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Linear Algebra Check

Linear algebra isn’t a formal pre-requisite for this class but is used (in a very 
basic way!) in this topic. Let’s review…

Question:

If 𝜋1 = [0 0.5 0.5] and 𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0
, what is 𝜋2 = 𝜋1𝑃?

How do we compute this vector-matrix product?



Linear Algebra Query

Linear algebra isn’t a formal pre-requisite for this class but is used (in a very 
basic way!) in this topic. Let’s review…

Question:

If 𝜋1 = [0 0.5 0.5] and 𝑃 =
𝟎 0.5 0.5
𝟏 0 0

𝟎. 𝟓 0.5 0
, what is 𝜋2 = 𝜋1𝑃?

𝜋2 = 𝑎 𝑏 𝑐 = [0.75 0.25 0], where:

𝑎 = 0 × 𝟎 + 0.5 × 𝟏 + 0.5 × 𝟎. 𝟓 = 0.75



Linear Algebra Query

Linear algebra isn’t a formal pre-requisite for this class but is used (in a very 
basic way!) in this topic. Let’s review…

Question:

If 𝜋1 = [0 0.5 0.5] and 𝑃 =
0 𝟎. 𝟓 0.5
1 𝟎 0

0.5 𝟎. 𝟓 0
, what is 𝜋2 = 𝜋1𝑃?

𝜋2 = 𝑎 𝑏 𝑐 = [0.75 0.25 0], where:

𝑎 = 0 × 0 + 0.5 × 1 + 0.5 × 0.5 = 0.75

𝑏 = 0 × 𝟎. 𝟓 + 0.5 × 𝟎 + 0.5 × 𝟎. 𝟓 = 0.25



Linear Algebra Query

Linear algebra isn’t a formal pre-requisite for this class but is used (in a very 
basic way!) in this topic. Let’s review…

Question:

If 𝜋1 = [0 0.5 0.5] and 𝑃 =
0 0.5 𝟎. 𝟓
1 0 𝟎

0.5 0.5 𝟎
, what is 𝜋2 = 𝜋1𝑃?

𝜋2 = 𝑎 𝑏 𝑐 = [0.75 0.25 0], where:

𝑎 = 0 × 0 + 0.5 × 1 + 0.5 × 0.5 = 0.75

𝑏 = 0 × 0.5 + 0.5 × 0 + 0.5 × 0.5 = 0.25

𝑐 = 0 × 𝟎. 𝟓 + 0.5 × 𝟎 + 0.5 × 𝟎 = 0



Markov Chain 
Introduction
Lecture 26, CS70 Summer 2025



Example Markov Chain Samples

Let’s see an example of samples generated by a Markov Chain.

• This is the same Markov Chain in page 3 of the notes.

System is initially in state A.

• From A it can go to B with probability 0.5, and to D with probability 0.5.

• From B it can only go to C (with probability 1).

• …

Simulator at https://joshh.ug/cs70/markov_simulator_g5.html

https://joshh.ug/cs70/markov_simulator_g5.html


Markov Chain: Informal Definition

Before we saw samples generated by a Markov Chain.

• A Markov Chain is a sequence of random variables – 𝑋𝑡 = state at time 𝑡:

𝑋0 𝑋1

𝑋2

Click this link to run 
a simulation.

https://joshh.ug/cs70/5node_markov_chain_simulator.html
https://joshh.ug/cs70/5node_markov_chain_simulator.html


Markov Chain: Formal Definition

A Markov Chain is a sequence of random variables 𝑋0, 𝑋1, 𝑋2, …, 𝑋𝑛, …

• Each random variable takes on some value from 𝔛 = {1, 2, … , 𝐾} for some 
finite K. 𝑋𝑖 represents state of Markov chain at time step 𝑖.

• 𝑋0 is given by the distribution 𝜋0, i.e., 𝑃 𝑋𝑜 = 𝑖 = 𝜋0 𝑖

• 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑥𝑛−1, … , 𝑋𝑜 = 𝑥0 = 𝑃 𝑋𝑛+1 = 𝑗 𝑋𝑛 = 𝑖 = 𝑃(𝑖, 𝑗)

Examples for our simulation:

• 𝔛 = {1, 2, 3, 4, 5} (one for each state)

• 𝜋0 = [1 0 0 0 0] (always start in A)

• 𝑃 𝑋1 = 2 𝑋0 = 1 = 1/2

• 𝑃 1, 2 = 1/2

• 𝑃 𝑋100 = 2|𝑋99 = 4, 𝑋98 = 1 = 𝑃 4,2 = 1/3

𝑃(4,2)

𝑃(1,2)



Markov Chain: State Space and Transition Probability Matrix

The state space of a Markov Chain is 𝔛 = {1, 2, … , 𝐾} for some finite 𝐾. 

The transition probability matrix 𝑃 is a 𝐾 × 𝐾 matrix such that:

𝑃 𝑖, 𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ 𝔛

and the sum of each row is 1, i.e. 

෍

𝑗=1

𝐾

𝑃 𝑖, 𝑗 = 1 , ∀𝑖 ∈ 𝔛



Markov Chain: Terminology

The state space of a Markov Chain is 𝔛 = {1, 2, … , 𝐾} for some finite K. 

• The transition probability matrix 𝑃 is a 𝐾 × 𝐾 matrix such that:
𝑃 𝑖, 𝑗 ≥ 0, ∀𝑖, 𝑗 ∈ 𝔛

෍

𝑗=1

𝐾

𝑃 𝑖, 𝑗 = 1 , ∀𝑖 ∈ 𝔛

0 0.5 0 0.5 0
0 0 1 0 0
1 0 0 0 0

0.33 0.33 0 0 0.33
0 0.5 0.5 0 0

Probability of going from 
A to B and A to D



Test Your Understanding

What is the first row of the transition probability matrix for the Markov Chain 
below?



Test Your Understanding

What is the first row of the transition probability matrix for the Markov Chain 
below?

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Markov Chain

Some questions we might ask:

• What is the probability that we’re at a given node after a long time?

• In the long run, does the starting state matter?

• How long do we expect it to take before we reach E for the first time?

• What is the probability that we visit state E before state C?

We’ll see that many questions can be framed in terms of questions about 
Markov Chains.



The Invariant 
Distribution
Lecture 26, CS70 Summer 2025



Long Term Behavior of Three State Markov Chain

As a smaller running example, let’s consider the three state Markov Chain 
below. Simulation yields counts shown “Count” column below.

If we generate samples, we end up with around:

• 44% of the time in state A.

• 33% of the time in state B.

• 22% of the time in state C.

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], since we always start in state A.

What is the chance of being in each state at time step 1, i.e., what is 𝜋1?

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

What is the chance of being in each state at time step 1, i.e., what is 𝜋1?

• 50% chance of going into state B or state C. 𝜋1 = [0 0.5 0.5]

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

What is the chance of being in each state at time step 2, i.e., what is 𝜋2?

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern. 

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

What is the chance of being in each state at time step 2, i.e., what is 𝜋2?

• Can reason through the possibilities, or we can use linear algebra!

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

If 𝜋1 = [0 0.5 0.5] and 𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0
, what is 𝜋2 = 𝜋1𝑃?

We did this at the beginning of lecture today!

• 𝜋2 = 𝜋1𝑃 = 0.75 0.25 0

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain using Linear Algebra

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

• 𝜋1 = 𝜋0𝑃 = 0 0.5 0.5

• 𝜋2 = 𝜋1𝑃 = 0.75 0.25 0

• 𝜋3 = 𝜋2𝑃 = 0.25 0.375 0.375

• 𝜋4 = 𝜋3𝑃 = 𝜋2𝑃2 = 𝜋1𝑃3 = 𝜋0𝑃4 = 0.5625 0.3125 0.125

• 𝜋5 = 𝜋0𝑃5 = 0.375 0.34375 0.28125

• …

• 𝜋9 = 𝜋0𝑃9 = [0.4375 0.33398438 0.22851562]



Long Term Behavior of Three State Markov Chain using Linear Algebra

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

• 𝜋𝑛 = 1 0 0 𝑃𝑛

Limit as 𝑛 → ∞ is 4

9
 

3

9
 

2

9

In the next lecture, we’ll show that this holds for any starting distribution, not 
just 𝜋0 = [1 0 0].



Long Term Behavior of Three State Markov Chain – using observations

Note: If we have information about the Markov Chain at some point other than 
time zero, we can update probabilities accordingly.

Example: Suppose we know 𝜋0 = 0.3 0.2 0.5 , we know that 𝑋2 = 3, and 𝑋5 = 1, 
then:

𝜋0 = [0.3 0.2 0.5] 

𝜋1 = 0.3 0.2 0.5 𝑃 

𝑋2 = 3

𝜋3 = 0 0 1 𝑃 

𝜋4 = 0 0 1 𝑃2 

𝑋5 = 1

𝑋6 = 1 0 0 𝑃

Or equivalently: 𝜋2 = [0 0 1]

Or equivalently: 𝜋5 = [1 0 0]



Alternate View: Distribution of 𝑋1

Denote the distribution of 𝑋1 by 𝜋1

𝜋1 𝑗 = 𝑃 𝑋1 = 𝑗 = ෍

𝑖=1

𝑘

𝑃(𝑋0 = 𝑖, 𝑋1 = 𝑗)

= ෍

𝑖=1

𝑘

𝑃 𝑋0 = 𝑖 ⋅ 𝑃 𝑋1 = 𝑗 𝑋0 = 𝑖

= ෍

𝑖=1

𝑘

𝜋0 𝑖 ⋅ 𝑃 𝑖, 𝑗

Or in linear algebra notation: 𝜋0 and 𝜋1 are row vectors, and 𝑃 is a matrix of 
transition probabilities. We have that 𝜋1 = 𝜋0𝑃.



Alternate View: The Distribution of 𝑋𝑛

Denote the distribution of 𝑋𝑛 by 𝜋𝑛

𝜋𝑛 𝑗 = 𝑃 𝑋𝑛 = 𝑗 = ෍

𝑖=1

𝑘

𝑃(𝑋𝑛−1 = 𝑖, 𝑋𝑛 = 𝑗)

= ෍

𝑖=1

𝑘

𝑃 𝑋𝑛−1 = 𝑖 ⋅ 𝑃 𝑋𝑛 = 𝑗 𝑋𝑛−1 = 𝑖

= ෍

𝑖=1

𝑘

𝜋𝑛−1 𝑖 ⋅ 𝑃 𝑖, 𝑗

In vector-matrix form, 𝜋𝑛 = 𝜋𝑛−1𝑃

            … and 𝜋𝑛−1 = 𝜋𝑛−2𝑃 so      𝜋𝑛 = 𝜋𝑛−1𝑃 = 𝜋𝑛−2𝑃 𝑃 = 𝜋𝑛−2𝑃2

Continuing, we have 𝜋𝑛 = 𝜋𝑛−1𝑃 = 𝜋𝑛−2𝑃2 = ⋯ = ⋯ = 𝜋0𝑃𝑛



Hitting Time
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Hitting Time

Another question we might ask ourselves: If we start in state 𝑖, how many time 
steps 𝛽 𝑖  do we expect it to take before we hit end state 𝔈?

For example, if our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 
𝛽 𝐷 , and 𝛽 𝐸 .

 



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

 "The journey of a thousand miles begins with a single step." – Lao Tzu. 

First, we’ll observe 𝛽 𝐸 = 0. This is trivial: If we’re at 𝐸 already, we have to wait 
0 time steps to get to 𝐸.

 



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

Next, let’s consider 𝛽 𝐶 .

• The only thing that can happen next is that we go to state 𝐴. 

• Thus, expected wait time is 𝛽 𝐶 = 1 + 𝛽 𝐴 , where 𝛽 𝐴  is whatever the 
expected wait time from 𝐴.

 

𝛽 𝐸 = 0



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

What is 𝛽 𝐵 ?

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

What is 𝛽 𝐵 ?

• 𝛽 𝐵 = 1 + 𝛽 𝐶

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴𝛽 𝐵 = 1 + 𝛽 𝐶



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

What is 𝛽 𝐴 ?

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴𝛽 𝐵 = 1 + 𝛽 𝐶



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

What is 𝛽 𝐴 ?

• 1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵        ←  nothing new…  just conditional expectation

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴𝛽 𝐵 = 1 + 𝛽 𝐶
1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

What is 𝛽 𝐷 ?

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴𝛽 𝐵 = 1 + 𝛽 𝐶
1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• To do this, let’s write the so-called first step equations for this Markov Chain. 

What is 𝛽 𝐷 ?

• 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴𝛽 𝐵 = 1 + 𝛽 𝐶
1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• The first step equations for this Markov Chain are:
• 𝛽 𝐴 = 1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵

• 𝛽 𝐵 = 1 + 𝛽 𝐶

• 𝛽 𝐶 = 1 + 𝛽 𝐴

• 𝛽 𝐷 = 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸

• 𝛽 𝐸 = 0

𝛽 𝐸 = 0

𝛽 𝐶 = 1 + 𝛽 𝐴𝛽 𝐵 = 1 + 𝛽 𝐶
1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵

𝛽 𝐷 = 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• The first step equations for this Markov Chain are:
• 𝛽 𝐴 = 1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵

• 𝛽 𝐵 = 1 + 𝛽 𝐶

• 𝛽 𝐶 = 1 + 𝛽 𝐴

• 𝛽 𝐷 = 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸

• 𝛽 𝐸 = 0

This is just a system of 5 linear equations in five unknowns. Straightforward to 
solve (through substitution, gaussian elimination, computer solver, etc).

• (Or you could say it’s a system of four equations in four unknowns since one 
of them is just zero)



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• The first step equations for this Markov Chain are:
• 𝛽 𝐴 = 1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵

• 𝛽 𝐵 = 1 + 𝛽 𝐶

• 𝛽 𝐶 = 1 + 𝛽 𝐴

• 𝛽 𝐷 = 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸

• 𝛽 𝐸 = 0

Ad-hoc solve – first, easy eliminations are 𝛽 𝐸 , 𝛽 𝐶 , and 𝛽 𝐵  - leaving:

• 𝛽 𝐴 = 1 + 0.5𝛽 𝐷 + 0.5 2 + 𝛽 𝐴 = 2 + 0.5𝛽 𝐷 + 0.5𝛽 𝐴 = 4 + 𝛽 𝐷

• 𝛽 𝐷 = 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸  
    = 1 + 1/3𝛽 𝐴 + 1/3 2 + 𝛽 𝐴  = 5/3 + 2/3𝛽 𝐴 = 5/3 + 2/3(4 + 𝛽 𝐷 )

    = 13/3 + 2/3𝛽 𝐷 = 13

Then: backsolve for others….     𝛽 𝐴 = 17, 𝛽 𝐵 = 19, 𝛽 𝐶 = 18



Hitting Time

Our desired end state is 𝔈 = 𝐸, we want to find 𝛽 𝐴 , 𝛽 𝐵 , 𝛽 𝐶 , 𝛽 𝐷 , and 𝛽 𝐸 .

• The first step equations for this Markov Chain are:
• 𝛽 𝐴 = 1 + 0.5𝛽 𝐷 + 0.5𝛽 𝐵

• 𝛽 𝐵 = 1 + 𝛽 𝐶

• 𝛽 𝐶 = 1 + 𝛽 𝐴

• 𝛽 𝐷 = 1 + 1/3𝛽 𝐴 + 1/3𝛽 𝐵 + 1/3𝛽 𝐸

• 𝛽 𝐸 = 0

… or …  solve with linear system solution software…

Result: 𝛽 𝐴 = 17, 𝛽 𝐵 = 19, 𝛽 𝐶 = 18, 𝛽 𝐷 = 13



Example 2: Expectation of a Geometric Random Variable

For the fourth time, let’s compute the expectation of a geometric random 
variable.

• We can model a geometric random variable as a Markov chain with two 
states. One is the state where we have not yet gotten our first heads, the 
other is where we’ve gotten our first heads.

𝛽 𝑆  is average time a Markov Chain starting at S takes to reach 𝐸.

• First step equation is just 𝛽 𝑆 = 1 + 1 − 𝑝 ⋅ 𝛽 𝑆 + 𝑝 ⋅ 𝛽(𝐸)

This is just 0.
𝛽 𝑆 = 1 + 𝛽 𝑆 − 𝑝𝛽 𝑆

𝛽 𝑆 = 1/𝑝



Example 3: Flipping Until Two Consecutive Heads.

Suppose we now want to model the process of flipping a coin until we get two 
consecutive heads.

• Flips at times 2 and 3 not independent of flips at times 1 and 2 – not Bernoulli!

• How many flips on average do you think it will take if coin is fair, i.e., 𝑝 = 0.5?

• We can model with a Markov chain though - what does it look like?



Example 3: Flipping Until Two Consecutive Heads.

Suppose we now want to model the process of flipping a coin until we get two 
consecutive heads. What does the equivalent Markov Chain look like?

First step equations:

• 𝛽 𝑆 = 1 + 1 − 𝑝 𝛽 𝑆 + 𝑝𝛽 𝐻

• 𝛽 𝐻 = 1 + 1 − 𝑝 𝛽 𝑆 + 𝑝𝛽 𝐸

• 𝛽 𝐸 = 0



Example 3: Flipping Until Two Consecutive Heads.

Suppose we now want to model the process of flipping a coin until we get two 
consecutive heads. What does the equivalent Markov Chain look like?

First step equations:

• 𝛽 𝑆 = 1 + 1 − 𝑝 𝛽 𝑆 + 𝑝𝛽 𝐻

• 𝛽 𝐻 = 1 + 1 − 𝑝 𝛽 𝑆

𝛽 𝑆 = 1 + 𝛽 𝑆 − 𝑝𝛽 𝑆 + 𝑝 + 𝑝𝛽 𝑆 − 𝑝2𝛽 𝑆

𝑝2𝛽 𝑆 = 1 + 𝑝

𝛽 𝑆 =
1 + 𝑝

𝑝2

= 1 + 1 − 𝑝 𝛽 𝑆 + 𝑝(1 + 1 − 𝑝 𝛽 𝑆 )

If 𝑝 = 0.5: 𝛽 𝑆 =
3/2

1/4
= 6



Probability of A 
Before B
Lecture 26, CS70 Summer 2025



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 before state 𝐵?

Example: You’re gambling, have a 50/50 chance of winning. Every round:

• 50% chance you win $1

• 50% chance you lose $1

Your plan is to keep playing until you make $100.

• If you start with $10 dollars, what’s the chance you get to $100 before you get 
to $0?



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. Which of these are true?

• 𝛼 0 = 1

• 𝛼 0 = 0

• 𝛼 100 = 1

• 𝛼 100 = 0



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. Which of these are true?

• 𝛼 0 = 1

• 𝜶 𝟎 = 𝟎

• 𝜶 𝟏𝟎𝟎 = 𝟏

• 𝛼 100 = 0



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. We know that 𝛼 0 = 1, 𝛼 100 = 0. Which of the two statements below are 
true?

• 𝛼 𝑖 = 1 + 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1

• 𝛼 𝑖 = 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. We know that 𝛼 0 = 1, 𝛼 100 = 0. Which of the two statements below are 
true?

• 𝛼 𝑖 = 1 + 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1 remember: these are probabilities!

• 𝛼 𝑖 = 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. We know that 𝛼 0 = 1, 𝛼 100 = 0, and 𝛼 𝑖 = 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1

Why is this true? The event that the Markov chain gets to 100 before 0 is 
partitioned into two events: 

• Go to 𝑖 − 1, then later get to 100: 𝑃 go left ⋅ 𝑃 100 before 0 go left)

• Go to 𝑖 + 1, then later get to 100: 𝑃 go right ⋅ 𝑃 100 before 0 go right)



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. We know that 𝛼 0 = 1, 𝛼 100 = 0, and 𝛼 𝑖 = 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1

Now we have a system of 99 linear equations in 99 unknowns.

• Could solve with a computer.

• Or we can be clever!



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

For 𝑖 ∈ 0, 1, … , 100 . Let 𝛼 𝑖  be the probability of reaching 100 before 0 starting 
at 𝑖. We know that 𝛼 0 = 1, 𝛼 100 = 0, and 𝛼 𝑖 = 0.5𝛼 𝑖 − 1 + 0.5𝛼 𝑖 + 1

Now we have a system of 99 linear equations in 99 unknowns.

• Every 𝛼 𝑖  is the average of its left and right neighbor, except leftmost node is 
0 and rightmost node is 1. So what is 𝛼 𝑖 ?



Probability of A Before B

Now we have a system of 99 linear equations in 99 unknowns.

• Every 𝛼 𝑖  is the average of its left and right neighbor, except leftmost node is 
0 and rightmost node is 1. So what is 𝛼 𝑖 ? Must be a straight line starting at 
𝛼 0 = 0 and ending 𝛼 100 = 1.

𝛼 𝑖 =
𝑖

100

Intuition is great: but verify afterwards!



Probability of A Before B

Another problem we might ask about Markov Chains: What is the probability 
that if we start at state 𝑖, that we reach state 𝐴 = 100 before state 𝐵 = 0?

• Example: If we start with $10, there is a 10/100=10% chance that we get to 
$100 before we get to $0.

𝛼 𝑖 =
𝑖

100 10%



Example 2: Casino with House Edge

Example: You’re gambling, have a p=48% chance of winning. Every round:

• 48% chance you win $1. 

• 52% chance you lose $1.

Your plan is to keep playing until you make M=$100.

• If you start with $10 dollars, what’s the chance you get to M=$100 before you 
get to $0?

• 𝛼 𝑖 = 0.48 ⋅ 𝛼 𝑖 + 1 + 0.52 ⋅ 𝛼 𝑖 − 1

• 99 equations with 99 unknowns. Appendix of the notes gives solution.

𝛼 𝑖 =
1 − 𝜌𝑖

1 − 𝜌𝑀
𝜌 =

1 − 𝑝

𝑝
If 𝑝 ≠ 0.5



Example 2: Casino with House Edge

Example: You’re gambling, have a p=48% chance of winning. Every round:

• 48% chance you win $1. 

• 52% chance you lose $1.

Your plan is to keep playing until you make M=$100.

• If you start with $10 dollars, what’s the chance you get to M=$100 before you 
get to $0?

𝛼 𝑖 =
1 − 𝜌𝑖

1 − 𝜌100
≈

1

2440
𝜌 =

1 − 𝑝

𝑝
= 0.52/0.48

i=10



50/50 Odds vs. 48/52 Odds

Visually, we can compare the two situations below. 

The tiny house edge 
makes it extremely 
difficult to walk away as 
a winner.



Summary
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First Step Equations

A Markov Chain is a series of random variables, such that

• We know the distribution of 𝑋0, denoted as 𝜋0.

• We know the transition probability matrix 𝑃.

• 𝑃 𝑋𝑛𝑒𝑥𝑡 = 𝑗 𝑋𝑝𝑟𝑒𝑣 = 𝑖 = 𝑃 𝑖, 𝑗

• The distribution of 𝑘th random variable in the chain is 𝜋𝑘 = 𝜋0𝑃𝑘

By modeling a problem as a Markov Chain, can solve using “first step analysis”.

• Computations are often easier than other “lower level” techniques.

• Examples:
• Finding the expected time to reach a given state (getting two tails in a 

row).
• Finding the probability of reaching one state before another (making 

$100 before running out of money). 
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