 𝐸 𝑋  𝐸[𝑌]

Example term for rolling a four-
sided and six-sided die:

2 × 5 × P(D4 = 2, D6 = 5)

= 2 × 5 × P D4 = 2 × D6 = 5

 = 2 × 5 ×
1

4
×

1

6

 = 2 ×
1

4
× 5 ×

1

6



Expectation and Sums of Independent Random Variables

Claim: If X and Y are independent, then Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 . 

• We need to consider Var 𝑋 + 𝑌 = 𝐸 𝑋 + 𝑌 2 − 𝐸 𝑋 + 𝑌 2

= 𝐸 𝑋2 − 𝐸 𝑋 2 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + 𝐸 𝑌2 − 𝐸 𝑌 2

= Var 𝑋 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + Var(𝑌)

Var 𝑋 + 𝑌 = 𝐸 𝑋 + 𝑌 2 − 𝐸 𝑋 + 𝑌 2

We just showed 𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸 𝑌

= Var(𝑋) + Var(𝑌)
Requires independence of X and Y



Summing i.i.d. Random Variables – Example 1

If we have 𝑛 random variables 𝑋𝑖 that are independent and identically 
distributed, and 𝑆 = 𝑋1 + ⋯ + 𝑋𝑛, then we have that:

• 𝐸 𝑆 = 𝑛 𝐸 𝑋

• Var 𝑆 = 𝑛 Var(𝑋)

Example: For rolling one six-sided die and 𝑛 six-sided dice, we have: 

𝐸 𝑋𝑖 =
7

2

 Var 𝑋𝑖 =
35

12
≈ 2.92

 𝜎 𝑋𝑖 ≈ 1.7

𝐸 𝑆 =
7

2
𝑛

 Var 𝑆 =
35

12
𝑛 ≈ 2.92𝑛

 𝜎 𝑆 ≈ 1.7 𝑛



Summing i.i.d. Random Variables – Example 2 (Bernoulli → Binomial)

If we have 𝑛 random variables 𝑋𝑖 that are independent and identically 
distributed, and 𝑆 = 𝑋1 + ⋯ + 𝑋𝑛, then we have that:

• 𝐸 𝑆 = 𝑛 𝐸 𝑋1

• Var 𝑆 = 𝑛 Var(𝑋1)

Example: For 𝑋1 ~ Bernoulli 𝑝 : 

𝐸 𝑋1 = 𝑝

 Var 𝑋1 = 𝑝(1 − 𝑝)

𝐸 𝑆 = 𝑛𝑝

 Var 𝑆 = 𝑛𝑝(1 − 𝑝)

For 𝑆 ~ Binomial 𝑛, 𝑝 :
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Covariance

Earlier we showed that:

If 𝑋 and 𝑌 are independent, then these black terms canceled out. But what if 
they are not independent?

• In that case, the variance of the sum will depend on this term. This term 
(excluding the factor of 2) is called the covariance.

Var 𝑋 + 𝑌 = 𝐸 𝑋 + 𝑌 2 − 𝐸 𝑋 + 𝑌 2

= Var 𝑋 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + Var(𝑌)



Covariance Definition

The covariance of two random variable 𝑋 and 𝑌 is defined as:

cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋  𝐸 𝑌

We already know a couple of facts about the covariance:

• Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2cov(𝑋, 𝑌)

• If 𝑋 and 𝑌 are independent, then cov 𝑋, 𝑌 = 0. The converse is not true.



Covariance Intuitively

Suppose we have a normal playing card deck. Let 𝑅1 be 1 if the first card is a 
red card (  or ), let 𝐵2 be 1 if the second card is a black card (  or ).

The covariance is given by cov 𝑅1, 𝐵2 = 𝐸 𝑅1𝐵2 − 𝐸 𝑅1  𝐸 𝐵2

• 𝐸 𝑅1 = 1/2

• 𝐸 𝐵2 = 1/2

Then we have: 𝐸 𝑅1𝐵2 = 0 × 0 × 𝑃 𝑅1 = 0, 𝐵2 = 0 +

0 × 1 × 𝑃 𝑅1 = 0, 𝐵2 = 1 +

1 × 0 × 𝑃 𝑅1 = 1, 𝐵2 = 0 +

1 × 1 × 𝑃 𝑅1 = 1, 𝐵2 = 1



Covariance Intuitively

Suppose we have a normal playing card deck. Let 𝑅1 be 1 if the first card is a 
red card (  or ), let 𝐵2 be 1 if the second card is a black card (  or ).

The covariance is given by cov 𝑅1, 𝐵2 = 𝐸 𝑅1𝐵2 − 𝐸 𝑅1 𝔼 𝐵2

• 𝐸 𝑅1 = 1/2

• 𝐸 𝐵2 = 1/2

Then we have: 𝐸 𝑅1𝐵2 = 1 × 1 × 𝑃 𝑅1 = 1, 𝐵2 = 1

𝑃 𝑅1 = 1, 𝐵2 = 1 = 𝑃 𝐵2 = 1|𝑅1 = 1 × 𝑃 𝑅1 = 1

= 26/51 × 26/52

= 13/51



Covariance Intuitively

Suppose we have a normal playing card deck. Let 𝑅1 be 1 if the first card is a 
red card (  or ), let 𝐵2 be 1 if the second card is a black card (  or ).

The covariance is given by cov 𝑅1, 𝐵2 = 𝐸 𝑅1𝐵2 − 𝐸 𝑅1  𝐸 𝐵2

• 𝐸 𝑅1 = 1/2

• 𝐸 𝐵2 = 1/2

• 𝐸 𝑅1𝐵2 = 13/51

Thus, we have cov 𝑅1, 𝐵2 = 13/51 − 1/2 × 1/2

The positive covariance means that the random variables tend to move 
together, e.g., if 𝑅1 is 1, 𝐵2 more likely to be 1 as well.

≈ 0.0049



Covariance Intuitively (Example 2)

Suppose we have a normal playing card deck. Let 𝑅1 be 1 if the first card is a 
red card (  or ), let 𝑅2 be 1 if the second card is also a red card.

The covariance is given by cov 𝑅1, 𝑅2 = 𝐸 𝑅1𝑅2 − 𝐸 𝑅1  𝐸 𝑅2

• 𝐸 𝑅1 = 1/2

• 𝐸 𝑅2 = 1/2

• 𝐸 𝑅1𝑅2 = 25/102 (not shown)

Thus, we have cov 𝑅1, 𝑅2 = 25/102 − 1/2 × 1/2

The negative covariance means that the random variables tend to move apart, 
e.g., if 𝑅1 is 1, 𝑅2 is less likely to be 1.

≈ −0.0049
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Example 1

Suppose we have two random variables with joint distribution given by:

Question 1: Are 𝑋 and 𝑌 independent?

0 1/5 0

1/5 1/5 1/5

0 1/5 0

X
Y -1 0 1

1

0

-1



Example 1

Suppose we have two random variables with joint distribution given by:

Question 1: Are 𝑋 and 𝑌 independent?

• No, knowing something about one value tells you about the other.

• Example, if we know 𝑥 = 0, then 𝑦 could be anything, whereas if 𝑥 = 1, we 
know 𝑦 is 0.

• Or in terms of specific probabilities: 𝑃 𝑋 = 1, 𝑌 = 1 ≠ 𝑃 𝑋 = 1 × 𝑃 𝑌 = 1

0 1/5 0

1/5 1/5 1/5

0 1/5 0

X
Y -1 0 1

1

0

-1



Example 1

Suppose we have two random variables with joint distribution given by:

Question 2: What is cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋  𝐸 𝑌 ?

0 1/5 0

1/5 1/5 1/5

0 1/5 0

X
Y -1 0 1

1

0

-1



Example 1

Suppose we have two random variables with joint distribution given by:

Question 2: What is cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋  𝐸 𝑌 ?

• 𝐸 𝑋𝑌 = 0, at least one variable is always zero.

• 𝐸 𝑋 = −1 × 1/5 + 1 × 1/5 = 0

• 𝐸 𝑌 = −1 × 1/5 + 1 × 1/5 = 0

Even though covariance is zero, variables are not independent!

0 1/5 0

1/5 1/5 1/5

0 1/5 0

X
Y -1 0 1

1

0

-1



Example 2

Suppose we have two random variables with joint distribution given by:

Questions:

• Are these variables independent?

• Is their covariance negative, zero, or positive?

1/7 1/7 0

1/7 1/7 1/7

0 1/7 1/7
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Example 2

Suppose we have two random variables with joint distribution given by:

Questions:

• Are these variables independent?
• No! If 𝑊 = 1, 𝑍 can’t be 1
• 𝑃 𝑊 = 1, 𝑍 = 1 ≠ 𝑃 𝑊 = 1 × 𝑃 𝑍 = 1

1/7 1/7 0

1/7 1/7 1/7

0 1/7 1/7

W
Z -1 0 1

1

0

-1



Example 2

Suppose we have two random variables with joint distribution given by:

Questions:

• Is their covariance negative, zero, or positive?
• Negative, tend to move in opposite directions. 
• Or in terms of the actual values: cov 𝑊, 𝑍 = 𝐸 𝑊𝑍 − 𝐸 𝑊  𝐸 𝑍

1/7 1/7 0

1/7 1/7 1/7

0 1/7 1/7

W
Z -1 0 1

1

0

-1

= −
2

7
− 0 ⋅ 0



Summary

Key Discoveries of the Day

• For the coupon collector problem 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 where 𝑋𝑖  ~ Geometric

• 𝐸 𝑋 ≈ 𝑛(ln 𝑛 + 𝛾𝐸)

• Var 𝑋 = 𝐸 𝑋 − 𝐸 𝑋 2

• Var 𝑋 = 𝐸 𝑋2 − 𝐸 X 2

• 𝜎 𝑋 = Var(𝑋)

• Var 𝑋 + 𝑌 = Var 𝑋 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + Var 𝑌

• cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋  𝐸 𝑌

• If 𝑋 and 𝑌 independent: 
• 𝐸 𝑋𝑌 = 𝐸 𝑋  𝐸 𝑌  
• cov 𝑋, 𝑌 = 0

• Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌
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