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CS70: Lecture 3. Induction!

Induction!!!

Topics for today:
@ Inductions basics (simple induction)
@ Strengthening the induction hypothesis
© Strong induction
© How to mis-use induction
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A Teacher’s Plans Foiled: 7-year old Gauss.

Teacher: Hello class.
Teacher: [Thinking: | sure could use a break from these kids]

Teacher: Please add the numbers from 1 to 100.
Teacher: [Settles in for a nice break while students do busywork]

Gauss: It's 5050!
Narrator: That’s U()(J)zw =50 x 101
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Child Gauss: (Vn € N) (Z/ ”*”) But is it always true? Proof?

Generic problem: For predicate P(n), prove (Vn e N)(P(n))

Can test small values of n directly: P(0)? P(1)?
But.... what about P(100)?
Even worse: Impossible to directly verify for infinitely many n e N.

Another approach — take one isolated step in sequence of natural numbers
Specifically, prove (vk € N)(P(k) = P(k+1))

So: Verify P(0) directly ~ so we know P(0) is true

P(0) = P(1) since P(0) is true, P(1) is true
P(1) = P(2) since P(1) is true, P(2) is true
P(2) = P(3) since P(2) is true, P(3) is true
P@3) = P(4) since P(3) is true, P(4) is true

.. goes on indefinitely!

Every nis reached in a finite number of steps, so P(n) is true for all n € N!
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Notes Visualization

Visualization: an infinite(?!) sequence of dominoes.

Prove they all fall down.
@ P(0) = “First domino falls”
o (Vk) (P(k) = P(k+1)):
“kth domino falls implies that k + 1st domino falls”

UC Berkeley — Summer 2025 — Steve Tate CS70: Discrete Mathematics and Probability Theory 5/24



Induction: Proof Form

This is the form for what we call “simple induction” — to prove:

(Vne N)(P(n))

Directly prove P(0) — this is called the base case.

Prove (Vk € N)(P(k) = P(k+1)) —this is the induction step.

Just an implication, so do a direct proof, as described in the last lecture.
Assume P(k) is true — this is called the induction hypothesis.
Prove that P(k+1) is true.

This is the standard form and the pieces people expect in an induction proof.

Follow the form and label the pieces!
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Back To Gauss!

Theorem: ForallneN, Y? ;i= "(HQH)

Proof: We proceed by induction on n.

0+1

Base Case (n=0): Y ,i=0, and =0, so the base case holds.

Induction Hypothesis: Assume the formula holds for n= k, so Y ;i = X&)

Inductive Step: We prove the formula holds at n= k +1: pit1j = (1)02),

We separate out the final term in the sum and then apply the induction

hypothesis:
ey K k(k+1
Z/:<Z:>+(k+1)= (2+ )+(k+1).
i=0

i=0
Simplifying, we get

k(k+1 (k1) = k(k2+1) Jr2(k2+1) _ (k+2)2(k+1)7

which is the RHS of what we were trying to prove, completing the induction
step. By the principle of mathematical induction, the theorem follows. O
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Another Induction Example

Theorem: For all ne N, n® — nis divisible by 3.

Proof: We proceed by induction on n.

Base Case (n=0): When n=0, n® —n =0, which is divisible by 3, so the base case
holds.

Induction Hypothesis: Assume for n = k that (k% — k) is divisible by 3.
Inductive Step: We prove that when n=k+1, ((k+1 38— (k+1 )) is divisible by 3.
Start by expanding

(k+1)3—(k+1) = k3 +8k? +3k+1—k—1=k®+3k? +2k.

We adjust terms so that we can use the induction hypothesis, as

(K3 — k) + (3k® +3k) = (k® — k) + 3(k% + k).

By the induction hypothesis, k% — k = 3q for some g € Z, so this becomes

3q+3(k%+ k) =3(q+k?+k). This is 3 times an integer, so (k+1)3 — (k+1) is
divisible by 3, completing the induction step. By the principle of mathematical
induction, the theorem follows. O
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A Famous Theorem: The Four Color Theorem

Theorem: Any map can be colored so that those regions that share an edge
have different colors.

Fascinating history:
e Conjectured but unproven for over 100 years
¢ (One of the?) first major computer-assisted proof
e Proof by cases (1,834 cases!)
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Simplification: Maps With Just Complete Lines

Simpler map: Only lines allowed (no line segments, curves, ...)

Claim: Any such map formed can be properly colored with at most two colors

We will prove this by induction, but visually — focus on the logic!
= “Visually” is not a proper proof — see notes for written
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Simplification: Maps With Just Complete Lines

Base case (no lines): One color is sufficient

Induction Hypothesis: Assume true for n = k lines...
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Simplification: Maps With Just Complete Lines

Inductive step: Consider a case with n= k + 1 lines (picture: k = 3)

Remove a line: Goes from k -+ 1 lines back to k lines
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Simplification: Maps With Just Complete Lines

Inductive step: Consider a case with n= k + 1 lines (picture: k = 3)

Remove a line: Goes from k + 1 lines back to k lines
Use induction hypothesis: We can color the map with k lines!

Add the (k+ 1)st line back.
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Simplification: Maps With Just Complete Lines

Inductive step: Consider a case with n= k + 1 lines (picture: k = 3)

Remove a line: Goes from k + 1 lines back to k lines
Use induction hypothesis: We can color the map with k lines!
Add the (k+ 1)st line back. Hmmm... not a valid coloring
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Simplification: Maps With Just Complete Lines

Observation: In any region with a valid color, can flip colors and it’s still valid.

FLIP!

Back to the full map, with flipped colors to the right of line
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Simplification: Maps With Just Complete Lines

Observation: In any region with a valid color, can flip colors and still valid.

Back to the full map, with flipped colors to the right of line
Now: Inside regions OK (I.H.), and across regions OK (flipped). O
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Strengthening The Induction Hypothesis.

Theorem: The sum of the first n odd numbers is aperfect-seare: 1°.
Proof: Let s, denote the sum of the first n odd numbers.
Base Case (n=0): sy is an empty sum, so is zero — a perfect square.
Induction Hypothesis: Assume for n = k, s is a-perfeetsetrarersay-a= k°.
Induction Step: We prove that for n= k + 1, sx.1 is aperfectsauare: (k + 1)°.
@ The (k+1)st odd number is 2k + 1, S0 Sx1 = Sk + (2k+ 1)
© — The sum of the first k +1 odds is B2k~ k> + (2k +1).
©Q —2Thisis k2 +2k+1=(k+1)?
This completes the induction step, and by the principle of mathematical

induction, the theorem follows. O

It seems like proving something more specific should be harder than proving the
looser statement. However, being more specific gave us a more powerful induction
hypothesis to use!
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A Surprisingly Subtle Example

Fibonacci numbers! A sequence where every value is the sum of the two
preceding values. For ne N:

Fn:

Foo1+Fho ifn>2;
if n<?2.

Let’s look at a few...
Fo=0 F =1 F=1 F=2 F=3 FFKF=5 F=38
Hmmm... that starts to snowball — does it grow exponentially?

Theorem: For all n> 1, F, > (3/2)"2.

For such a simple statement, this requires quite a few changes to our form:
@ Starting induction at a value of n>0
@ Needing multiple values of nin the base case

@ Strong induction
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Induction: Exponential Growth of Fibonacci numbers

Issue 1: The base case

Theorem: For all n> 1, F, > (3/2)" 2.

Our high-level goal: lower bound Fj, by an exponential function
Could we have used “for all n € N” and had base case n= 0 as before? No!

Problem: Exponential functions (like ¢") are always strictly positive, so
impossible to lower-bound Fy = 0.

Does it cause a significant problem? No! With n= 1 as the base case, we
have P(1) = P(2) = P(3) = ---.

Bottom line: Just make sure you cover all cases in the theorem statement
e Can possibly adjust bounds in theorem statement!
e Generalizing induction: base case is smallest n covered by the theorem
o Warning! We'll see later that for this problem, just n=1 doesn’t work!
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Induction: Exponential Growth of Fibonacci numbers

Issue 2: Available induction hypothesis

Let’s sketch out the inductive step
Induction Hypothesis: Assume that for n = k we have Fy > (3/2)%2.
Inductive Step: We will show that when n= k + 1 we have Fy ¢ > (3/2) .

Start by using the definition to get Fx1 = Fx+ Fx_1, and since Fy is bounded
by the induction hypothesis, we have Fy, ¢ > (3/2)k2 4 Fy_.

??? What can we do with Fy_{???
We actually have what we need, we just didn’t state it.
To get to P(k) we proved P(0) = P(1) = ---P(k—1) = P(k)

Change induction hypothesis from assuming P(k) to assuming (Vn < k)P(n).
Now Fi_4 > (3/2)%3 is covered by the induction hypothesis

Need to be more careful about lower bound for n (base case)
Introduces some subtle issues (on next slide)

This is called strong induction
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Induction: Exponential Growth of Fibonacci numbers

Issue 3: Base case, revisited

Strong induction introduces a subtle issue not present in simple induction.

Idea from before: Use n=1 as the base case (smallest n in theorem)
To establish P(k + 1) we used both P(k) and P(k—1).
So to establish P(2) we need P(1) and... P(0)? Oops.

Fortunately, easy to fix:

Prove P(1) and P(2) directly, so first use of induction step is to prove P(3)
= This only “reaches back” to P(1) and P(2), which we proved.

Why this is an issue for strong induction: Reaching back farther than previous
step gives the possibility to skip over the base case.
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Induction: Exponential Growth of Fibonacci numbers

Putting it all together

Theorem: For all n>1, F, > (3/2)"2.
Proof: We proceed by induction on n.
Base Case (n=1and n=2):
When n=1, F, =1 and (3/2)"2 =(3/2)~' = (2/3), so F, > (3/2)"2.
When n=2, F, =1 and (3/2)"2 = (3/2)° =1, so F, > (3/2)"2.
Induction Hypothesis: Assume that F, > (3/2)"2 for all 1 < n < k.
Inductive Step: We prove when n= k +1 we have Fy_ 1 > (3/2)k1.
By definition, Fy 1 = Fx+ Fx_1, and we use the induction hypothesis to bound
Frit > (3/2)72+(3/2)7% = (3/2)" 2 +(2/3)(3/2)/ 2 = (5/3)(3/2)/ % > (3/2)

This is what we need for the induction step, so completes the proof. O
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A Bad Proof

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: Assume for n= k any k horses have the same color.
Induction step: Prove for n=k +1

Given a set of k+ 1 horses, remove one (Mr. Ed), leaving k horses. By the
induction hypothesis, they must be the same color.

Put Mr. Ed back into the set and remove a different horse (Wilbur). Apply the
induction hypothesis again to show these k horses have the same color.

Bodack was in both sets, and didn’t change colors during this, so it follow that
all k+1 horses must be the same color as BoJack.

This proves the induction step, so the theorem follows. O
Obviously wrong, but why?

P(1)is OK. P(10) = P(11) is actually OK.
What about P(1) = P(2)? No! There’s no “overlap” in the size-k sets!
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Basic principle of induction — proving Vn € N by simple induction
@ Prove P(0) directly (base case)
@ Prove that P(k) = P(k+1) forall k >0 (inductive step)

What if it doesn’t work? (almost but not quite)
@ Do we need to change the base case?
@ Would a stronger theorem (so a stronger induction hypothesis) work?

@ Would it help to “reach back” farther than just the previous step (just
P(k) isn’t sufficient to prove P(k+1))?
e Strong induction lets you use all P(0) through P(k)
o Make sure “reaching back farther than the previous step” doesn’t
skip over the base case
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