
Summary of Last Lecture

A Markov Chain is a series of random variables, such that

• We know the distribution of 𝑋0, denoted as 𝜋0.

• We know the transition probability matrix 𝑃.

• 𝑃 𝑋𝑛𝑒𝑥𝑡 = 𝑗 𝑋𝑝𝑟𝑒𝑣 = 𝑖 = 𝑃 𝑖, 𝑗

• The distribution of kth random variable in the chain is 𝜋𝑘 = 𝜋0𝑃𝑘

By modeling a problem as a Markov Chain, can solve using “first step analysis”.

• Computations are often easier than other “lower level” techniques.

• Examples:
• Finding the expected time to reach a given state (getting two tails in a 

row).
• Finding the probability of reaching one state before another (making 

$100 before running out of money). 
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Long Term Behavior of Three State Markov Chain

Consider the Markov Chain below.

If we generate samples, we end up with around:

• 44% of the time in state A.

• 33% of the time in state B.

• 22% of the time in state C.

𝑃 =
0 0.5 0.5
1 0 0

0.5 0.5 0



Long Term Behavior of Three State Markov Chain using Linear Algebra

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

• 𝜋1 = 𝜋0𝑃 = 0 0.5 0.5

• 𝜋2 = 𝜋1𝑃 = 0.75 0.25 0

• 𝜋3 = 𝜋2𝑃 = 0.25 0.375 0.375

• 𝜋4 = 𝜋3𝑃 = 𝜋2𝑃2 = 𝜋1𝑃3 = 𝜋0𝑃4 = 0.5625 0.3125 0.125

• 𝜋5 = 𝜋0𝑃5 = 0.375 0.34375 0.28125

• …

• 𝜋9 = 𝜋0𝑃9 = [0.4375 0.33398438 0.22851562]



Long Term Behavior of Three State Markov Chain using Linear Algebra

We can use basic linear algebra to show why we always end up with this 
44%/33%/22% pattern.

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

• 𝜋𝑛 = 1 0 0 𝑃𝑛

Limit as 𝑛 → ∞ is 4
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In this lecture, we’ll show that this holds for any starting distribution, not just 
𝜋0 = [1 0 0].



Example: Stationary Distribution

A distribution 𝜋 over 𝔛 = {1, 2, … , 𝐾} is stationary (a.k.a. invariant) if 𝜋 = 𝜋𝑃.

Note: “Stationary is forever”:  If 𝜋0 = 𝜋1 = 𝜋0𝑃 then 𝜋0 = 𝜋1 = 𝜋2 = ⋯ = 𝜋𝑛 = ⋯ 

Example: For our three state Markov Chain, 𝜋 =
4
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 is stationary.

Proof:

• 4/9 × 0 + 3/9 × 1 + 2/9 × 0.5

• 4/9 × 0.5 + 3/9 × 0 + 2/9 × 0.5

• 4/9 × 0.5 + 3/9 × 0 + 2/9 × 0
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0 0.5 0.5
1 0 0

0.5 0.5 0

= 4/9

= 3/9 

= 2/9 



Example 2: Stationary Distribution

Consider this Markov Chain:

𝜋 = [a b] is stationary iff 𝑎 𝑏 = 𝑎 𝑏
1 − 𝑝 𝑝

𝑞 1 − 𝑞
 

𝑃 =
1 − 𝑝 𝑝

𝑞 1 − 𝑞

𝑎 = 𝑎 1 − 𝑝 + 𝑏𝑞 ⟺ 𝑎𝑝 = 𝑏𝑞



Example 2: Stationary Distribution

Consider this Markov Chain:

𝜋 = [a b] is stationary iff 𝑎 𝑏 = 𝑎 𝑏
1 − 𝑝 𝑝

𝑞 1 − 𝑞
 

𝑃 =
1 − 𝑝 𝑝

𝑞 1 − 𝑞

𝑎 = 𝑎 1 − 𝑝 + 𝑏𝑞 ⟺ 𝑎𝑝 = 𝑏𝑞

𝑏 = 𝑎𝑝 + 𝑏(1 − 𝑞) ⟺ 𝑏𝑞 = 𝑎𝑝

What we do next? We have two equations and two unknowns, but the 
equations are redundant. Are there other constraints we’re not using?



Example 2: Stationary Distribution

Consider this Markov Chain:

𝜋 = [a b] is stationary iff 𝑎 𝑏 = 𝑎 𝑏
1 − 𝑝 𝑝

𝑞 1 − 𝑞
 

𝑃 =
1 − 𝑝 𝑝

𝑞 1 − 𝑞

𝑎 = 𝑎 1 − 𝑝 + 𝑏𝑞 ⟺ 𝑎𝑝 = 𝑏𝑞

𝑏 = 𝑎𝑝 + 𝑏(1 − 𝑞) ⟺ 𝑏𝑞 = 𝑎𝑝

We also know: 𝑎 + 𝑏 = 1
𝜋 =

𝑞

𝑝 + 𝑞
,

𝑝

𝑝 + 𝑞



Example 3: Stationary Distribution

Consider this Markov Chain:

𝜋 = [a b] is stationary iff 𝑎 𝑏 = 𝑎 𝑏
1 0
0 1

 

What distribution is stationary, i.e., what 𝑎 and 𝑏 can we pick?

𝑃 =
1 0
0 1



Example 3: Stationary Distribution

Consider this Markov Chain:

𝜋 = [a b] is stationary iff 𝑎 𝑏 = 𝑎 𝑏
1 0
0 1

 

What distribution is stationary, i.e., what 𝑎 and 𝑏 can we pick?

• Any distribution, e.g., 𝜋 = 0.3 0.7  just ends up right back where you started 
(and so does anything else).

Stationary distribution exists, but not unique.

𝑃 =
1 0
0 1



Irreducibility 
and Periodicity
Lecture 27, CS70 Summer 2025



Irreducible Markov Chains

A Markov Chain is irreducible if you can get from any state 𝑖 to any other state 
𝑗, possibly by following multiple (non-zero probability) transitions.

Stealing a nice exercise from Avishay Tal in Fall 2023:



Irreducible Markov Chains

A Markov Chain is irreducible if you can get from any state 𝑖 to any other state 
𝑗, possibly by following multiple steps.

Stealing a nice exercise from Avishay Tal in Fall 2023:



A few side notes about irreducibility

A Markov Chain is irreducible if you can get from any state 𝑖 to any other state 𝑗, 
possibly by following multiple steps.

Visually checking: Can you find a cycle through all vertices?

• Not restricting number of times using a vertex (not necessarily Hamiltonian)

Graph theory connection:

• Treating as a directed graph including only edges with >0 probability…

• Such a graph is called a strongly connected graph (path from any 𝑖 to any 𝑗)

• There are linear time algorithms (fast!) to test if a graph is strongly connected



Unique stationary distribution exists iff Markov Chain is irreducible

Theorem: A Markov Chain has a unique stationary distribution 𝜋 with 𝜋 𝑖 > 0 
for all states 𝑖 if and only if the Markov Chain is irreducible.

Our ongoing example:

Irreducible? Yes!

Stationary distribution? Yes!  Recall from earlier: 𝜋 =
4
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Theorem tells us: This is the only stationary distribution.



Unique Stationary Distribution – Example 2

Theorem: A Markov Chain has a unique stationary distribution 𝜋 with 𝜋 𝑖 > 0 
for all states 𝑖 if and only if the Markov Chain is irreducible.

Another previous example:

Irreducible? No!

Stationary distribution? Yes!    𝜋 =
1

2
 

1

2
 

Theorem is consistent with these examples. Won’t prove it, but this is reassuring.

But also  𝜋 =
1

3
 

2
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 and others….



Unique Stationary Distribution – Example 3

Theorem: A Markov Chain has a unique stationary distribution 𝜋 with 𝜋 𝑖 > 0 
for all states 𝑖 if and only if the Markov Chain is irreducible.

A new example:

Irreducible? Yes!

Stationary distribution? Yes!    𝜋 =
1

2
 

1
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Theorem tells us: This is the only stationary distribution.  But something different…



Convergence?

Recall from earlier:

Let 𝜋0 be a vector giving the probability that we’re in any given state. For our 
simulation, that means 𝜋0 = [1 0 0], then 𝜋1 = [0 0.5 0.5].

• 𝜋1 = 𝜋0𝑃 = 0 0.5 0.5

• 𝜋2 = 𝜋1𝑃 = 0.75 0.25 0

• 𝜋3 = 𝜋2𝑃 = 0.25 0.375 0.375

• 𝜋4 = 𝜋3𝑃 = 𝜋2𝑃2 = 𝜋1𝑃3 = 𝜋0𝑃4 = 0.5625 0.3125 0.125

• 𝜋5 = 𝜋0𝑃5 = 0.375 0.34375 0.28125

• …

• 𝜋9 = 𝜋0𝑃9 = [0.4375 0.33398438 0.22851562]

Fact: Distribution converges to stationary dist.   Proof: “Trust me”



Convergence?

What about other Markov Chain?

 𝑃 =
0 1
1 0

Now with 𝜋0 = [1 0]:

• 𝜋1 = 𝜋0𝑃 = [1 0]
0 1
1 0

= [0 1]

• 𝜋2 = 𝜋1𝑃 = [0 1]
0 1
1 0

= [1 0]

• … and we’re back where we started!

• 𝜋3 = [0 1]

• 𝜋4 = [1 0]

• 𝜋5 = [0 1]

        …..

So:

    Unique stationary distribution (by theorem)

    But doesn’t converge to it for some choices of 𝜋0



Periodicity

The periodicity of a Markov Chain with transition matrix 𝑃 is the gcd of the 
lengths of all closed walks (cycles) in the chain. 

Example: 

gcd of lengths of all cycles, which is 2.



Periodicity

The periodicity of a Markov Chain with transition matrix 𝑃 is the gcd of the 
lengths of all closed walks (cycles) in the chain. 

More examples: What do you think are the periods of these graphs?



Periodicity

The periodicity of a Markov Chain with transition matrix 𝑃 is the gcd of the 
lengths of all closed walks (cycles) in the chain. 

More examples: What do you think are the periods of these graphs?

Period: gcd(2, 4)=2
Period: 3 Period: gcd(2, 3)=1

Period = 1 is the important case!  Such a Markov chain is aperiodic.



Why Period Is Important

Theorem: Let 𝑐1, 𝑐2, … , 𝑐𝑘 be cycle lengths in a directed graph such that 
gcd 𝑐1, 𝑐2, … , 𝑐𝑘 = 1. Then there is an 𝑛0 such that for any vertex 𝑣 and all 𝑛 ≥ 𝑛0 
there is a tour of length 𝑛 from 𝑣 back to itself.

Related to “Making Change” problem (coin denominations, …)

What it means here: Given these cycle lengths we can get back to a vertex in any 
number of steps as long as 𝑛 is big enough (and we’re interested in large 𝑛).

Conversely: If gcd 𝑐1, 𝑐2, … , 𝑐𝑘 = 2  (for example), every path back will have even 
length – no path back of odd length is possible!

⟹ If we start in state 𝑠, 𝜋𝑖(𝑠) will be non-zero if 𝑖 is even, zero if 𝑖 is odd... No convergence

Tip: If the Markov Chain has any self-loops (which is common), it is aperiodic!



The Fundamental Theorem of Markov Chains

We’ve seen some Markov Chains that converge to some unique invariant 
distribution, and others that do not.

The Fundamental Theorem of Markov Chains: If a Markov Chain is finite, 
irreducible, and aperiodic, then for any initial 𝜋0 the distribution at time 𝑛 
converges as 𝑛 → ∞ to 𝜋, which is the unique invariant distribution, and 𝜋 𝑖 > 0 
for all states 𝑖.

Irreducible: Any node reachable from any other node.

Aperiodic: Period is 1. 

• Note: Must contain loops (irreducible), but GCD of the length of those loops is 1.



An Application: 
Predicting Text
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Claude Shannon: A Mathematical Theory of Communication (1948)

In 1948, Claude Shannon wrote a paper called “A Mathematical Theory of 
Communication”.

• Focus: What is “information” and how do we encode it?

Why?   (other than it’s an incredibly fundamental question)

Data compression in half a slide:

Predict characters:
P(“A”)=1/8
P(“B”)=1/2
P(“C”)=1/8
P(“D”)=1/4

Use to encode:
A = 111
B = 0
C = 110
D = 10

P re fi x cod e  (unique ly d e ciph e rable )

Ave rage  e ncod e d  le ngth 8
 3 ⋅ 1/8 + 1 ⋅ 1/2 + 3 ⋅ 1/8 + 2 ⋅ 1/4 = 1.75

Com pare  to 2 bits/le tte r w ith out pre d ictions



Claude Shannon: A Mathematical Theory of Communication (1948)

In 1948, Claude Shannon wrote a paper called “A Mathematical Theory of 
Communication”.

• Focus: What is “information” and how do we encode it?

How to predict?

Order 0: A single probability distribution for each letter

E = 12.7%
T=9.1%
A=8.2%
O=7.5%
…

Remarkably consistent across a wide
variety of English writing…

Sufficient to encode English text in about 4.2 bits/letter



Claude Shannon: A Mathematical Theory of Communication (1948)

In 1948, Claude Shannon wrote a paper called “A Mathematical Theory of 
Communication”.

• Focus: What is “information” and how do we encode it?

How to predict?

Order 1: Probability of next letter depends on previous

         𝑃 𝐶𝑖 = "H" 𝐶𝑖−1 = "T") ≠ 𝑃 𝐶𝑖 = "H" 𝐶𝑖−1 = "Q")

Context matters…   predictions are more accurate considering previous letter

This is a Markov Chain, where the state is the last letter seen!



Claude Shannon: A Mathematical Theory of Communication (1948)

In 1948, Claude Shannon wrote a paper called “A Mathematical Theory of 
Communication”.

• Focus: What is “information” and how do we encode it?

How to predict?

Order 2: Probability of next letter depends on two previous (“digrams”)

         𝑃 𝐷𝑖 = "ON" 𝐷𝑖−1 = "IO") ≠ 𝑃 𝐷𝑖 = "ON" 𝐷𝑖−1 = "FO")

Context matters…   predictions are more even accurate with 2 previous letters

This is a Markov Chain, where the state is the last digram seen!

 Can encode at roughly 2.77 bits/letter.



Modern Compression – and more

There’s an entire class of compression algorithms based on Markov Chain 
predictions: the “PPM” (Prediction by Partial Matching) algorithms.

In the real world: The RAR compression program uses this.

If you can predict, what else can you do?

Generate text!

Auto-complete

Large language models (LLMs)



Some examples of text generation

Order 0 example: Follows letter frequencies, but that’s about it:
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA NAH BRL

Going up to order 4 (trained on all ASCII chars, using Moby Dick):
I am in that down broad glazier.” true cylindefinitely from yondering again 
one visible tinkled in this colourite myself to suit of the old wrinkling 
that stood city offin.”

Better…  but still not going to fool anyone.

LLMs: Token based prediction (not characters) with additional context

 … but it’s still just a (very large) Markov Chain!
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Day 1 Slide: “What Is This Class?”

Discrete Math: Math with structures with distinct objects

• Not continuous

• Not “discreet”!

• But not (necessarily) finite

• Digital? What computers work with...

Probability Theory:  Probability and properties of random events

• Can use continuous functions

• Basically counting....

But really this class is about: building important ideas by putting together simple concepts; 
careful and precise reasoning about those constructions; proofs; counting

This can be uncomfortable at first – hopefully you feel better about it now…



Also From Day 1

Lots of people to thank:

And thank you!

If Berkeley students, I hope this supports your future studies!

If visitors, I hope you found your time here worthwhile
 (and that you had some time to enjoy being here!)



You’re not done yet – the final exam!

Important details:
Main exam location: Dwinelle 155
Main exam day/time: Tuesday, Aug 12, 7:00-10:00
Those with DSP accommodations: You’ll be contacted with details

What topics are covered?
Everything in the notes except “optional” parts – and not my side-tracks…
Roughly 2/3 on post-midterm (counting and later) material

Taking the exam:
You can bring hand-written notes: two sheets of paper (front and back)
Nothing else!
Remember to write answers inside the marked boxes.



Final exam - Preparation

Best resources
The notes (always!) and lectures
Discussion sheets and posted HW solutions
Past exams (do a realistic run-through!)

Final review by TAs:
When? Fri Aug 8, 12:00-2:00 and 3:00-5:00 – 30-minute blocks for topics
Where? Cory 521
See Ed post for more details

Also: Regular TA office hours on Friday

Monday:
Student-choice lecture (see Ed)
No discussion or TA office hours – professor OH if needed

And Ed is always available for questions/discussion



Related classes at Berkeley for those who want more!

➢ CS170: Efficient Algorithms and Intractable Problems a.k.a. Introduction to CS 
Theory: Graphs, Dynamic Programming, Complexity.

➢ EE126: Probability in EECS: An Application-Driven Course: PageRank, Digital 
Links, Tracking, Speech Recognition, Planning, etc. Hands on labs with 
python experiments (GPS, Shazam, ...). 

➢ CS188: Artificial Intelligence: Hidden Markov Chains, Bayes Networks, Neural 
Networks. 

➢ CS189: Introduction to Machine Learning: Regression, Neural Networks, 
Learning, etc. Programming experiments with real-world applications. 

➢ EE121: Digital Communication: Coding for communication and storage. 

➢ EE223: Stochastic Control. 

➢ EE229A: Information Theory; EE229B: Coding Theory



The End

… and they all lived happily ever after.
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