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Framing: A Random Variable with Range [0, 2]

Imagine that we choose a real number 𝑋, uniformly at random from [0, 2]

What is the probability that 𝑋 =  0.3?

• Zero! There’s uncountably infinite numbers we could have chosen.

What is 𝑃 𝑋 ≤ 1/2 ?

• 25%. One quarter of the possibilities are in this range.

What is 𝑃 𝑋 ∈ 0.7, 0.9 ?

• 10%, because one tenth of the possibilities are in this range.



Framing: A Random Variable with Range [0, 2]

Imagine that we choose a real number 𝑋, uniformly at random from [0, 2]

For other 0 ≤ 𝑎 ≤ 𝑏 ≤ 2: What is 𝑃 𝑋 ∈ 𝑎, 𝑏 ?

• Following the pattern from 𝑃 𝑋 ∈ 0.7, 0.9 :

𝑃 𝑋 = 0.3 0
𝑃 𝑋 ≤ 1/2 25%

𝑃 𝑋 ∈ 0.7, 0.9 10%

𝑃 𝑋 ∈ 𝑎, 𝑏 =
𝑏 − 𝑎

2



Framing: A Random Variable with Range [0, 2]

Imagine that we choose a real number 𝑋, uniformly at random from [0, 2]

For other 0 ≤ 𝑎 ≤ 𝑏 ≤ 2:  What is 𝑃 𝑋 ∈ 𝑎, 𝑏 ?

• Following the pattern from 𝑃 𝑋 ∈ 0.7, 0.9 :

𝑃 𝑋 = 0.3 0
𝑃 𝑋 ≤ 1/2 25%

𝑃 𝑋 ∈ 0.7, 0.9 10%
𝑃 𝑋 ∈ 𝑎, 𝑏 𝑏 − 𝑎
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𝑏 − 𝑎
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Review: Distributions of Discrete Random Variables

For a discrete random variable, we have the notion of the distribution of a 
random variable.

• Enumeration of every value and its probability.
𝑎 𝑃 𝑋 = 𝑎

2 1/36
3 2/36
4 3/36
5 4/36
6 5/36
7 6/36
8 5/36
9 4/36
10 3/36
11 2/36
12 1/36

The function that maps each value to its probability is 
called the Probability Mass Function.

Examples:

• The PMF of rolling two six-sided dice is to the right.

• The PMF of 𝑋~Binomial(𝑛, 𝑝) is 𝑛
𝑖

𝑝𝑖 1 − 𝑝 𝑛−𝑖

• The PMF of 𝑋~Geometric(𝑝) is 1 − 𝑝 𝑖−1𝑝

PMF is just a new term for something we’ve seen before.



Framing: A Random Variable with Range [0, 2]

Imagine that we choose a real number 𝑋, uniformly at random from [0, 2]

• For this random variable, the probability mass function is not useful. 
𝑃 𝑋 = 0.3 = 0, and in general 𝑃 𝑋 = 𝑥 = 0 for all 𝑥.

There is, however, a useful analogue called the “probability density function”, 
that looks like this:



Framing: A Random Variable with Range [0, 2]

Imagine that we choose a real number 𝑋, uniformly at random from [0, 2]

• The “probability mass function” is not useful, always zero.

• The “probability density function” looks like this:

What should be the y-value of the PDF in the non-zero region?



Framing: A Random Variable with Range [0, 2]

Imagine that we choose a real number 𝑋, uniformly at random from [0, 2]

• To compute 𝑃 𝑋 ∈ 𝑎, 𝑏 , we compute the area under the probability density 
function, i.e., (𝑏 − 𝑎)/2.

• For this PDF, we can find the area by inspection. It’s a rectangle with width 2 
and height 0.5, so area is 2 × 0.5 = 1. More generally, we can use integration.

I picked 0.5!



Probability Density Function (as described in the notes)

Definition 21.1 (Probability Density Function). A probability density function 
(PDF) for a real-valued random variable 𝑋 is a function 𝑓 ∶ ℝ → ℝ satisfying:

1. 𝑓 is non-negative: 𝑓 𝑥 ≥ 0, ∀𝑥 ∈ ℝ

2. The total integral of 𝑓 is equal to 1: ׬
−∞

∞
𝑓 𝑥 𝑑𝑥 = 1

Then the distribution of 𝑋 is given by:

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 =  න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 , for all 𝑎 < 𝑏

Can think of 𝑓 𝑥  as the ”probability per unit length” in the vicinity of 𝑥.

• 𝑓 𝑥  values are not a probability, may be > 1.

PDF is usually lowercase 𝑓



Another Example Distribution: The Triangle Distribution

Consider the distribution below:

• What is 𝑃 𝑋 ≤ −1 ?



Another Example Distribution: The Triangle Distribution

Consider the distribution below:

• What is 𝑃 𝑋 ≤ −1 ?

• This is a right triangle with base 1, height 1/4, so area is 𝑏ℎ/2 = 1/8 = 0.125



Another Example Distribution: The Triangle Distribution

Consider the distribution below:

• What is 𝑃 𝑋 ≤ −1 ? Can also compute using integration.

𝑃 −∞ ≤ 𝑋 ≤ −1 =  න
−∞

−1

𝑓 𝑥 𝑑𝑥 =  න
−2

−1

0.25𝑥 + 0.5 𝑑𝑥

=  ቚ(0.125𝑥2 + 0.5𝑥)
𝑥=−2

𝑥=−1

= 0.125 − 0.5 − (0.5 − 1)

= 0.125 − 0.5 − 0.5 + 1

= 0.125

Hypotenuse of triangle is a line with slope 0.25 and y-intercept 0.5



The Cumulative Density Function

In the previous exercise, we computed:

This has a special name: The Cumulative Distribution Function (CDF).

• The CDF tells us the probability that the random variable is ≤ 𝑎.

• The CDF is the integral of the PDF from −∞ to 𝑎.

• The CDF is often given as capital 𝐹, e.g., 𝐹 𝑎 = 𝑃 𝑋 ≤ 𝑎 .

• Likewise, the PDF is the derivative with respect to 𝑎 of the CDF:

𝑃 −∞ ≤ 𝑋 ≤ 𝑎 = 𝑃 𝑋 ≤ 𝑎 =  න
−∞

𝑎

𝑓 𝑥 𝑑𝑥

𝑓 𝑎 =
𝑑𝐹 𝑎

𝑑𝑎



Cumulative Density Function Example 1: Uniform Distribution

Below, we plot the PDF and CDF of the Uniform Distribution together.

• Note: The CDF is the integral of the PDF from −∞ to 𝑥.

• Note: The CDF always grows towards 1 (and never exceeds it).

PDF: Probability per unit length CDF: 𝑃(𝑋 ≤ 𝑥)



Cumulative Density Function Example 2: Uniform Distribution

Below, we plot the PDF and CDF of the Uniform Distribution together.

• Note: The CDF is the integral of the PDF from −∞ to 𝑥.

• Note: The CDF always grows towards 1 (and never exceeds it).

Integral of a line is a parabola.

PDF: Probability per unit length CDF: 𝑃(𝑋 ≤ 𝑥)



Applying a CDF

Given that CDFs are already the integral of the PDF, we can use the CDF 
directly to compute the probability of events without integrating.

Example, consider the distribution 𝑋 with PDF 𝑓 𝑥  and CDF 𝐹 𝑥  given below:

How would we compute 𝑃 𝑥 ∈ −4, 2 ?



Applying a CDF

Given that CDFs are already the integral of the PDF, we can use the CDF 
directly to compute the probability of events without integrating.

Example, consider the distribution 𝑋 with PDF 𝑓 𝑥  and CDF 𝐹 𝑥  given below:

How would we compute 𝑃 𝑥 ∈ −4, 2 ? Just compute 𝐹 2 − 𝐹 −4 .

𝐹(2)

𝐹(−4)
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Discrete vs. Continuous Probability Distributions

We characterize discrete probability distributions by probabilities of outcomes.

• First, we thought about 𝑃 𝜔 .

• We later defined events as a collection of samples in Ω. For an event 𝐴, we 
said that 𝑃 𝐴 = σ𝜔∈𝐴 𝑃 𝜔

Example:

• For 𝑋~Binomial(𝑛, 𝑝), PMF is 𝑛
𝑖

𝑝𝑖 1 − 𝑝 𝑛−𝑖

• 𝑃 𝑋 ≤ 2 = 𝑛
0

𝑝0 1 − 𝑝 𝑛−0 + 𝑛
1

𝑝1 1 − 𝑝 𝑛−1 + 𝑛
2

𝑝2 1 − 𝑝 𝑛−2

= ෍

𝑖=0

2
𝑛

𝑖
𝑝𝑖 1 − 𝑝 𝑛−𝑖

Sum for cumulative probability in discrete case – integral for continuous.



Discrete vs. Continuous Probability Distributions

By contrast, for continuous probability distributions, we look at events first. 

• CDF gives 𝑃 𝑋 ≤ 𝑎 , which is the probability of the event that 𝑋 is less than or 
equal to 𝑎.

• More generally, we only ever care about the probability of intervals (or unions 
of intervals).

• PDF is the continuous analog of the PMF. PDF outputs are not probabilities.



Continuous Uniform as the Limit of Discrete Uniform

We can think of continuous distributions as the large 𝑛 limit of discrete 
distributions. For example:

Let 𝐶 be uniformly random (continuously) over ( ]0, 1 . Let 𝑛 be some integer.

Define a new random variable

• Example: If 𝐶 = 0.53557162, and 𝑛 = 1000, then

Then 𝐷 is a discrete random variable that is uniform in 1

𝑛
,

2

𝑛
,

3

𝑛
, … ,

𝑛

𝑛

Naturally 𝐶 − 𝐷 ≤
1

𝑛
, so as 𝑛 goes to infinity, 𝐷 becomes like 𝐶.

𝐷 =
𝐶 ⋅ 𝑛

𝑛
𝐷 =

535.57162

1000
=

536

1000



Goal: Exponential Random Variable. Recall: Geometric

Let’s use this large 𝑛 limit idea to derive an important continuous distribution: 
The exponential distribution is the continuous analog to the geometric 
distribution. 

Recall, if 𝑋~Geometric(𝑝), we are effectively modeling the number of coin 
tosses we need to make until we get 𝐻, where 𝑃 𝐻 = 𝑝.

• 𝑃 𝑋 = 𝑖 = 1 − 𝑝 𝑖−1𝑝

• 𝑃 𝑋 > 𝑖 = 1 − 𝑝 𝑖    (this is the probability the first 𝑖 flips are all tails)



Time Interpretation of Geometric Random Variables

Imagine that we are flipping coins until we get heads at some fixed rate of time, 
e.g., one flip per minute. Suppose we model this process with a random 
variable 𝑋~Geometric(𝜆1). 

• Here I’m just using 𝜆1 instead of 𝑝. There’s nothing important about this.

Now suppose we model the process of flipping coins until we get heads at a 
rate of one flip per second. Suppose we model this process as the random 
variable 𝑋60~Geometric 𝜆2 . 

• What does 𝑋60 tell you?



Time Interpretation of Geometric Random Variables

Imagine that we are flipping coins until we get heads at some fixed rate of time, 
e.g., one flip per minute. Suppose we model this process with a random 
variable 𝑋~Geometric(𝜆1). 

• Here I’m just using 𝜆1 instead of 𝑝. There’s nothing important about this.

Now suppose we model the process of flipping coins until we get heads at a 
rate of one flip per second. Suppose we model this process as the random 
variable 𝑋60~Geometric 𝜆2 . 

• What does 𝑋60 tell you? The number of seconds you have to wait to get the 
first heads when flipping with heads probability 𝜆2.



Time Interpretation of Geometric Random Variables

Imagine that we are flipping coins until we get heads at some fixed rate of time, 
e.g., one flip per minute. Suppose we model this process with a random 
variable 𝑋~Geometric(𝜆). 

• Here I’m just using 𝜆 instead of 𝑝. There’s nothing important about this.

Now suppose we model the process of flipping coins until we get heads at a 
rate of one flip per second. Suppose we model this process as the random 

variable 𝑋60~Geometric
𝜆

60
. 

• What does 𝑋60 tell you? The number of seconds you have to wait to get the 
first heads when flipping with heads probability 𝜆/60. Note: We’ve here 
chosen 𝜆2 = 𝜆1/60

If we multiply 𝑋 by 60, do we get 𝑋60?



Time Interpretation of Geometric Random Variables

Imagine that we are flipping coins until we get heads at some fixed rate of time, 
e.g., one flip per minute. Suppose we model this process with a random 
variable 𝑋~Geometric(𝜆). 

• Here I’m just using 𝜆 instead of 𝑝. There’s nothing important about this.

Now suppose we model the process of flipping coins until we get heads at a 
rate of one flip per second. Suppose we model this process as the random 

variable 𝑋60~Geometric
𝜆

60
. 

• What does 𝑋60 tell you? The number of seconds you have to wait to get the 
first heads when flipping with heads probability 𝜆/60. Note: We’ve here 
chosen 𝜆2 = 𝜆1/60

If we multiply 𝑋 by 60, do we get 𝑋60? No. range 60𝑋 = {60, 120, … }, but 
range 𝑋60 = {1, 2, … }



Interpretation of Increasing N

Define 𝑋𝑛~Geometric(𝜆/𝑛), this is the number of time intervals we need to wait if 
we flip 𝑛 times per minute, with a probabililty of heads of 𝜆/𝑛.

• Effectively, we’re increasing the temporal resolution of our experiment to an 
arbitrary degree.

• 𝑋1: Models the number of minutes we have to wait for heads, can only yield 
number of minutes we have to wait.

• 𝑋60: Models the number of seconds we have to wait for heads, can only yield 
number of seconds we have to wait.

• 𝑋60,000,000: Models the number of microseconds we have to wait for heads, 
can only yield number of microseconds we have to wait.

Interesting question: What happen as 𝑛 goes to infinity?

• We’ll use our old friend lim
𝑛→∞

1 − 1/𝑥 𝑥 = 𝑒−1



Fixed Time Geometric Random Variable as 𝑛 → ∞

Define 𝑋𝑛~Geometric(𝜆/𝑛), this is the number of time intervals we need to wait if 
we flip 𝑛 times per minute, with a chance of heads of 𝜆/𝑛.

We know for 𝑋~Geometric(𝑝), that 

We have that 

We have that for any value 𝑎 ∈ range 𝑋𝑛 :

𝑃 𝑋𝑛 >
𝑖

𝑛

𝑃 𝑋 > 𝑖 = 1 − 𝑝 𝑖  

𝑃 𝑋𝑛 > 𝑎 = 𝑃 𝑋𝑛 >
𝑎𝑛

𝑛

Why? We can just trivially multiply 𝑎 by 𝑛/𝑛. This will be useful in a moment.

= 1 −
𝜆

𝑛

𝑖

for 𝑖 ∈ {0, 1, … }

for 𝑖/𝑛 ∈ {0, 1, … }



Fixed Time Geometric Random Variable as 𝑛 → ∞

Define 𝑋𝑛~Geometric(𝜆/𝑛), this is the number of time intervals we need to wait if 
we flip 𝑛 times per minute, with a chance of heads of 𝜆/𝑛.

We know for 𝑋~Geometric(𝑝), that 

We have that 

We have that for any value 𝑎 ∈ range 𝑋𝑛 :

𝑃 𝑋𝑛 >
𝑖

𝑛
= 1 −

𝜆

𝑛

𝑖

𝑃 𝑋𝑛 > 𝑎 = 𝑃 𝑋𝑛 >
𝑎𝑛

𝑛
= 1 −

𝜆

𝑛

𝑎𝑛

= 1 −
𝜆

𝑛

𝑛/𝜆
𝑎𝜆

lim
𝑛→∞

1 − 1/𝑥 𝑥 = 𝑒−1

→  𝑒−𝑎𝜆

𝑃 𝑋 > 𝑖 = 1 − 𝑝 𝑖  for 𝑖 ∈ {0, 1, … }

for 𝑖/𝑛 ∈ {0, 1, … }



Exponential Distribution

We’ve shown that if we crank the temporal resolution of our coin flipping 
experiment to infinity (i.e., informally lim

𝑛→∞
𝑋𝑛), we get:

The random variable 𝑋∞ we end up with is the exponential distribution.

• This is a continuous distribution, i.e., 𝑃 𝑋∞ = 𝑎 = 0 for any specific 𝑎.

• The equation above gives the probability of the event 𝑋∞ > 𝑎.

Note: This approach of thinking of 𝑋𝑛 as a family of random variables is not in 
the notes. The terminology 𝑋∞ as representing the “final” random variable in the 
family is non-standard.

𝑃 𝑋𝑛 > 𝑎 →  𝑒−𝑎𝜆 for 𝑎 ≥ 0



Exponential Distribution

If 𝑌~Exp 𝜆 , then we know:

What is the CDF of 𝑌 for 𝑎 ≥ 0? Reminder, a CDF gives the probability that a 
random variable is less than or equal to some quantity.

𝑃 𝑌 > 𝑎 = ቊ 𝑒−𝑎𝜆, if 𝑎 ≥ 0
 1,  otherwise



Exponential Distribution

If 𝑌~Exp 𝜆 , then we know:

Since 𝑃 𝑌 ≤ 𝑎 = 1 − 𝑃 𝑌 > 𝑎 , we have that the CDF 𝐹𝑌 𝑎  is given by:

How do we get the PDF 𝑓𝑌(𝑦) given the CDF?

What is the PDF 𝑓𝑌 𝑦 ?

𝑃 𝑌 > 𝑎 = ቊ 𝑒−𝑎𝜆, if 𝑎 ≥ 0
 1,  otherwise

𝑃 𝑌 ≤ 𝑎 = ቊ 1 − 𝑒−𝑎𝜆, if 𝑎 ≥ 0
 0,  otherwise



Exponential Distribution

If 𝑌~Exp 𝜆 , then we know:

Since 𝑃 𝑌 ≤ 𝑎 = 1 − 𝑃 𝑌 > 𝑎 , we have that the CDF 𝐹𝑌 𝑎  is given by:

The PDF is given by the derivative of the CDF:

𝑃 𝑌 > 𝑎 = ቊ 𝑒−𝑎𝜆, if 𝑎 ≥ 0
 0,  otherwise

𝐹𝑌 𝑎 = ቊ 1 − 𝑒−𝑎𝜆, if 𝑎 ≥ 0
 0,  otherwise

𝑓𝑌 𝑎 = ቊ 𝜆𝑒−𝑎𝜆, if 𝑎 ≥ 0
 0,  otherwise



Application of an Exponential Random Variable

Suppose that the that the number of minutes until the next neutrino detection is 
given by 𝑋~Exp(0.02).

What is the probability that the next neutrino detection occurs in the next 100 
minutes?

𝑓𝑌 𝑦 = ቊ 𝜆𝑒−𝜆𝑦 , if 𝑎 ≥ 0
 0,  otherwise

𝐹𝑌 𝑦 = ቊ
1 − 𝑒−𝜆𝑦 , if 𝑦 ≥ 0
 0,  otherwise



Application of an Exponential Random Variable

Suppose that the that the number of minutes until the next neutrino detection is 
given by 𝑋~Exp(0.02).

What is the chance that the next neutrino detection occurs in the next 100 
minutes?

• Easiest to use the CDF! We want 𝐹𝑌 100 = 𝑃 𝑌 < 100

𝐹𝑌 𝑦 = ቊ
1 − 𝑒−𝜆𝑦 , if 𝑦 ≥ 0
 0,  otherwise

= 1 − 𝑒−100∗0.02

= 86.47%



The PDF and CDF of an Exponential Random Variable (Visually)

Below are the PDF and CDF of 𝑋~Exp(2).

• From the plot, how do we verify the area under the PDF is 1? Integrate!
(exercise left for the reader)



Expectation 
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Expectation of a Continuous Random Variable

What do you think are the expectations of the random variables below?



Expectation of a Continuous Random Variable

What do you think are the expectations of the random variables below?

x=0

x=1



Expectation of an Exponential Random Variable

What do you think is the expectation of 𝑋~Exp(2)?



Definition of Expectation for Continuous Random Variable

If 𝑋 is a random variable with PDF 𝑓𝑋 𝑥 , then 𝐸 𝑋  is:

𝐸 𝑋 = න
−∞

∞

𝑥 ⋅ 𝑓𝑋 𝑥 𝑑𝑥

Contrast with our discrete expectation formula:

𝐸 𝑋 = ෍

𝑥∈range(𝑋)

𝑥 ⋅ 𝑃(𝑋 = 𝑥)



Expectation for 𝑋~Exp 𝜆

To compute the 𝐸 𝑋  where 𝑋~Exp 𝜆 , we integrate over the PDF of our 
exponential random variable.

𝑓𝑋 𝑥 = ቊ 𝜆𝑒−𝜆𝑥 , if 𝑥 ≥ 0
 0,  otherwise

𝐸 𝑋 = න
0

∞

𝑥 ⋅ 𝜆𝑒−𝜆𝑥𝑑𝑥

Recall Integration by Parts:

න
𝑎

𝑏

𝑢 𝑥 ⋅ 𝑣′ 𝑥 𝑑𝑥 = ቚ𝑢 𝑥 ⋅ 𝑣 𝑥
𝑎

𝑏
− න

𝑎

𝑏

𝑢′ 𝑥 ⋅ 𝑣 𝑥 𝑑𝑥



Expectation for 𝑋~Exp 𝜆

To compute the 𝐸 𝑋  where 𝑋~Exp 𝜆 , we integrate over the PDF of our 
exponential random variable.

𝑓𝑋 𝑥 = ቊ 𝜆𝑒−𝜆𝑥 , if 𝑥 ≥ 0
 0,  otherwise

𝐸 𝑋 = න
0

∞

𝑥 ⋅ 𝜆𝑒−𝜆𝑥𝑑𝑥

Recall Integration by Parts:

න
𝑎

𝑏

𝑢 𝑥 ⋅ 𝑣′ 𝑥 𝑑𝑥 = ቚ𝑢 𝑥 ⋅ 𝑣 𝑥
𝑎

𝑏
− න

𝑎

𝑏

𝑢′ 𝑥 ⋅ 𝑣 𝑥 𝑑𝑥

𝑢(𝑥) 𝑣′(𝑥)

ቚ𝑥 ⋅ −𝑒−𝜆𝑥

0

∞
− න

0

∞

1 ⋅ −𝑒−𝜆𝑥 𝑑𝑥

= 0 − อ
𝑒−𝜆𝑥

𝜆
0

∞

=
1

𝜆

=



Expectation of an Exponential Random Variable

What do you think is the expectation of 𝑋~Exp(2)?

• Answer: 1/𝜆 = 1/2



Definition of Variance for Continuous Random Variable

If 𝑋 is a random variable with PDF 𝑓𝑋 𝑥 , then var X  is:

= න
−∞

∞

𝑥2 ⋅ 𝑓𝑋 𝑥 𝑑𝑥 − න
−∞

∞

𝑥 ⋅ 𝑓𝑋 𝑥 𝑑𝑥

2

var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2



Expectation for 𝑋~Exp 𝜆

To compute the variance, we’ll need 𝐸 𝑋2 . Luckily, this isn’t so bad.

𝑓𝑋 𝑥 = ቊ 𝜆𝑒−𝜆𝑥 , if 𝑥 ≥ 0
 0,  otherwise

𝐸 𝑋2 = න
0

∞

𝑥2 ⋅ 𝜆𝑒−𝜆𝑥𝑑𝑥

Recall Integration by Parts from HW1:

න
𝑎

𝑏

𝑢 𝑥 ⋅ 𝑣′ 𝑥 𝑑𝑥 = ቚ𝑢 𝑥 ⋅ 𝑣 𝑥
𝑎

𝑏
− න

𝑎

𝑏

𝑢′ 𝑥 ⋅ 𝑣 𝑥 𝑑𝑥

𝑢(𝑥) 𝑣′(𝑥)

ቚ𝑥2 ⋅ −𝑒−𝜆𝑥

0

∞
− න

0

∞

2𝑥 ⋅ −𝑒𝜆𝑥 𝑑𝑥

= 0 +
2

𝜆
න

0

∞

𝜆𝑥𝑒−𝜆𝑥 𝑑𝑥=
2

𝜆
⋅

1

𝜆
=

2

𝜆2

=

𝐸 𝑋 = න
0

∞

𝜆𝑥𝑒−𝜆𝑥𝑑𝑥 =
1

𝜆



Expectation for 𝑋~Exp 𝜆

To compute the variance, we’ll need 𝐸 𝑋2 . Luckily, this isn’t so bad.

𝑓𝑋 𝑥 = ቊ 𝜆𝑒−𝜆𝑥 , if 𝑥 ≥ 0
 0,  otherwise

𝐸 𝑋2 =
2

𝜆2

var 𝑋 =
2

𝜆2
−

1

𝜆2
=

1

𝜆2

𝐸 𝑋 = න
0

∞

𝜆𝑥𝑒−𝜆𝑥𝑑𝑥 =
1

𝜆



Geometric vs. Exponential

Compare C~Exp 𝜆  and 𝐷~Geometric 𝜆

𝐸 𝐶 =
1

𝜆
𝐸 𝐷 =

1

𝜆

var(𝐶) =
1

𝜆2 var(𝐷) =
1 − 𝜆

𝜆2



Expectation and Variance of a Uniform Random Variable

In the notes, it is shown that if 𝑋 is a uniform random variable over 0, ℓ :

See notes (or just show yourself) for a proof. Contrast with discrete 𝐷 uniform 
over {1, 2, … , 𝑛}, which was: 

𝐸 𝑋 =
ℓ

2
var 𝑋 =

ℓ2

12

𝐸 𝐷 =
𝑛 + 1

2
var 𝐷 =

𝑛2 − 1

12
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Joint Distributions and Independence

We’ll take a brief look at joint distributions and independence.

• We’ll cover these in more detail in the next lecture.

• Today sets you up with the basic definitions you’ll need for the discussion.



Joint Density

Suppose we have random variables 𝑋 and 𝑌 which are continuous. Then their 
joint PDF is a non-negative function 𝑓𝑋,𝑌 𝑥, 𝑦  such that:

And for all 𝑎 < 𝑏 and 𝑐 < 𝑑, we have:

Can interpret PDF as probability that we are in a small rectangle around 𝑥, 𝑦.

• Actual probability is zero since the rectangle infinitesimal.

න
−∞

∞

න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦 = 1

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑 = න
𝑐

𝑑

න
𝑎

𝑏

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦 



Joint Density Example

Suppose we have random variables 𝑋 and 𝑌 which are continuous. Then their 
joint PDF is a non-negative function 𝑓𝑋,𝑌 𝑥, 𝑦  such that:

Suppose we throw a dart at the origin. Suppose we land uniformly within 2 feet 
of the origin. 

න
−∞

∞

න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦 = 1

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

4𝜋
, if 𝑥2 + 𝑦2  ≤ 4

 0,  otherwise

2 foot radius



Marginal Probabilities

Suppose we have random variables 𝑋 and 𝑌 which are continuous. Then their 
joint PDF is a non-negative function 𝑓𝑋,𝑌 𝑥, 𝑦  such that:

Similar to marginal probabilities for discrete random variables, we can compute 
𝑓𝑋 𝑥  and 𝑓𝑌 𝑦 . How?

න
−∞

∞

න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦 = 1



Marginal Probabilities

Suppose we have random variables 𝑋 and 𝑌 which are continuous. Then their 
joint PDF is a non-negative function 𝑓𝑋,𝑌 𝑥, 𝑦  such that:

Similar to marginal probabilities for discrete random variables, we can compute 
𝑓𝑋 𝑥  and 𝑓𝑌 𝑦 . How?

න
−∞

∞

න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 𝑑𝑦 = 1

𝑓𝑋 𝑥 = න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑦 𝑓𝑌 𝑦 = න
−∞

∞

𝑓𝑋,𝑌 𝑥, 𝑦  𝑑𝑥 



Independent Random Variables

We saw 𝑋 and 𝑌 are independent continuous random variables if for all 𝑎 < 𝑏 
and 𝑐 < 𝑑.

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 ⋅ 𝑃 𝑐 ≤ 𝑌 ≤ 𝑑

Or equivalently: If 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 ⋅ 𝑓𝑌 𝑦  for all 𝑥, 𝑦

For the dart example earlier, are 𝑋 and 𝑌 independent?

• Why or why not?

2 foot radius



Independent Random Variables

We saw 𝑋 and 𝑌 are independent continuous random variables if for all 𝑎 < 𝑏 
and 𝑐 < 𝑑.

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 ⋅ 𝑃 𝑐 ≤ 𝑌 ≤ 𝑑

Or equivalently: If 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 ⋅ 𝑓𝑌 𝑦  for all 𝑥, 𝑦

For the dart example earlier, are 𝑋 and 𝑌 independent?

• Not independent! Example: if 𝑋 = 2, 𝑌 must be zero.

2 foot radius



Independent Random Variables

We’ve only touched on joint PDFs, marginal PDFs, and independence.

We’ll return to these ideas in the next lecture.


	Default Section
	Slide 1: Continuous Probability Distributions
	Slide 2: Framing: A Random Variable with Range [0, 2]
	Slide 3: Framing: A Random Variable with Range [0, 2]
	Slide 4: Framing: A Random Variable with Range [0, 2]
	Slide 5: Review: Distributions of Discrete Random Variables
	Slide 6: Framing: A Random Variable with Range [0, 2]
	Slide 7: Framing: A Random Variable with Range [0, 2]
	Slide 8: Framing: A Random Variable with Range [0, 2]
	Slide 9: Probability Density Function (as described in the notes)
	Slide 10: Another Example Distribution: The Triangle Distribution
	Slide 11: Another Example Distribution: The Triangle Distribution
	Slide 12: Another Example Distribution: The Triangle Distribution
	Slide 13: The Cumulative Density Function
	Slide 14: Cumulative Density Function Example 1: Uniform Distribution
	Slide 15: Cumulative Density Function Example 2: Uniform Distribution
	Slide 16: Applying a CDF
	Slide 17: Applying a CDF
	Slide 18: Continuous vs. Discrete Probability Distributions, Exponential Distribution
	Slide 19: Discrete vs. Continuous Probability Distributions
	Slide 20: Discrete vs. Continuous Probability Distributions
	Slide 21: Continuous Uniform as the Limit of Discrete Uniform
	Slide 22: Goal: Exponential Random Variable. Recall: Geometric
	Slide 23: Time Interpretation of Geometric Random Variables
	Slide 24: Time Interpretation of Geometric Random Variables
	Slide 25: Time Interpretation of Geometric Random Variables
	Slide 26: Time Interpretation of Geometric Random Variables
	Slide 27: Interpretation of Increasing N
	Slide 28: Fixed Time Geometric Random Variable as n goes to infinity 
	Slide 29: Fixed Time Geometric Random Variable as n goes to infinity 
	Slide 30: Exponential Distribution
	Slide 31: Exponential Distribution
	Slide 32: Exponential Distribution
	Slide 33: Exponential Distribution
	Slide 34: Application of an Exponential Random Variable
	Slide 35: Application of an Exponential Random Variable
	Slide 36: The PDF and CDF of an Exponential Random Variable (Visually)
	Slide 37: Expectation and Variance
	Slide 38: Expectation of a Continuous Random Variable
	Slide 39: Expectation of a Continuous Random Variable
	Slide 40: Expectation of an Exponential Random Variable
	Slide 41: Definition of Expectation for Continuous Random Variable
	Slide 42: Expectation for cap X ~Exp open paren lambda , close paren 
	Slide 43: Expectation for cap X ~Exp open paren lambda , close paren 
	Slide 44: Expectation of an Exponential Random Variable
	Slide 45: Definition of Variance for Continuous Random Variable
	Slide 46: Expectation for cap X ~Exp open paren lambda , close paren 
	Slide 47: Expectation for cap X ~Exp open paren lambda , close paren 
	Slide 48: Geometric vs. Exponential
	Slide 49: Expectation and Variance of a Uniform Random Variable
	Slide 50: Joint Distributions and Independence
	Slide 51: Joint Distributions and Independence

	E[
	Slide 52: Joint Density
	Slide 53: Joint Density Example
	Slide 54: Marginal Probabilities
	Slide 55: Marginal Probabilities
	Slide 56: Independent Random Variables
	Slide 57: Independent Random Variables
	Slide 58: Independent Random Variables


