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Review – Covariance

Last time we showed that:

If 𝑋 and 𝑌 are independent, then these black terms canceled out. 

If they are not independent?

• In that case, the variance of the sum will depend on this term. This term 
(excluding the factor of 2) is called the covariance.

cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌

Var 𝑋 + 𝑌 = 𝐸 𝑋 + 𝑌 2 − 𝐸 𝑋 + 𝑌 2

= Var 𝑋 + 2𝐸 𝑋𝑌 − 2𝐸 𝑋 𝐸 𝑌 + Var(𝑌)



Covariance Properties

We previously showed three properties of variance 𝐸 𝑋 − 𝐸 𝑋 2 :

• Can rewrite as Var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2

• Var 𝑐𝑋 = 𝑐2Var(𝑋)

• Var 𝑐 + 𝑋 = Var(𝑋)

The covariance 𝐸 𝑋𝑌 − 𝐸 𝑋  𝐸 𝑌  has similar properties:

• Equal to 𝐸 𝑋 − 𝐸 𝑋 𝑌 − 𝐸 𝑌

• cov 𝑋 + 𝑎, 𝑌 + 𝑏 = cov(𝑋, 𝑌)

• cov 𝑐𝑋, 𝑑𝑌 = 𝑐 ⋅ 𝑑 ⋅ cov(𝑋, 𝑌)

Proofs are similar to those for variance. Good exercise to work through!



Correlation

Recall “interpretation” of covariance sign:

• cov 𝑋, 𝑌 > 0:  𝑋 and 𝑌 generally move in the same direction

• cov 𝑋, 𝑌 < 0: 𝑋 and 𝑌 generally move in opposite directions

What about magnitude? What are the units?

• Units of covariance are the product of the units of 𝑋 times the units of 𝑌.
• Good luck making sense out of that….

If 𝑋 and 𝑌 are random variables with standard deviations 𝜎𝑋 > 0 and 𝜎𝑌 > 0 
respectively, then the correlation of 𝑋 and 𝑌 is given by:

Corr 𝑋, 𝑌 =
cov 𝑋, 𝑌

𝜎𝑋𝜎𝑌

Benefit? Always lies between -1 and +1. More intuitive to interpret.



Related concept: Standardizing a Random Variable

If 𝑋 is a random variable with mean 𝜇 and stdev 𝜎, then the standardized 
version of this random variable is given by ෨𝑋:

෨𝑋 =
𝑋 − 𝜇

𝜎

Questions:

• What is 𝐸 ෨𝑋 ?

 𝐸 ෨𝑋 =
1

𝜎
𝐸 𝑋 − 𝜇 =

1

𝜎
𝐸 𝑋 − 𝜇 = 0

• What is Var ෨𝑋 ?

 Var ෨𝑋 =
1

𝜎2 Var 𝑋 − 𝜇 =
1

𝜎2 Var 𝑋 = 1

So ෨𝑋 is a shifted and scaled
version of 𝑋 to have
• Zero mean
• Unit standard deviation

Type equation here.

Note: “Standardizing” is the idea behind using “z-Scores” for exam grades!



Proof of Correlation Range

Claim: The correlation is always between -1 and 1.

−1 ≤ Corr 𝑋, 𝑌 =
cov 𝑋, 𝑌

𝜎𝑋𝜎𝑌
≤ +1

Lemma: Let 𝐸 𝑋 = 𝜇𝑋, 𝐸 𝑌 = 𝜇𝑌. Let ෨𝑋 and ෨𝑌 be the standardized versions of 𝑋 
and 𝑌. Then Corr 𝑋, 𝑌 = 𝐸 ෨𝑋 ෨𝑌

Proof of Lemma: 

Corr 𝑋, 𝑌 =
cov 𝑋, 𝑌

𝜎𝑋𝜎𝑌
=

𝐸 𝑋 − 𝜇𝑋 𝑌 − 𝜇𝑌

𝜎𝑋𝜎𝑌
= 𝐸

𝑋 − 𝜇𝑋

𝜎𝑋

𝑌 − 𝜇𝑌

𝜎𝑌
= 𝐸 ෨𝑋 ෨𝑌



Proof of Correlation Range

Claim: The correlation is always between -1 and 1.

−1 ≤ Corr 𝑋, 𝑌 =
cov 𝑋, 𝑌

𝜎𝑋𝜎𝑌
≤ +1

Lemma: Let 𝐸 𝑋 = 𝜇𝑋, 𝐸 𝑌 = 𝜇𝑌. Let ෨𝑋 and ෨𝑌 be the standardized versions of 𝑋 
and 𝑌. Then Corr 𝑋, 𝑌 = 𝐸 ෨𝑋 ෨𝑌

Proof that 𝐂𝐨𝐫𝐫 𝑿, 𝒀 ≤ 𝟏: Consider the quantity 𝐸 ෨𝑋 − ෨𝑌
2

, which is ≥ 0. 

𝐸 ෨𝑋 − ෨𝑌
2

= 𝐸 ෨𝑋2 − 2𝐸 ෨𝑋 ෨𝑌 + 𝐸 ෨𝑌2

= 1 − 2𝐸 ෨𝑋 ෨𝑌 + 1

= 2 − 2Corr 𝑋, 𝑌 = 2 1 − Corr 𝑋, 𝑌 ≥ 0

Thus, 1 − Corr 𝑋, 𝑌 ≥ 0 So: Corr 𝑋, 𝑌 ≤ 1



Proof of Correlation Range

Claim: The correlation is always between -1 and 1.

−1 ≤ Corr 𝑋, 𝑌 =
cov 𝑋, 𝑌

𝜎𝑋𝜎𝑌
≤ +1

Lemma: Let 𝔼 𝑋 = 𝜇𝑋, 𝔼 𝑌 = 𝜇𝑌. Let ෨𝑋 and ෨𝑌 be the standardized versions of 𝑋 
and 𝑌. Then Corr 𝑋, 𝑌 = 𝔼 ෨𝑋 ෨𝑌

Proof that 𝐂𝐨𝐫𝐫 𝑿, 𝒀 ≥ −𝟏: Consider the quantity 𝔼 ෨𝑋 + ෨𝑌
2

, which is ≥ 0. 

𝔼 ෨𝑋 + ෨𝑌
2

= 𝔼 ෨𝑋2 + 2𝔼 ෨𝑋 ෨𝑌 + 𝔼 ෨𝑌2

= 1 + 2𝔼 ෨𝑋 ෨𝑌 + 1

= 2 + 2Corr 𝑋, 𝑌 = 2 1 + Corr 𝑋, 𝑌 ≥ 0

Thus, 2 + 2Corr 𝑋, 𝑌 ≥ 0 So: Corr 𝑋, 𝑌 ≥ −1



Correlation Examples

Examples of random samples of correlated random variables, Corr 𝑋, 𝑌 > 0:

Examples of negative correlated random variables, Corr 𝑋, 𝑌 < 0:



Correlation Of Zero

Examples of independent RV with Corr 𝑋, 𝑌 = 0:

Example of dependent RV with Corr 𝑋, 𝑌 = 0. Why are these not independent?



Observations about Extreme Cases

Suppose Corr 𝑋, 𝑌 = 1. In that case, we have that ෨𝑋 = ෨𝑌. Why? 

• Because 𝐸 ෨𝑋 − ෨𝑌
2

= 𝐸 ෨𝑋2 − 2𝐸 ෨𝑋 ෨𝑌 + 𝐸 ෨𝑌2 = Var ෨𝑋 + Var ෨𝑌 − 2cov( ෨𝑋, ෨𝑌))

            = 2 − 2 Corr( ෨𝑋, ෨𝑌)

• If Corr( ෨𝑋, ෨𝑌) = 1, then 𝐸 ෨𝑋 − ෨𝑌
2

= 0, so ෨𝑋 = ෨𝑌 

Implication: if Corr 𝑋, 𝑌 = Corr( ෨𝑋, ෨𝑌) = 1, then random variables 𝑋 and 𝑌 are just 
rescaled and shifted versions of each other, i.e., there exist 𝑎 > 0 and 𝑏 such that:

𝑌 = 𝑎𝑋 + 𝑏

Can show a similar result if Corr 𝑋, 𝑌 = −1, in which case 𝑎 < 0.
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Intuitive Question

Suppose we flip a biased coin that comes up heads ¾ of the time tails ¼ of the 
time. 

• If it comes up heads, then we roll a fair six-sided dice. 

• If it comes up tails, we roll a fair four-sided die. 

• Let 𝑋 be the outcome of the die roll.

What is 𝐸 𝑋 ?

Observation: Can think of this the expectation of one RV dependent on another.

• Answer coming later



Conditional Probability and Events

Let 𝑋 be a random variable over Ω, and let 𝐴 be an event. We saw previously 
that the usual conditional probability rules apply to events involving random 
variables, e.g.,

𝑃 𝑋 = 𝑥 𝐴 =
𝑃 𝑋 = 𝑥 ∩ 𝐴

𝑃 𝐴

This is because 𝑋 = 𝑥 and 𝐴 are just events, i.e., subsets of Ω.

• Which outcomes are in the event 𝑋 = 𝑥 ? Those outcomes 𝜔 ∈ Ω which the 
function 𝑋 maps to 𝑥.



Conditional Probability and Events

Let 𝑋 be a random variable over Ω, and let 𝐴 be an event. We saw previously 
that the usual conditional probability rules apply to events involving random 
variables, e.g.,

𝑃 𝑋 = 𝑥 𝐴 =
𝑃 𝑋 = 𝑥 ∩ 𝐴

𝑃 𝐴

Naturally then, we also have the other usual statements about conditional 
probability. For example, for 𝑛 disjoint events 𝐴1 through 𝐴𝑛 that partition the 
sample space, we have:

𝑃 𝑋 = 𝑥 = 𝑃 𝑋 = 𝑥 ∩ 𝐴1 + ⋯ + 𝑃 𝑋 = 𝑥 ∩ 𝐴𝑛

𝑃 𝑋 = 𝑥 = 𝑃 𝐴1 ⋅ 𝑃 𝑋 = 𝑥 |𝐴1 + ⋯ + 𝑃 𝐴𝑛 ⋅ 𝑃 𝑋 = 𝑥 |𝐴𝑛



Conditional Distributions and Expectations

We can also think about conditional distributions.

• Example 𝑋 is the roll of a six-sided die, and 𝐴 is the event that the die roll is 
even.

The conditional distribution 𝑃 𝑋 𝐴  is:

We can also define the conditional expectation 𝐸 X|𝐴  naturally as: 

𝑥 𝑃 𝑿 = 𝑥 𝐴

1 0

2 1/3

3 0

4 1/3

5 0

6 1/3

𝐸 X|𝐴 = ෍

𝑥∈range(𝑋)

𝑥 ⋅ 𝑃 𝑋 = 𝑥 𝐴

𝐸 𝑋 𝐴 = 4



Law of Total Expectation (Binary Event)

For a binary event, we also have:

𝐸 X = 𝑃 𝐴 ⋅ 𝐸 X|𝐴 + 𝑃 ҧ𝐴 ⋅ 𝐸 X| ҧ𝐴

Note: This is intuitive but we haven’t proven this. We will at the end of this 
section.

Let’s see how we can use this to more formally solve our dice and coin 
problem.



More Formal Answer to Intuitive Question

Suppose we flip a biased coin that comes up heads ¾ of the time tails ¼ of the 
time. 

• If it comes up heads, then we roll a fair six-sided dice. 

• If it comes up tails, we roll a fair four-sided die. 

• Let 𝑋 be the outcome of the die roll.

What is 𝐸 X ? More formally, let 𝐴 be the event that the coin comes up heads.

• 𝐸 X = 𝐸 X|𝐴 ⋅ 𝑃 𝐴 + 𝐸 X| ҧ𝐴 ⋅ 𝑃 ҧ𝐴

=
7

2
⋅

3

4
+

5

2
⋅

1

4

=
26

8
=

13

4
= 3.25



Example 2 – Rolling A Six-Side Die Twice

Random variables: 𝑅1 is value of first roll, 𝑅2 is second, and 𝑆 = 𝑅1 + 𝑅2

Six outcomes with 𝑆 = 7, one for each 𝑅1 value,
  so 𝑃 𝑅1 = 𝑥 𝑆 = 7 =

1

6
 for all 𝑥, and

  𝐸 𝑅1|𝑆 = 7 = 1 ⋅
1

6
+ 2 ⋅

1

6
+ ⋯ + 6 ⋅

1

6
=

7

2

Knowing 𝑆 = 7 does not add information!
 

𝐸 𝑅1|𝑆 = 2 :
Only one outcome with S=2, so
 𝐸 𝑅1|𝑆 = 2 = 1 ⋅ 𝑃 𝑅1 = 1 𝑆 = 2 = 1 ⋅ 1 = 1

1

7 8 9 10 11 12

6 7 8 9 10 11

5 6 7 8 9 10

4 5 6 7 8 9

3 4 5 6 7 8

2 3 4 5 6 7

2 3 4 5 6

1

2

3

4

5

6𝐸 𝑅1|𝑆 = 7 = ෍

𝑥∈range(𝑅1)

𝑥 ⋅ 𝑃 𝑅1 = 𝑥 𝑆 = 7



Less Trivial Example: Expectation of a Geometric Random Variable

Let 𝑋~Geometric(𝑝). Let 𝐴 be the event that the first flip is heads. Let’s see how 
we can use conditional expectation to (for a third time) compute 𝐸 𝑋 .

What is 𝑃 𝐴 ⋅ 𝐸 𝑋 𝐴 ?

𝐸 𝑋 = 𝑃 𝐴 ⋅ 𝐸 𝑋 𝐴 + 𝑃 ҧ𝐴 ⋅ 𝐸 𝑋| ҧ𝐴 



Less Trivial Example: Expectation of a Geometric Random Variable

Let 𝑋~Geometric(𝑝). Let 𝐴 be the event that the first flip is heads. Let’s see how 
we can use conditional expectation to (for a third time) compute 𝐸 𝑋 .

What is 𝑃 𝐴 ⋅ 𝐸 𝑋 𝐴 ?

• 𝑃 𝐴 = 𝑝

• And if 𝐴 is true, 𝑋 = 1, so 𝐸 𝑋 𝐴 = 1.

• Answer: 𝑝 ⋅ 1 = 𝑝

𝐸 𝑋 = 𝑃 𝐴 ⋅ 𝐸 𝑋 𝐴 + 𝑃 ҧ𝐴 ⋅ 𝐸 𝑋| ҧ𝐴 



Less Trivial Example: Expectation of a Geometric Random Variable

Let 𝑋~Geometric(𝑝). Let 𝐴 be the event that the first flip is heads. Let’s see how 
we can use conditional expectation to (for a third time) compute 𝐸 𝑋 .

What is 𝑃 ҧ𝐴 ⋅ 𝐸 𝑋| ҧ𝐴 ?

• 𝑃 ҧ𝐴 = 1 − 𝑝

• Give 𝐸 𝑋| ҧ𝐴  answer in terms of 𝐸 𝑋 . (Remember memoryless property!)
• If 𝑌 = 𝑋| ҧ𝐴 then Y~1 + Geometric 𝑝 , so 𝐸 𝑋 ҧ𝐴 = 1 + 𝐸[𝑋]

So 𝑃 ҧ𝐴 ⋅ 𝐸 𝑋| ҧ𝐴 = (1 − 𝑝)(1 + 𝐸 𝑋 )

𝐸 𝑋 = 𝑝 + 𝑃 ҧ𝐴 ⋅ 𝐸 𝑋| ҧ𝐴



Less Trivial Example: Expectation of a Geometric Random Variable

Let 𝑋~Geometric(𝑝). Let 𝐴 be the event that the first flip is heads. Let’s see how 
we can use conditional expectation to (for a third time) compute 𝐸 𝑋 .

Now we can solve for 𝐸 𝑋 :

𝐸 𝑋 = 𝑝 + 1 − 𝑝 ⋅ 1 + 𝐸 𝑋

𝐸 𝑋 = 𝑝 + 1 + 𝐸 𝑋 − 𝑝 − 𝑝 𝐸 𝑋

= 1 + 𝐸 𝑋 − 𝑝 𝐸 𝑋

𝑝 𝐸 𝑋 = 1

𝐸 𝑋 =
1

𝑝



Law of Total Expectation Proof

More general version: Let 𝑋 be a random variable over Ω. Let 𝐴1, … , 𝐴𝑛 be 
disjoint events that partition Ω. Then:

𝐸 𝑋 = ෍

𝑖=1

𝑛

𝑃 𝐴𝑖 ⋅ 𝐸 𝑋|𝐴𝑖

Proof:

= ෍

𝑥∈range 𝑋

𝑥 ෍

𝑖=1

𝑛

𝑃 𝐴𝑖 ⋅ 𝑃 𝑋 = 𝑥 𝐴𝑖

𝐸 𝑋 = ෍

𝑥∈range 𝑋

𝑥 ⋅ 𝑃 𝑋 = 𝑥

= ෍

𝑖=1

𝑛

𝑃 𝐴𝑖 ⋅ ෍

𝑥∈range 𝑋

𝑥 𝑃 𝑋 = 𝑥 𝐴𝑖

𝐸 𝑋|𝐴𝑖
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Prediction

Problem: For correlated random variables 𝑋 and 𝑌, can we create a prediction 
function 𝑓(𝑋) that gives a good prediction for 𝑌?

Similar mathematical idea for data points – curve-fitting:
Given points 𝑥1, 𝑦1 , … , 𝑥𝑘 , 𝑦𝑘  find a polynomial of degree 𝑑 for these points

Some instances:
• 𝑑 = 𝑘 − 1: interpolation
• 𝑑 > 𝑘 − 1, with conditions on derivative: splines
• 𝑑 < 𝑘 − 1: approximation (minimize some error function)

Random variables are distributions though – not points…



For Random Variables

Common error function for approximating points: Least Square Error

Find 𝑓 that minimizes

For probability distribution – same idea, but weight outcomes by probability:

This is just the expected square of  distance between 𝑓(𝑋) and 𝑌:

𝐸[ 𝑌 − 𝑓 𝑋
2

]

Minimize 𝑓?  Restrict to a class of functions (i.e., degree 𝑑 polynomials).

෍

𝜔∈Ω

𝑃 𝜔 ⋅ 𝑌 𝜔 − 𝑓 𝑋 𝜔

2

෍

𝑖=1

𝑘

𝑦𝑘 − 𝑓 𝑥𝑘
2



Degree 0: Constant approximation

Simplest possible “function”: use 𝑓(𝑋) = 𝑐 as approximation function.

Goal: Minimize 𝐸[ 𝑌 − 𝑓 𝑋
2

] = 𝐸[ 𝑌 − 𝑐 2]     (𝑋 is ignored!)

err 𝑐 = 𝐸 𝑌 − 𝑐 2 = 𝐸[𝑌2 − 2𝑐𝑌 + 𝑐2] = 𝐸[𝑌2] − 2𝑐𝐸[𝑌] + 𝑐2

Consider as a polynomial in 𝑐, take derivative to find …

err′(𝑐) = 2𝑐 − 2𝐸[𝑌]

Setting err′(𝑐) = 0, we get 𝑐 = 𝐸[𝑌]
Double-check second derivative: 𝑒𝑟𝑟′′(𝑐) = 2 > 0 so this is indeed a minimum

Conclusion: The best degree 0 approximation to 𝑌 is 𝑓(𝑋) = 𝐸[𝑌]

This makes intuitive sense, but it’s good to see that the math “works.”



Using knowledge of a correlated variable – two six-sided die rolls

Random variables: 𝑅1 is value of first roll, 𝑅2 is second, and 𝑆 = 𝑅1 + 𝑅2

Given a value 𝒔 for 𝑺 and want the best degree-0 (constant) predictor for 𝑅1.

What do you think this is?  



Using knowledge of a correlated variable – two six-sided die rolls

Random variables: 𝑅1 is value of first roll, 𝑅2 is second, and 𝑆 = 𝑅1 + 𝑅2

Given a value 𝒔 for 𝑺 and want the best degree-0 (constant) predictor for 𝑅1.

What do you think this is?  Unsurprisingly, it is 𝐸[𝑅1|𝑆 = 𝑠]

Recall from earlier:

 𝐸 𝑅1 𝑆 = 7 =
7

2

 𝐸 𝑅1 𝑆 = 2 = 1

So if you know 𝑆 = 2, estimate that 𝑅1 = 1,

 if you know 𝑆 = 7, estimate 𝑅1 =
7

2
,

 if you know 𝑆 = 4, estimate 𝑅1 = 2, …

Down-side: Need a table of conditional expectations (not necessarily structured)

s 𝐸 𝑅1 𝑆 = 𝑠]

2 1

3 1.5

4 2

5 2.5

6 3

7 3.5

8 4

9 4.5

10 5

11 5.5

12 6



Degree 1 with mean-zero random variables – Part 1

Assume 𝑬[𝑿] = 𝟎 and 𝑬[𝒀] = 𝟎.      Let’s use 𝑓(𝑋) = 𝑚𝑋 + 𝑏 to predict 𝑌.

Goal: Minimize 𝐸[ 𝑌 − 𝑚𝑋 − 𝑏 2]

Focus on 𝑏 first:

 err 𝑚, 𝑏 = 𝐸 𝑌 − 𝑚𝑋 − 𝑏 2 = 𝐸[ 𝑌 − 𝑚𝑋 2 − 2 𝑌 − 𝑚𝑋 𝑏 + 𝑏2]

= 𝐸[ 𝑌 − 𝑚𝑋 2] − 2𝑏𝐸 𝑌 + 2𝑚𝑏𝐸 𝑋 + 𝑏2

These are 0 since we assume mean-zero for X and Y

= 𝐸[ 𝑌 − 𝑚𝑋 2]  + 𝑏2

Partial derivative wrt 𝑏:    𝜕 
𝜕𝑏 err 𝑚, 𝑏 = 2𝑏

Set to 0     ⟹   𝑏 = 0     … so to minimize error, don’t shift!



Degree 1 with mean-zero random variables – Part 2

Assume 𝑬[𝑿] = 𝟎 and 𝑬 𝒀 = 𝟎 and using 𝒃 = 𝟎:  Let’s use 𝑓(𝑋) = 𝑚𝑋 to predict 𝑌.

Goal: Minimize 𝐸[ 𝑌 − 𝑚𝑋 2]

 err 𝑚 = 𝐸 𝑌 − 𝑚𝑋 2 = 𝐸[𝑌2 − 2𝑚𝑋𝑌 + 𝑚2𝑋2]

= 𝐸 𝑌2 − 2𝑚𝐸 𝑋𝑌 + 𝑚2𝐸[𝑋2]

Take derivative:    err′(𝑚) = 2𝑚𝐸 𝑋2 − 2𝐸[𝑋𝑌]

… and set to zero:    𝑚 =
𝐸 𝑋𝑌

𝐸[𝑋2]
       (and verify with 2nd derivative that this is a min)

Since 𝐸[𝑋] = 𝐸[𝑌] = 0,     𝐸[𝑋𝑌] = cov(𝑋, 𝑌) and  𝐸 𝑋2 = Var 𝑋 ,

     … so best predictor for 𝑌 is 𝑓 𝑋 =
cov 𝑋,𝑌

Var 𝑋
 𝑋



Degree 1 with arbitrary random variables

Let’s use 𝑓 𝑋 = 𝑚𝑋 + 𝑏 to predict 𝑌.

Step 1: Shift X and Y to mean-zero random variables

 ෨𝑋 = 𝑋 − 𝐸[𝑋]      and        ෨𝑌 = 𝑌 − 𝐸[𝑌]

 Note:  Var ෨𝑋 = Var 𝑋         Var ෨𝑌 = Var 𝑌      cov ෨𝑋, ෨𝑌 = cov(𝑋, 𝑌)

Step 2: Best predictor for ෨𝑌 using ෨𝑋

 Predictor for ෨𝑌:    cov ෨𝑋, ෨𝑌

Var ෨𝑋
෨𝑋 =

cov 𝑋,𝑌

Var 𝑋
෨𝑋 =

cov 𝑋,𝑌

Var 𝑋
 (𝑋 − 𝐸 𝑋 )

Step 3: To estimate 𝑌 (instead of ෨𝑌), add 𝐸[𝑌].

 𝑓 𝑋 =
cov 𝑋,𝑌

Var 𝑋
𝑋 − 𝐸 𝑋 + 𝐸[𝑌] Called the Linear Least Squares Estimate (LLSE)

of 𝑌 given 𝑋



Degree 1 with arbitrary random variables – sanity check!

LLSE estimator: 𝑓 𝑋 =
cov 𝑋,𝑌

Var 𝑋
𝑋 − 𝐸 𝑋 + 𝐸[𝑌]

Think through some cases:

• If 𝑋 and 𝑌 are not correlated:
Then cov(𝑋, 𝑌) = 0, so 𝑓(𝑋) = 𝐸[𝑌]

In other words: ignore 𝑋 and just use the expected value of 𝑌

• If 𝑋 = 𝑌:
Then cov(𝑋, 𝑌) = Var(𝑋), and 𝐸[𝑋] = 𝐸[𝑌] so 𝑓(𝑋) = 𝑋

Both make sense!



Summary

Correlation
• Covariance sign is meaningful – magnitude has weird units

• Correlation normalizes to range −1 . .  +1:  Corr 𝑋, 𝑌 =
cov 𝑋,𝑌

𝜎𝑋𝜎𝑌

• Corr(𝑋, 𝑌) = +1 perfect positive correlation
• Corr 𝑋, 𝑌 = −1 perfect negative correlation

Conditional expectation
• Restrict attention to part of sample space (“given” condition)

• Probabilities and expectations work the same here: Notation 𝐸[𝐴|𝐵]

Prediction
• Idea: To predict random variable 𝑌, use correlated random variable 𝑋

• Error function: Squared error

• Best linear approximator has slope   cov 𝑋,𝑌

Var 𝑋
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