
Thought Experiment #1

Suppose we run our classic CS70 experiment: We take all students’ homework, 
shuffle it, and hand it back randomly. Let 𝑋𝑖 be the number of students who get 
their homework back on the 𝑖th experiment.

Suppose we have 1000 high school classes across the country do this 
experiment. Each reports back their results.

Suppose that the sum we get back is S = 𝑋1 + 𝑋2 + ⋯ + 𝑋1000 = 1,231. How likely 
is it that we get this value or less? This value or more? Is there any reason to be 
suspicious of these results?
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Review: Joint Distributions (Discrete)

To refresh our memory on joint distributions, let’s first 
consider the joint PMF of two discrete uniform random 
variables 𝑋 and 𝑌 representing the roll of two independent 
four-sided dice.

What is the joint PMF of 𝑋 and 𝑌?

• Recall the PMF just gives the probability of each 
possible value for 𝑋 and 𝑌.

• How many rows are in the table specifying the PMF?

• What is the value in each row?



Review: Joint Distributions (Discrete)

To refresh our memory on joint distributions, let’s first 
consider the joint PMF of two discrete uniform random 
variables 𝑋 and 𝑌 representing the roll of two independent 
four-sided dice.

What is the joint PMF of 𝑋 and 𝑌?

• See table to the right.

𝑥 𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

1 1 1/16

1 2 1/16

1 3 1/16

1 4 1/16

2 1 1/16

2 2 1/16

2 3 1/16

2 4 1/16

3 1 1/16

3 2 1/16

3 3 1/16

3 4 1/16

4 1 1/16

4 2 1/16

4 3 1/16

4 4 1/16



Review: Joint PDF of a Uniform Random Variables

Let’s next consider the joint PDF of two uniform random variables 𝑋 and 𝑌 
representing throwing a dart at a target. The random variables represent the 𝑥 
and 𝑦 coordinates.

As we saw last time, the joint PDF of 𝑋 and 𝑌 is:

2 foot radius

𝑓𝑋,𝑌 𝑥, 𝑦 = ቐ
1

4𝜋
, if 𝑥2 + 𝑦2  ≤ 4

 0,  otherwise



Independent Random Variables

We saw 𝑋 and 𝑌 are independent continuous random variables if for all 𝑎 < 𝑏 
and 𝑐 < 𝑑.

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏, 𝑐 ≤ 𝑌 ≤ 𝑑 = 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 ⋅ 𝑃 𝑐 ≤ 𝑌 ≤ 𝑑

Or equivalently: If 𝑓𝑋,𝑌 𝑥, 𝑦 = 𝑓𝑋 𝑥 ⋅ 𝑓𝑌 𝑦  for all 𝑥, 𝑦
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Warmup Exercise / Detour: Prove this Lemma

Before we get talking about Gaussians, let’s warm up by proving a lemma that 
will be useful later.

Suppose 𝑋 is an RV with PDF 𝑓 𝑥 . If 𝑎 > 0, and 𝑏 ∈ ℝ, if we define 𝑌 = 𝑎𝑋 + 𝑏, 
then what is the PDF of 𝑌?

We have that:

How do we get the PDF 𝑓𝑌 𝑦  from the CDF 𝐹𝑌 𝑦 ?

𝐹𝑌 𝑦 = 𝑃 𝑌 ≤ 𝑦 = 𝑃 𝑎𝑋 + 𝑏 ≤ 𝑦 = 𝑃 𝑋 ≤
𝑦 − 𝑏

𝑎
= 𝐹𝑋

𝑦 − 𝑏

𝑎

𝑓𝑌 𝑦 =
𝑑𝐹𝑌 𝑦

𝑑𝑦

Differentiate! 

=
𝑑𝐹𝑋

𝑦 − 𝑏
𝑎

𝑑𝑦
= 𝑓𝑋

𝑦 − 𝑏

𝑎
⋅

1

𝑎

If  𝑌 = 𝑎𝑋 + 𝑏, then

𝑓𝑌 𝑦 = 𝑓𝑋

𝑦 − 𝑏

𝑎
⋅

1

𝑎



The Gaussian Distribution

The Gaussian distribution is probably the most famous continuous distribution.

• Arises naturally in many theoretical contexts.

• Useful for modeling real world phenomena.

• Has very convenient mathematical properties.



Normal (Gaussian) Distribution

X~Gaussian 𝜇, 𝜎2  or X~Normal 𝜇, 𝜎2 , or more simply X~N 𝜇, 𝜎2  if its PDF is:

𝑓 𝑥 =
1

2𝜋𝜎2
𝑒− 𝑥−𝜇 2/2𝜎2

𝑋 is a “standard” Normal (or “standard” Gaussian) if it has parameters 𝜇 = 0 and 
𝜎2 = 1.

𝑓 𝑥 =
1

2𝜋
𝑒−𝑥2/2 

Note: It’s no coincidence that the parameters of a Gaussian use the same 
symbols we usually use for mean and variance. We’ll come back to this.



Gaussian

Before we dig into what the Gaussian distribution means and why it matters, 
let’s establish six properties:

1. If 𝑋~𝑁 0, 1 , and 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2

2. If 𝑌~𝑁 𝜇, 𝜎2 , and 𝑋 = (𝑌 − 𝜇)/𝜎, then 𝑋~𝑁 0, 1

3. The mean of X~𝑁 0,1  is 0

4. The variance of 𝑋~𝑁 0,1  is 1

5. The mean of X~𝑁 𝜇, 𝜎2  is 𝜇

6. The variance of 𝑋~𝑁 𝜇, 𝜎2  is 𝜎2

We’ll discuss these properties as we prove them.



Property 1

If 𝑋~𝑁 0,1 , and we define 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2 . In other words:

• If we add a constant 𝜇 to a standard Gaussian RV, then we get a new Gaussian 
RV whose first parameter is 𝜇.

• If we multiply a standard Gaussian RV by a constant 𝜎, then we get a new 
Gaussian RV whose second parameter is 𝜎2.

To prove this, we’ll use our warmup lemma!

If  𝑌 = 𝑎𝑋 + 𝑏, then

𝑓𝑌 𝑦 = 𝑓𝑋

𝑦 − 𝑏

𝑎
⋅

1

𝑎

Warmup Lemma



Property 1

If 𝑋~𝑁 0,1 , and we define 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2

Proof: We have that

If  𝑌 = 𝑎𝑋 + 𝑏, then

𝑓𝑌 𝑦 = 𝑓𝑋

𝑦 − 𝑏

𝑎
⋅

1

𝑎

𝑓𝑋 𝑥 =
1

2𝜋
𝑒−𝑥2/2 

𝑓𝑌 𝑦 =
1

𝜎

1

2𝜋
𝑒

−
𝑦−𝜇

𝜎

2
/2 

This is the PDF for 𝑁 𝜇, 𝜎2  

=
1

2𝜋𝜎2
𝑒− 𝑦−𝜇 2/2𝜎2 

Warmup Lemma



Property 2

We’ve shown that  if 𝑋~𝑁 0,1 , and define 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2 .

Naturally, if 𝑌~𝑁 𝜇, 𝜎2 , we can do the reverse transformation to recover the 
original 𝑋. That is, if 𝑌~𝑁 𝜇, 𝜎2 , then:

𝑋 =
𝑌 − 𝜇

𝜎
~𝑁(0, 1)



Gaussian

Gaussian properties to prove:

1. If 𝑋~𝑁 0, 1 , and 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2

2. If Y~𝑁 𝜇, 𝜎2 , and X = (𝑌 − 𝜇)/𝜎, then X~𝑁 0, 1

3. The mean of X~𝑁 0,1  is 0

4. The variance of 𝑋~𝑁 0,1  is 1

5. The mean of X~𝑁 𝜇, 𝜎2  is 𝜇

6. The variance of 𝑋~𝑁 𝜇, 𝜎2  is 𝜎2

Next up, let’s consider properties 3 and 4.



Expectation of a Standard Gaussian Random Variable

If 𝑋~𝑁(0, 1), then 𝐸 𝑋 = 0. Proof:

What is the result of this sum? Hint, the PDF looks like this:

𝐸 𝑋 =
1

2𝜋
න

−∞

∞

𝑥 ⋅ 𝑒−𝑥2/2𝑑𝑥

=
1

2𝜋
න

−∞

0

𝑥 ⋅ 𝑒−𝑥2/2𝑑𝑥 +
1

2𝜋
න

0

∞

𝑥 ⋅ 𝑒−𝑥2/2𝑑𝑥

𝑓𝑋 𝑥 =
1

2𝜋
𝑒−𝑥2/2 



Expectation of a Standard Gaussian Random Variable

If 𝑋~𝑁(0, 1), then 𝐸 𝑋 = 0. Proof:

𝐸 𝑋 =
1

2𝜋
න

−∞

∞

𝑥 ⋅ 𝑒−𝑥2/2𝑑𝑥

=
1

2𝜋
න

−∞

0

𝑥 ⋅ 𝑒−𝑥2/2𝑑𝑥 +
1

2𝜋
න

0

∞

𝑥 ⋅ 𝑒−𝑥2/2𝑑𝑥 = 0

Another view: The expected value of any distribution symmetric around zero is 
zero. The PDF of a standard Gaussian looks like this:

𝑓𝑋 𝑥 =
1

2𝜋
𝑒−𝑥2/2 

Figure from Stat 20

Cancel out exactly!

https://stat20.berkeley.edu/fall-2024/3-generalization/06-normal-approx/notes.html#fn4


Variance of a Standard Gaussian Random Variable

If 𝑋~𝑁(0, 1), then var 𝑋 = 𝐸 𝑋2 = 1. Proof:

var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2, and we already know 𝐸 𝑋 2 = 0 

𝐸 𝑋2 =
1

2𝜋
න

−∞

∞

𝑥2 ⋅ 𝑒−𝑥2/2𝑑𝑥 Integrate by parts where 𝑢 𝑥 = −𝑥 and 𝑣′ 𝑥 = −𝑥𝑒−𝑥2/2

ቤ=
1

2𝜋
(−𝑥) ⋅ 𝑒−𝑥2/2

−∞

∞

+
1

2𝜋
න

−∞

∞

−1 ⋅ −𝑒−𝑥2/2𝑑𝑥

ቤ=
1

2𝜋
⋅

−𝑥

𝑒𝑥2/2
 

−∞

∞

+ න
−∞

∞

𝑓 𝑥  𝑑𝑥

𝑓𝑋 𝑥 =
1

2𝜋
𝑒−𝑥2/2 



Variance of a Standard Gaussian Random Variable

If 𝑋~Gaussian(0, 1), then var 𝑋 = 𝐸 𝑋2 = 1. Proof:

var 𝑋 = 𝐸 𝑋2 − 𝐸 𝑋 2, and we already know 𝐸 𝑋 2 = 0 

𝐸 𝑋2 =
1

2𝜋
න

−∞

∞

𝑥2 ⋅ 𝑒−𝑥2/2𝑑𝑥 Integrate by parts where 𝑢 𝑥 = −𝑥 and 𝑣′ 𝑥 = −𝑥𝑒−𝑥2/2

ቤ=
1

2𝜋
(−𝑥) ⋅ 𝑒−𝑥2/2

−∞

∞

ቤ=
1

2𝜋
⋅

−𝑥

𝑒𝑥2/2
 

−∞

∞

= 0 + 1

+ න
−∞

∞

𝑓 𝑥  𝑑𝑥

𝑓𝑋 𝑥 =
1

2𝜋
𝑒−𝑥2/2 

This is just the PDF of a Gaussian, 
which must integrate to 1.Intuition or L'Hôpital

+
1

2𝜋
න

−∞

∞

−1 ⋅ −𝑒−𝑥2/2𝑑𝑥



Gaussian

Gaussian properties to prove:

1. If 𝑋~𝑁 0, 1 , and 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2

2. If Y~𝑁 𝜇, 𝜎2 , and X = (𝑌 − 𝜇)/𝜎, then X~𝑁 0, 1

3. The mean of X~𝑁 0,1  is 0

4. The variance of 𝑋~𝑁 0,1  is 1

5. The mean of X~𝑁 𝜇, 𝜎2  is 𝜇

6. The variance of 𝑋~𝑁 𝜇, 𝜎2  is 𝜎2

Lastly, let’s show properties 5 and 6.



Proof of Properties 5 and 6

Suppose 𝑋~𝑁 0, 1 , and 𝑌 = 𝜎𝑋 + 𝜇.

That means that 𝐸 𝑌 = 𝐸 𝜎𝑋 + 𝜇 = 𝜎𝐸 𝑋 + 𝜇

And var 𝑌 = var 𝜎𝑋 + 𝜇 = 𝜎2var 𝑋

= 0 + 𝜇 = 𝜇 Property 3: 𝐸 𝑋 = 0

Property 4: var(𝑋) = 1= 𝜎2



Gaussian

Gaussian properties to prove:

1. If 𝑋~𝑁 0, 1 , and 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2

2. If Y~𝑁 𝜇, 𝜎2 , and X = (𝑌 − 𝜇)/𝜎, then X~𝑁 0, 1

3. The mean of X~𝑁 0,1  is 0

4. The variance of 𝑋~𝑁 0,1  is 1

5. The mean of X~𝑁 𝜇, 𝜎2  is 𝜇

6. The variance of 𝑋~𝑁 𝜇, 𝜎2  is 𝜎2



Reflection on Gaussian Properties

Gaussian properties to prove:

1. If 𝑋~𝑁 0, 1 , and 𝑌 = 𝜎𝑋 + 𝜇, then 𝑌~𝑁 𝜇, 𝜎2

2. If Y~𝑁 𝜇, 𝜎2 , and X = (𝑌 − 𝜇)/𝜎, then X~𝑁 0, 1

5. The mean of X~𝑁 𝜇, 𝜎2  is 𝜇

6. The variance of 𝑋~𝑁 𝜇, 𝜎2  is 𝜎2

The properties above reveal two remarkable facts about the Gaussian:

• It has exactly two free parameters which are its mean and variance. 
• Not true for our other RVs, e.g. var 𝑋~Geometric 𝑝 = (1 − 𝑝)/𝑝2

• Any affine transformation of a Gaussian is also Gaussian.
• Not true for many RVs, e.g., X~Exp 𝜆 , but 𝑋 + 1 is not exponential.



The Gaussian PDF Visually

If we have a random variable 𝑋~𝑁(5, 25), we have the PDF below:



Computing the Probability of an Event

If we have a random variable 𝑋~𝑁(5, 25), what is 𝑃(𝑋 ≤ 0)?

න
−∞

0 1

50𝜋
𝑒 𝑥−5 2/50

≈ 0.1587



The CDF of a Gaussian

The CDF of 𝑋~𝑁(5, 25) is given below.

• 𝑃 𝑋 ≤ 0 ≈ 0.1587

• Note: There is no closed-form expression for the CDF.



The CDF of a Gaussian

Or symbolically we can write

• 𝑃 𝑋 ≤ 0 = 𝐹𝑋 𝜇 − 𝜎 ≈ 0.1587

• Other quantities: 𝐹𝑋 𝜇 = 0.5, 𝐹𝑋 𝜇 + 2𝜎 ≈ 0.977



The 68–95–99.7 rule

The 68-95-99.7 rule tells us that for a 
normally distributed random variable:

• ~68% of the mass is within one 
standard deviation.

• 95% of the mass is within two 
standard deviations.

• 99.7% of the mass is within three 
standard deviations.

The “Z-score” is the number of 
standard deviations you are from the 
mean.

Link to blog

https://www.freecodecamp.org/news/normal-distribution-explained/


The Gaussian CDF Φ

https://ourworldindata.org/human-height

The standard Gaussian CDF is so important that it’s often written (in probability 
contexts) as simply Φ. This is a capital Greek “Phi”.

• Note, since we’re thinking about a standard normal here, the Gaussian has 
𝜇 = 0 and 𝜎2 = 1, and the arguments to Φ are a z-score.

• Φ 3 = 0.997 is 𝑃 𝑋 ≤ 3 , where 𝑋~𝑁 0, 1 .

Example: Assuming heights are normally distributed. Average height of a male 
in this dataset (https://ourworldindata.org/human-height) is ~69 inches, and 
standard deviation is ~3 inches.

• Chance of being as tall as Josh Hug or shorter (64 inches) is Φ −5

3
= 4.78%

• Chance of being as tall as John DeNero (76 inches?) or taller: 1 − Φ
7

3
= 1%

https://ourworldindata.org/human-height
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The Sum of Independent Gaussians is Gaussian 

Another remarkable property of the Gaussian distribution is that the sum of two 
independent Gaussians is always also Gaussian.

Before we get there, which of the following distributions have this property?

• Bernoulli

• Binomial

• Uniform

• This is a tricky question!



The Sum of Independent Gaussians is Gaussian 

Another remarkable property of the Gaussian distribution is that the sum of two 
independent Gaussians is always also Gaussian.

Before we get there, which of the following distributions have this property?

• Bernoulli, no except for the degenerate case where 𝑝 = 0.

• Binomial, yes but only if they have the same 𝑝.

• Uniform, no except for the degenerate case where there is only one possible 
outcome.

(so all of them can be yes or no)



Detour: Joint Distribution of Two Independent Standard Normals

Earlier, we saw that if 𝑋 and 𝑌 are independent, then 𝑓 𝑋, 𝑌 = 𝑓 𝑥 ⋅ 𝑓 𝑦 .

Thus, the joint distribution of two standard normal (a.k.a. Gaussian) RVs is:

𝑓 𝑋, 𝑌 =
1

2𝜋
𝑒−𝑥2/2 ⋅

1

2𝜋
𝑒−𝑦2/2 

=
1

2𝜋
𝑒−(𝑥2+𝑦2)/2 



Detour: Visualizing the Joint Distribution of Two Independent Standard Normals

Below we see a plot of the joint PDF (from the notes*).

• Interactive version: https://joshh.ug/cs70/joint_gaussian_pdf.html

*: Figure ultimately comes from “Why Is the Sum of Independent Normal Random Variables Normal” by by B. Eisenberg and R. Sullivan, Mathematics Magazine, Vol. 81, No. 5.

https://joshh.ug/cs70/joint_gaussian_pdf.html


Rotational Symmetry of Joint Normals

To prove the sum of two independent standard gaussians is also gaussian, we’ll 
rely on the rotational symmetry of the joint distribution of two normals.

By rotational symmetry, we mean the probability depends only on the radius, 
not on the angle. Example: The two events 𝐴 and 𝐵 below have the same 
probability.

𝐵𝐴



Rotational Symmetry of Joint Normals

To prove the sum of two independent standard gaussians is also gaussian, we’ll 
rely on the rotational symmetry of the joint distribution of two normals.

By rotational symmetry, we mean the probability depends only on the radius, 
not on the angle. Example: The two events 𝐴 and 𝐵 below have the same 
probability.

𝐵

𝐴



Rotational Symmetry of Joint Normals

To prove the sum of two independent standard gaussians is also gaussian, we’ll 
rely on the rotational symmetry of the joint distribution of two normals.

By rotational symmetry, we mean the probability depends only on the radius, 
not on the angle. Example: The two events 𝐴 and 𝐵 below have the same 
probability.

𝐵

𝐴

(𝑧/2, 𝑧/2)

(? , 0)



Rotational Symmetry of Joint Normals

To prove the sum of two independent standard gaussians is also gaussian, we’ll 
rely on the rotational symmetry of the joint distribution of two normals.

By rotational symmetry, we mean the probability depends only on the radius, 
not on the angle. Example: The two events 𝐴 and 𝐵 below have the same 
probability.

𝐵

𝐴

(𝑧/ 2, 0)

(𝑧/2, 𝑧/2) 𝑑 =
𝑧2

4
+

𝑧2

4
=

𝑧2

2
=

𝑧

2
𝑑

𝑑



Proof: Sum of Two Independent Standard Gaussians is Gaussian

Theorem: If 𝑋~𝑁 0,1  and 𝑌~𝑁 0, 1  are independent, then Z = 𝑋 + 𝑌~𝑁 0, 2

Let 𝑍 = 𝑋 + 𝑌, then 𝑃 𝑍 ≤ 𝑧 = 𝑃(𝑋 + 𝑌 ≤ 𝑧) = 𝑃( 𝑋, 𝑌 ∈ 𝐴)

𝐴

𝑥 + 𝑦 ≤ 𝑧

(𝑧/2, 𝑧/2)



Proof: Sum of Two Independent Standard Gaussians is Gaussian

Theorem: If 𝑋~𝑁 0,1  and 𝑌~𝑁 0, 1  are independent, then 𝑍 = 𝑋 + 𝑌~𝑁 0, 2

Let 𝑍 = 𝑋 + 𝑌, then 𝑃 𝑍 ≤ 𝑧 = 𝑃(𝑋 + 𝑌 ≤ 𝑧) = 𝑃( 𝑋, 𝑌 ∈ 𝐴)

𝐴

𝑥 + 𝑦 ≤ 𝑧

(𝑧/2, 𝑧/2)

= 𝑃( 𝑋, 𝑌 ∈ 𝐵)

= 𝑃 𝑋 ≤
𝑧

2

= 𝑃 2𝑋 ≤ 𝑧 𝑍 = 2𝑋⇒

𝑍~𝑁(0,2)
𝐵

(𝑧/ 2, 0)
Note: If this seems confusing, maybe 
consider a specific 𝑧, e.g., 𝑃 𝑍 ≤ 3 =

𝑃 𝑋 ≤ 3/ 2 . Then consider how this 
also works for any choice of 𝑧.



Proof: Sum of Two Scaled Independent Standard Gaussians is Gaussian

Theorem: If 𝑋~𝑁 0,1  and 𝑌~𝑁 0, 1  are independent, Z = 𝑎𝑋 + 𝑏𝑌~𝑁 0, 𝑎2 + 𝑏2

Let 𝑍 = 𝑋 + 𝑌, then 𝑃 𝑍 ≤ 𝑧 = 𝑃(𝑋 + 𝑌 ≤ 𝑧) = 𝑃( 𝑋, 𝑌 ∈ 𝐴)

𝐴

𝑎𝑥 + 𝑏𝑦 ≤ 𝑧

= 𝑃( 𝑋, 𝑌 ∈ 𝐵)

𝐵

(𝑧/ 𝑎2 + 𝑏2, 0)

= 𝑃 𝑋 ≤
𝑧

𝑎2 + 𝑏2

= 𝑃 𝑎2 + 𝑏2𝑋 ≤ 𝑧

𝑍 = 𝑎2 + 𝑏2𝑋⇒

𝑍~𝑁(0, 𝑎2 + 𝑏2)

𝑑
d =

𝑧

𝑎2 + 𝑏2



Proof: Sum of Two Scaled Independent Standard Gaussians is Gaussian

Theorem: If 𝑋~𝑁 0,1  and 𝑌~𝑁 0, 1  are independent, Z = 𝑎𝑋 + 𝑏𝑌~𝑁 0, 𝑎2 + 𝑏2

Great! The sum of two zero mean gaussians with variance 𝑎2 and 𝑏2 is easy to 
understand.

• It is also Gaussian.

• Its variance is just the sum of the variances, i.e., 𝑎2 + 𝑏2.

What if it’s not zero mean?

• This is straightforward (next slide).



Proof: Sum of Independent Gaussians is Gaussian (general case)

Corollary: If we have independent Gaussian random variables 𝑋1~𝑁(𝜇1, 𝜎1
2) and 

X2~𝑁 𝜇2, 𝜎2
2 , and define Z = 𝑋1 + 𝑋2, then Z~𝑁 𝜇1 + 𝜇2, 𝜎1

2 + 𝜎2
2

Proof: Let                     

We have that

෨𝑋 =
𝑋1 − 𝜇1

𝜎1
=

𝑋2 − 𝜇2

𝜎2

𝑍 = 𝑋1 + 𝑋2 = 𝜎1
෨𝑋 + 𝜇1 + 𝜎2

෨𝑋 + 𝜇2

= (𝜇1 + 𝜇2) + 𝜎1
෨𝑋 + 𝜎2

෨𝑋

𝑁 0, 𝜎1
2 + 𝜎2

2

𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2



Whew… We’re Done!

So far we’ve shown that:

• A Gaussian is characterized by its mean and standard deviation alone.

• Adding two Gaussians gives us another Gaussian with a nice relationship. 
The resulting Gaussian just has mean 𝜇1 + 𝜇2 and variance 𝜎1

2 + 𝜎2
2.

These are handy properties that you’ll see again in future classes.

• Admittedly, not the most important thing today, but hopefully you enjoyed the 
novel proof technique we used to get there (proofs is the main point of 70!)

Next up, let’s finally talk about some applications of Gaussian RVs, including 
experimental error (or even fraud) detection.



The Central 
Limit Theorem
Lecture 25, CS70 Summer 2025



Summing Dice

It’s not a coincidence that summing four dice looks kind of Gaussian!



The Binomial Distribution

We’ve also seen the Binomial distribution, which is the sum of Bernoulli random 
variables. For example, the Binomial distribution for 𝑛 = 100, 𝑝 = 0.5 is given 
below.

• Again, it looks kinda Gaussian.



This Trend Holds

Amazingly, it doesn’t matter what you start with!

• The sum of a bunch of i.i.d. exponentials, geometrics, that weird distribution 
where you hand back homeworks, etc. is always going to look Gaussian!

We’ve already seen a similar phenomenon once called the weak law of large 
numbers. Let’s review.



Review: Weak Law of Large Numbers

Recall the Weak Law of Large Numbers.

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇, and var 𝑋𝑖 = 𝜎2 < ∞, then for every 𝜖 > 0, we have that:

lim
𝑛→∞

𝑃
𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛 

𝑛
− 𝜇 ≥ 𝜖 = 0

Informal interpretation: As we run the same experiment over and over, the 
difference between the empirical average and the expectation converges to 
zero.



The Central Limit Theorem

Our new idea is the The Central Limit Theorem.

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇 < ∞, and var 𝑋𝑖 = 𝜎2 < ∞, then as 𝑛 → ∞, we have that:

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 − 𝜇𝑛

𝜎 ⋅ 𝑛
→ 𝑁 0,1

Informal interpretation: If we add a bunch of i.i.d. random variables, the resulting 
sum looks like a normal distribution.

• By subtracting out 𝜇 ⋅ 𝑛, the mean becomes zero.

• By dividing by 𝜎 ⋅ 𝑛, the standard deviation becomes one.



The Central Limit Theorem

Our new idea is the The Central Limit Theorem.

If 𝑋1, 𝑋2, 𝑋3, … are independent and identically distributed (i.i.d.) random variables 
with 𝐸 𝑋𝑖 = 𝜇 < ∞, and var 𝑋𝑖 = 𝜎2 < ∞, then as 𝑛 → ∞, we have that:

𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛 − 𝜇𝑛

𝜎 ⋅ 𝑛
→ 𝑁 0,1

What if we don’t subtract out the mean and divide out the 𝜎 𝑛, then:
𝑆 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛~𝑁(𝜇𝑛, 𝜎2𝑛)



Example Usage of the Central Limit Theorem

Suppose we run our classic CS70 experiment: We take all students’ homework, 
shuffle it, and hand it back randomly. Let 𝑋𝑖 be the number of students who get 
their homework back on the 𝑖th experiment.

Suppose that the sum we get back from 1000 high schools is S = 𝑋1 + 𝑋2 + ⋯ +

𝑋1000 = 1,231. What is the Z-score for this result?

• Recall: 𝐸 𝑋𝑖 = 1 and var 𝑋𝑖 = 1



Example Usage of the Central Limit Theorem

Suppose we run our classic CS70 experiment: We take all students’ homework, 
shuffle it, and hand it back randomly. Let 𝑋𝑖 be the number of students who get 
their homework back on the 𝑖th experiment.

Suppose that the sum we get back from 1000 high schools is S = 𝑋1 + 𝑋2 + ⋯ +

𝑋1000 = 1,231. What is the Z-score for this result?

• Recall: 𝐸 𝑋𝑖 = 1 and var 𝑋𝑖 = 1

• First, we compute 𝐸 𝑆 = 1000 and var 𝑆 = 1000. This works since the RVs 
are uncorrelated and independent.

• To compute the Z-score, we have 1231−𝜇

𝜎
=

1231−1000

31.6
= 7.31

This is an outrageously high Z-score!



Example Usage of the Central Limit Theorem

Suppose we run our classic CS70 experiment: We take all students’ homework, 
shuffle it, and hand it back randomly. Let 𝑋𝑖 be the number of students who get 
their homework back on the 𝑖th experiment.

Suppose that the sum we get back from 1000 high schools is S = 𝑋1 + 𝑋2 + ⋯ +

𝑋1000 = 1,231. What is the Z-score for this result? 7.31.

• 𝑃 𝑆 ≥ 1,231 nothing weird happened) = 1 − Φ 7.31 ≈ 1.33 × 10−13

In other words, there is about a 1 in 10 trillion chance that this was just a 
coincidence.

• This is known in experimental science as a “p-value”.

• The “null hypothesis” that this nothing weird happened is correct with 
probability 𝑝 = 1.33 × 10−13.
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