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Motivating Problem of the Day

Zaphod Beeblebrox is running for President of the Universe.

We want to estimate how many people will vote for Zaphod.

One approach: Ask random people.

• As long as we ask enough of them, we’ll get an accurate result.

• But how many people do we need to ask?



Motivating Problem of the Day: Samples and Coin Tosses

Total number of voters: 𝑣 Actual number of Zaphod voters: 𝑧

Assuming: A person’s vote is fixed (they don’t change) and they don’t lie…

Pick a voter at random – this is a “sample”

• Probability that this is a Zaphod-voter is 𝑧/𝑣

• This is a Bernoulli trial with “success” probability 𝑝 = 𝑧/𝑣

Same problem: Estimate the heads probability 𝑝 of a biased coin.

We switch to this terminology for the following slides.



Experimental Procedure for Determining 𝑝

Suppose you have a coin with probability of heads 𝑝. You don’t know 𝑝, but you 
want to figure it out experimentally.

Method: Toss the coin 𝑛 times. Let ℎ be the number of heads and let Ƹ𝑝 =
ℎ

𝑛
.

What we want: 𝑝 − Ƹ𝑝 < 𝜖

• Unfortunately, we can never guarantee this!

What we can get: 𝑝 − Ƹ𝑝 < 𝜖 with confidence 1 − 𝛿

• Example: 𝑝 − Ƹ𝑝 < 𝜖 with 95% confidence (𝛿 = 0.05)

• Or in terms of probabilities, we’ll settle for 𝑃 𝑝 − Ƹ𝑝 < 𝜖 ≥ 1 − 𝛿  



Today’s Answer (Spoiler)

To achieve our desired goal: 𝑃 𝑝 − Ƹ𝑝 ≤ 𝜖 ≥ 1 − 𝛿

We can show that 𝑛 ≥
1

4𝜖2𝛿
 coin flips is sufficient.

• We’ll use something called Chebyshev’s inequality to derive this later.

Example: If 𝛿 = 1% and 𝜖 = 0.05, then target 𝑛 is 
1

4 0.05 20.01
= 10,000

• That is, if we flip the coin 10,000 times, then there is only a 1% chance that 
our estimate Ƹ𝑝 is off by more than 0.05.

• Example: If we get Ƹ𝑝 = 0.43, the bound says the chance is less than 1% 
that the true 𝑝 lies outside the range 0.38, 0.48 . 



Today’s Answer (Spoiler)

To achieve our desired goal: 𝑃 𝑝 − Ƹ𝑝 ≤ 𝜖 ≥ 1 − 𝛿

We can show that 𝑛 ≥
1

4𝜖2𝛿
 coin flips is sufficient.

• We’ll use something called Chebyshev’s inequality to derive this later.

Example: If 𝛿 = 1% and 𝜖 = 0.05, then target 𝑛 is 
1

4 0.05 20.01
= 10,000

• That is, if we flip the coin 10,000 times, then there is only a 1% chance that 
our estimate Ƹ𝑝 is off by more than 0.05.

• I observe that it is also true that  
1

4 0.01 20.25
= 10,000. As a result, what else 

can I say about Ƹ𝑝?



Today’s Answer (Spoiler)

To achieve our desired goal: 𝑃 𝑝 − Ƹ𝑝 ≤ 𝜖 ≥ 1 − 𝛿

We can show that 𝑛 ≥
1

4𝜖2𝛿
 coin flips is sufficient.

• We’ll use something called Chebyshev’s inequality to derive this later.

Example: If 𝛿 = 1% and 𝜖 = 0.05, then target 𝑛 is 
1

4 0.05 20.01
= 10,000

• I observe that it is also true that  
1

4 0.01 20.25
= 10,000. 

• There is a less than 25% chance we’re off by more than 0.01.
• Example: If Ƹ𝑝 = 0.4, there is a ≥ 75% chance the true 𝑝 is in the range 

[0.39, 0.41].



In Terms of Election Polling

To achieve our desired goal: 𝑃 𝑝 − Ƹ𝑝 ≤ 𝜖 ≥ 1 − 𝛿

We can show (later!) that 𝑛 ≥
1

4𝜖2𝛿
 coin flips is sufficient.

(Surprising) Observation: It doesn’t matter how big the population of the 
country is, the number of people we need to poll to get a desired degree of 
accuracy is constant.

• Ask 10,000 people, and our bound says we have a 99% chance of being 
within 0.05 of 𝑝. True if we’re surveying Canada (40M) or China (1.4B).

Later: why the actual practice of polling is more difficult than this.



Deriving this Expression and Concentration Inequalities

I’ve given this formula without any proof or rationale!

𝑛 ≥
1

4𝜖2𝛿

We’ll derive this result using a powerful idea called a “concentration inequality”.

• A concentration inequality (of “tail bound”) is a mathematical bound on how 
likely a random variable can stray from some quantity.

• Example: For a non-negative random variable 𝑋 with expectation 45, what is 
the probability that 𝑋 > 90? 

• Surprisingly, we can bound this probability without knowing anything 
else about the RV (e.g., variance, distribution, etc).
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Thought Experiment 1

Imagine that 𝑛 = 100 students take a midterm with average score 𝜇 = 45.

• Let individual scores be 𝑠1, … , 𝑠𝑛 , so 𝜇 =
1

𝑛
σ𝑖=1

𝑛 𝑠𝑖

• Can all 100 students score greater than 𝜇 = 45 on the midterm?



Thought Experiment 1

Imagine that 𝑛 = 100 students take a midterm with average score 𝜇 = 45.

• Let individual scores be 𝑠1, … , 𝑠𝑛 , so 𝜇 =
1

𝑛
σ𝑖=1

𝑛 𝑠𝑖

• Can all 100 students score greater than 𝜇 = 45 on the midterm?

No!   This is basic “proof by contradiction” reasoning:

Assume for the sake of contradiction that 𝑠𝑖 > 𝜇 for all 𝑖. Then

So 𝜇 > 𝜇, a contradiction.         ∎

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑠𝑖 >
1

𝑛
෍

𝑖=1

𝑛

𝜇 =
1

𝑛
𝑛𝜇 = 𝜇

The “Lake Wobegon Theorem”



Thought Experiment 2

Imagine that 𝑛 = 100 students take a midterm with average score 𝜇 = 45.

• Let individual scores be 𝑠1, … , 𝑠𝑛 , so 𝜇 =
1

𝑛
σ𝑖=1

𝑛 𝑠𝑖

• Can 𝑛

2
= 50 students score greater than 2𝜇 = 90 on the midterm?



Thought Experiment 2

Imagine that 𝑛 = 100 students take a midterm with average score 𝜇 = 45.

• Let individual scores be 𝑠1, … , 𝑠𝑛 , so 𝜇 =
1

𝑛
σ𝑖=1

𝑛 𝑠𝑖

• Can 𝑛

2
= 50 students score greater than 2𝜇 = 90 on the midterm?

No!   Again, assume for the sake of contradiction that 𝑛

2
 students score > 2𝜇.

Let 𝐻 (with |𝐻| =
𝑛

2
) be the set of “high scorers”, so 𝑖 ∈ 𝐻 ⟹  𝑠𝑖 > 2𝜇

What about students who are not high-scorers? We only know 𝑖 ∈ ഥ𝐻  ⟹  𝑠𝑖 ≥ 0

Again we get the contradiction 𝜇 > 𝜇.                 ∎

𝜇 =
1

𝑛
෍

𝑖=1

𝑛

𝑠𝑖 =
1

𝑛
෍

𝑖∈𝐻

𝑠𝑖 + ෍

𝑖∈ ഥ𝐻

𝑠𝑖 >
1

𝑛
෍

𝑖∈𝐻

2𝜇 + ෍

𝑖∈ ഥ𝐻

0 =
1

𝑛

𝑛

2
⋅ 2𝜇 = 𝜇



Thought Experiment 3

Consider a non-negative random variable with 𝐸 𝑋 = 45. 

• Claim: 𝑃(𝑋 ≥ 90) ≤
1

2
.

Why?



Thought Experiment 3

Consider a non-negative random variable with 𝐸 𝑋 = 45. 

• Claim: 𝑃(𝑋 ≥ 90) ≤
1

2
.

Let 𝐴 be the event that 𝑋 ≥ 90, and assume for contradiction that 𝑃(𝐴) >
1

2

What can we say about conditional expectations?

• 𝐸[𝑋|𝐴]?

• 𝐸 𝑋 ҧ𝐴 ?

So:

𝐸 𝑋 = 𝐸 𝑋 𝐴 ⋅ 𝑃 𝐴 + 𝐸 𝑋 ҧ𝐴 ⋅ 𝑃 ҧ𝐴

𝐸 𝑋 𝐴 ≥ 90

𝐸 𝑋 ҧ𝐴 ≥ 0

≥ 90 ⋅ 𝑃 𝐴 + 0 ⋅ 𝑃 ҧ𝐴 > 90 ⋅
1

2
= 45

So we have 𝐸[𝑋] > 45, a contradiction.                                                             ∎



Markov’s Inequality

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐

Example: Suppose 𝐸 𝑋 = 45, with 𝑐 = 90:       𝑃 𝑋 ≥ 90 ≤ 45/90 = 1/2  

• We saw this for these specific values already

• Reasoning: If 𝑃 𝑋 ≥ 90 > 1/2, then these values would push 𝐸 𝑋  above 45.



Markov’s Inequality

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐
 

Proof:
𝐸 𝑋 = ෍

𝜔∈Ω

𝑋 𝜔 × 𝑃 𝜔

≥ ෍

𝜔:𝑋 𝜔 ≥𝑐

𝑋(𝜔) × 𝑃 𝜔

≥ ෍

𝜔:𝑋 𝜔 ≥𝑐

𝑐 × 𝑃 𝜔

= 𝑐 ෍

𝜔:𝑋 𝜔 ≥𝑐

𝑃 𝜔 = 𝑐 𝑃 𝑋 ≥ 𝑐

Assigning all “large” 
outcomes to c.

Assigning all “small” 
outcomes to zero.



Example Using Markov’s Inequality 1: Money Giveaway

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐
 

MacKenzie Scott is giving away random amounts of money to people, where 𝑋 
is a random variable (unknown distribution) for the amount given to someone. 
What is the probability that someone gets more than 5 times the average?

Here, 𝑐 = 5 𝐸 𝑋 , so we have: 

=
1

5
≤

𝐸 𝑋

5 𝐸 𝑋
𝑃 𝑋 ≥ 5 𝐸 𝑋



Example Using Markov’s Inequality 2: Coin Toss

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐

You toss a fair coin 𝑛 times. Let 𝑋 be the number of heads. What does Markov’s 

Inequality tell us about the probability that 𝑋 ≥
3

4
𝑛?

Hint: What is 𝐸 𝑋 , i.e., expected number of heads for 𝑛 coin flips? 



Example Using Markov’s Inequality 2: Coin Toss

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐

You toss a fair coin 𝑛 times. Let 𝑋 be the number of heads. What does Markov’s 

Inequality tell us about the probability that 𝑋 ≥
3

4
𝑛?

𝑃 𝑋 ≥
3

4
𝑛 ≤

𝑛/2

3𝑛/4

𝐸 𝑋 = 𝑛/2

=
1/2

3/4
=

1

2
⋅

4

3
=

2

3



Example Using Markov’s Inequality 2: Coin Toss

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐

You toss a fair coin 𝑛 times. Let 𝑋 be the number of heads. What does Markov’s 

Inequality tell us about the probability that 𝑋 ≥
3

4
𝑛?

For this example, is this bound “good” or perhaps “tight”?

• No, it says if you flip a coin 1,000,000 times, probability of getting 750,000 
heads is less than 2/3. Actual probability is far lower.

𝑃 𝑋 ≥
3

4
𝑛 ≤

2

3



Concentration Inequalities and Bound Tightness

You can’t assume concentration inequalities are tight bounds!

• Just like the union bound, they are simply bounds on a probability.

In the case of a binomial random variable, Markov’s Inequality is pretty useless. 

• It is true that the probability of getting 3/4s heads is less than 2/3, but this 
fact is not useful.

Note: Markov’s Inequality can actually be a tight bound.

• Consider RV where 𝑋 = 𝜇𝑘 with probability 1/𝑘, and otherwise 𝑋 = 0. In this 
case, setting 𝑐 = 𝜇𝑘 we have 𝑃(𝑋 ≥ 𝑐) = 1/𝑘 = 𝜇/𝑐, and the Markov bound is 
tight at that point.



Markov’s Inequality

Markov’s Inequality: For a nonnegative random variable 𝑋 (i.e., 𝑋 𝜔 ≥ 0 for 
all 𝜔 ∈ Ω) with finite mean, and any constant 𝑐 > 0, we have:

𝑃 𝑋 ≥ 𝑐 ≤
𝐸 𝑋

𝑐

What happens if we drop non-negativity?

• Naturally, Markov’s Inequality as stated above is no longer true. Trivial 
example: one student gets -1,000,000 points on a midterm, then everyone 
else will do way better than twice the mean.
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Expectations and Distributions (Visually)

Consider the distribution below.

• We can think of the expectation as the “center of mass” of the distribution. 

• Each value has mass equal to the height of the respective bar.



Markov’s Inequality Visually

Markov’s inequality gives us a bound on how much mass there can be above 
some constant 𝑐. Example if 𝑐 = 2 𝐸 𝑋  shown below.

𝑃 𝑋 ≥ 2 𝐸 𝑋 ≤ 1/2



Chebyshev’s Inequality Visually

Observation: It might be more useful to have an inequality that bounds the 
amount of mass that is far from the mean (in either direction), and allows 
negative values for the rv.

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤ ? ?



Chebyshev’s Inequality

We’ll use two summary statistics: 𝐸 𝑋  and var(𝑋) to provide a more useful 
bound on how far we stray from the mean.

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Before we set about proving this inequality, let’s build some intuition for what it 
means.



Chebyshev’s Inequality: Intution 1, the Alternate Form

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Suppose we pick the constant 𝑐 = 𝑘𝜎, what is the upper bound?

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ ? ?



Chebyshev’s Inequality

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Suppose we pick the constant 𝑐 = 𝑘𝜎, what is the upper bound?

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
var 𝑋

𝑘2𝜎2

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2

=
𝜎2

𝑘2𝜎2
=

1

𝑘2



Chebyshev’s Inequality

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Or equivalently:

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2

Suppose we have a random variable, what bound can we place on the 
probability that we are more than three standard deviations from the mean? 
More than one standard deviation from the mean?



Chebyshev’s Inequality

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Or equivalently:

𝑃 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2

Suppose we have a random variable, what bound can we place on the 
probability that we are more three and one standard deviations?

• The probabilities are ≤ 1/9 and 1, respectively.

• Note, for one standard deviation, the result is trivial, i.e., Chebyshev’s tells us 
literally nothing. In general, Chebyshev’s is a loose bound.



Chebyshev’s is a Loose Bound: Normal Distribution Example

There’s a distribution we’ll talk about next week called the normal distribution.

• Probability that you are less than 3 standard deviations from the mean is 
99.7%.

• Or equivalently: Probability that are you are more than 3 standard deviations 
from the mean is 0.3%.

Chebyshev’s is considerably looser. It says the probability of being more than 3 
standard deviations from the mean is 11.1%

Key difference: Chebyshev is true of all possible distributions. The 99.7% rule is 
only for the Normal.



Chebyshev Proof

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Dead End Proof: Observe that 𝑋 − 𝜇  is a random variable. 

• Since 𝑋 − 𝜇  is non-negative, we could try to use Markov’s inequality to try to 
bound 𝑃 𝑋 − 𝜇 ≥ 𝑐 , but expectation of an absolute value is a pain.



Chebyshev Proof

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Proof: 

• Observe that 𝑋 − 𝜇  is a random variable. 

• Observe that any outcome 𝜔, 𝑋 𝜔 − 𝜇 ≥ 𝑐 if and only if 𝑋 𝜔 − 𝜇 2 ≥ 𝑐2. 
This means that:

• Let 𝑌 = 𝑋 − 𝜇 2. 

• Then by Markov’s inequality:

𝑃 𝑋 − 𝜇 ≥ 𝑐 = 𝑃 𝑋 − 𝜇 2 ≥ 𝑐2 

𝑃 𝑌 ≥ 𝑐2 ≤
𝐸 𝑌

𝑐2



Chebyshev Proof

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2
 

Proof: 

• Observe that 𝑋 − 𝜇  is a random variable. 

• Observe that any outcome 𝜔, 𝑋 𝜔 − 𝜇 ≥ 𝑐 if and only if 𝑋 𝜔 − 𝜇 2 ≥ 𝑐2. 
This means that:

• Let 𝑌 = 𝑋 − 𝜇 2. 

• Then by Markov’s inequality:

𝑃 𝑋 − 𝜇 ≥ 𝑐 = 𝑃 𝑋 − 𝜇 2 ≥ 𝑐2 

𝑃 𝑌 ≥ 𝑐2 ≤
𝐸 𝑌

𝑐2

What is E Y ?



Chebyshev Proof

Chebyshev’s Inequality: If 𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any 
constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2
 

Proof : 

• Observe that 𝑋 − 𝜇  is a random variable. 

• Observe that any outcome 𝜔, 𝑋 𝜔 − 𝜇 ≥ 𝑐 if and only if 𝑋 𝜔 − 𝜇 2 ≥ 𝑐2. 
This means that:

• Let 𝑌 = 𝑋 − 𝜇 2.  𝐸 𝑌 = var(𝑋)

• Then by Markov’s inequality:

𝑃 𝑋 − 𝜇 ≥ 𝑐 = 𝑃 𝑋 − 𝜇 2 ≥ 𝑐2 

𝑃 𝑌 ≥ 𝑐2 ≤
𝐸 𝑌

𝑐2
=

var 𝑋

𝑐2



Chebyshev’s Inequality and Markov’s Inequality

Even though Markov’s Inequality is weak for understanding 𝑋, we were able to 
enhance its power by considering a new random variable 𝑌 = 𝑋 − 𝜇 2 and 
considering bounds on this variable.

• Yes! You can enhance the bound further by making up new random variables 
such as 𝑋 − 𝜇 10, but then you need to be able to compute 𝐸 𝑋 − 𝜇 10 .
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Application: Probability of Coin Toss Outcomes

Earlier, we tried to use Markov’s Inequality to understand the behavior of 
𝑋~Binomial(𝑛, 0.5). 

Specifically, we asked: What is the probability that at least 3/4s of our flips 
come up heads.

Using Markov’s Inequality, we found that  𝑃 𝑋 ≥
3

4
𝑛 ≤

2

3
.

This bound was not useful! As we flip more coins, the actual probability drops.

• If we use Chebyshev’s Inequality instead, we’ll see a dependence on 𝑛.



Application: Probability of Coin Toss Outcomes

For 𝑋~Binomial(𝑛, 0.5), let’s bound 𝑃 𝑋 ≥
3

4
𝑛 , using Chebyshev’s Inequality: If 

𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

First, we write expectation and variance:                

Then, get 

𝐸 𝑋 =
𝑛

2
var 𝑋 = 𝑛 ⋅ p ⋅ 1 − 𝑝 =

𝑛

4

𝑃 𝑋 ≥
3

4
𝑛

= 𝑃 𝑋 − 𝔼 𝑋 ≥
1

4
n

≤ 𝑃 𝑋 − 𝐸 𝑋 ≥
𝑛

4

≤
𝑣𝑎𝑟 𝑋

𝑛
4

2

=
4

𝑛

into the appropriate form to apply Chebyshev:

𝑃 𝑋 ≥
3

4
𝑛 = 𝑃 𝑋 − 𝐸 𝑋 ≥

3

4
n − 𝐸 𝑋 = 𝑃 𝑋 − 𝐸 𝑋 ≥

𝑛

4



Application: Probability of Coin Toss Outcomes

For 𝑋~Binomial(𝑛, 0.5), let’s bound 𝑃 𝑋 ≥
3

4
𝑛 , using Chebyshev’s Inequality: If 

𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

First, we write expectation and variance:                

Then, 

𝐸 𝑋 =
𝑛

2
var 𝑋 = 𝑛 ⋅ p ⋅ 1 − 𝑝 =

𝑛

4

𝑃 𝑋 ≥
3

4
𝑛 ≤ 𝑃 𝑋 − 𝐸 𝑋 ≥

𝑛

4

≤
var 𝑋

𝑛
4

2
=

𝑛/4

𝑛
4

2 =
4

𝑛



Application: Probability of Coin Toss Outcomes

For 𝑋~Binomial(𝑛, 0.5), let’s bound 𝑃 𝑋 ≥
3

4
𝑛 , using Chebyshev’s Inequality: If 

𝑋 is a random variable with 𝐸 𝑋 = 𝜇, then for any constant 𝑐 > 0:

𝑃 𝑋 − 𝜇 ≥ 𝑐 ≤
var 𝑋

𝑐2

Our Chebyshev bound is:

In other words, as we flip more coins, the chance of having 75% (or more) 
heads drops.

• For n = 1,000, this bound says probability is less than or equal to 0.4%

• Note: This is still a very loose bound! Actual probability is much lower.

𝑃 𝑋 ≥
3

4
𝑛 ≤

4

𝑛



Back to Estimating 𝑝 for a Coin

We have a coin with unknown heads probability 𝑝. We estimate it by tossing a 
coin n times.

• 𝑋 is the number of heads. 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.

• Our empirical mean is 

Goal: How big does 𝑛 need to be so that 𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤ 𝛿

Observation, we can bound                         using Chebyshev’s inequality.

• To show this, we’ll need 𝐸[ Ƹ𝑝].

Ƹ𝑝 =
𝑋

𝑛

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖

𝐸 Ƹ𝑝 = 𝐸
𝑋

𝑛
=

1

𝑛
𝐸 𝑋 =

𝑝𝑛

𝑛
= 𝑝



Back to Estimating 𝑝 for a Coin

We have a coin with unknown heads probability 𝑝. We estimate it by tossing a 
coin n times.

• 𝑋 is the number of heads. 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.

• Our empirical mean is 

Observation, we can bound                         using Chebyshev’s inequality.

• Since 𝐸 Ƹ𝑝 = 𝑝, we have that:

• So now we need to know var Ƹ𝑝 .

Ƹ𝑝 =
𝑋

𝑛

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖

𝑃 Ƹ𝑝 − 𝐸 Ƹ𝑝 ≥ 𝜖 = 𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤
var Ƹ𝑝

𝜖2

var Ƹ𝑝 = var
𝑋

𝑛
=

var 𝑋

𝑛2 =
var 𝑋1 + ⋯ + 𝑋𝑛

𝑛2 =
𝑛 ⋅ var(𝑋1)

𝑛2
=

𝑛 ⋅ 𝑝(1 − 𝑝)

𝑛2

=
𝑝 1 − 𝑝

 𝑛



Back to Estimating 𝑝 for a Coin

We have a coin with unknown heads probability 𝑝. We estimate it by tossing a 
coin n times.

• 𝑋 is the number of heads. 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.

• Our empirical mean is 

Observation, we can bound                         using Chebyshev’s inequality.

• Since 𝐸 Ƹ𝑝 = 𝑝, and var Ƹ𝑝 = 𝑝 1 − 𝑝 /𝑛 we have that:

At this point, it might seem like we’re a bit stuck! The variance of Ƹ𝑝 seems to 
depend on 𝑝, which is what we’re trying to estimate! Any idea how to proceed?

Ƹ𝑝 =
𝑋

𝑛

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖

𝑃 Ƹ𝑝 − 𝐸 Ƹ𝑝 ≥ 𝜖 = 𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤
𝑝 1 − 𝑝

𝑛𝜖2



Back to Estimating 𝑝 for a Coin

We have a coin with unknown heads probability 𝑝. We estimate it by tossing a 
coin n times.

• 𝑋 is the number of heads. 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.

• Our empirical mean is 

Observation, we can bound                         using Chebyshev’s inequality.

• Since 𝔼 Ƹ𝑝 = 𝑝, and var Ƹ𝑝 = 𝑝 1 − 𝑝 /𝑛 we have that:

Solution: Be conservative and replace 𝑝 1 − 𝑝  with its maximum possible value. 
What is it?

Ƹ𝑝 =
𝑋

𝑛

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖

𝑃 Ƹ𝑝 − 𝐸 Ƹ𝑝 ≥ 𝜖 = 𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤
𝑝 1 − 𝑝

𝑛𝜖2



Back to Estimating 𝑝 for a Coin

We have a coin with unknown heads probability 𝑝. We estimate it by tossing a 
coin n times.

• 𝑋 is the number of heads. 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.

• Our empirical mean is 

Observation, we can bound                         using Chebyshev’s inequality.

• Since 𝔼 Ƹ𝑝 = 𝑝, and var Ƹ𝑝 = 𝑝 1 − 𝑝 /𝑛 we have that:

Solution: Be conservative and replace 𝑝 1 − 𝑝  with its maximum possible value 
of 1/4, which we get when 𝑝 = 1/2.

Ƹ𝑝 =
𝑋

𝑛

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖

𝑃 Ƹ𝑝 − 𝐸 Ƹ𝑝 ≥ 𝜖 = 𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤
𝑝 1 − 𝑝

𝑛𝜖2
≤

1

4𝑛𝜖2



Back to Estimating 𝑝 for a Coin

We have a coin with unknown heads probability 𝑝. We estimate it by tossing a 
coin n times.

• 𝑋 is the number of heads. 𝑋 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛.

• Our empirical mean is 

Using Chebychev’s inequality we have shown:

Earlier, our goal was to have our probability

To achieve this goal, we need: 

Ƹ𝑝 =
𝑋

𝑛

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖 ≤
1

4𝑛𝜖2

𝑃 Ƹ𝑝 − 𝑝 ≥ 𝜖  ≤ 𝛿

1

4𝑛𝜖2
≤ 𝛿 ⇔  

1

4𝛿𝜖2
≤ 𝑛
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Weak Law of Large Numbers

As a quick detour before wrapping up today, let’s talk about the Weak Law of 
Large Numbers.

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇, and var 𝑋𝑖 = 𝜎2 < ∞, then for every 𝜖 > 0, we have that:

lim
𝑛→∞

𝑃
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 

𝑛
− 𝜇 ≥ 𝜖 = 0

Informal interpretation: As we run the same experiment over and over, the 
difference between the empirical average and the expectation converges to 
zero.



Weak Law of Large Numbers

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇, and var 𝑋𝑖 = 𝜎2 < ∞, then for every 𝜖 > 0, we have that:

lim
𝑛→∞

𝑃
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 

𝑛
− 𝜇 ≥ 𝜖 = 0

Proof: Let 𝜎2 = var 𝑋𝑖 . Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛.   Let 𝑌𝑛 = 𝑆𝑛/𝑛

Questions:

• What is 𝐸 𝑌𝑛 ?

• What is var 𝑌𝑛 ?



Weak Law of Large Numbers

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇, and var 𝑋𝑖 = 𝜎2 < ∞, then for every 𝜖 > 0, we have that:

lim
𝑛→∞

𝑃
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 

𝑛
− 𝜇 ≥ 𝜖 = 0

Proof: Let 𝜎2 = var 𝑋𝑖 . Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛.   Let 𝑌𝑛 = 𝑆𝑛/𝑛

Questions:

• What is 𝐸 𝑌𝑛 ?  𝐸 𝑌𝑛 = 𝐸 (𝑋1 + ⋯ + 𝑋𝑛)/𝑛 = 𝐸 𝑋1 + ⋯ + 𝐸 𝑋𝑛 /𝑛 = 𝜇𝑛/𝑛 = 𝜇

• What is var 𝑌𝑛 ?

var 𝑌𝑛 = var
𝑋1 + ⋯ + 𝑋𝑛

𝑛
=

var 𝑋1 + ⋯ + 𝑋𝑛  
𝑛2

=
𝑛 var 𝑋𝑖

𝑛2
=

𝜎2

𝑛



Weak Law of Large Numbers

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇, and var 𝑋𝑖 = 𝜎2 < ∞, then for every 𝜖 > 0, we have that:

lim
𝑛→∞

𝑃
𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 

𝑛
− 𝜇 ≥ 𝜖 = 0

Proof: Let 𝜎2 = var 𝑋𝑖 . Let 𝑆𝑛 = 𝑋1 + ⋯ + 𝑋𝑛.   Let 𝑌𝑛 = 𝑆𝑛/𝑛

• 𝐸 𝑌𝑛 = 𝜇

• var 𝑌𝑛 = 𝜎2/𝑛

Chebyshev’s inequality tells us: 

𝑃 𝑌𝑛 − 𝜇 ≥ 𝜖 ≤
var 𝑌𝑛

𝜖2
=

𝜎2

𝑛𝜖2
lim

𝑛→∞

𝜎2

𝑛𝜖2
= 0So:
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Back to the Polling Problem

Total number of voters: 𝑣 Actual number of Zaphod voters: 𝑧

Assuming: A person’s vote is fixed (they don’t change) and they don’t lie…

Pick a voter at random – this is a “sample”

• Probability that this is a Zaphod-voter is 𝑧/𝑣

• This is a Bernoulli trial with “success” probability 𝑝 = 𝑧/𝑣

Randomly sample 𝑛 ≥
1

4𝜖2𝛿
 voters to get 𝑃 𝑝 − Ƹ𝑝 ≤ 𝜖 ≥ 1 − 𝛿



Back to the Polling Problem

Total number of voters: 𝑣 Actual number of Zaphod voters: 𝑧

Randomly sample 𝑛 ≥
1

4𝜖2𝛿
 voters to get 𝑃 𝑝 − Ƹ𝑝 ≤ 𝜖 ≥ 1 − 𝛿

How can this go wrong?    … or: Why aren’t polls always right (or at least better)?

• Are you really randomly sampling voters?
What list are you using? Do all voters have phones? Do all answer their phones?

• Do people answer honestly?

• Do people never change their mind?

• Did you just get unlucky?   (probability 𝛿 > 0 of the bound not holding!)

Reminder: Real life is messy.  We don’t live in ideal mathematical models…
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