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CS70: Lecture 3. Induction!

Induction!!!

Topics for today:
1 Inductions basics (simple induction)
2 Strengthening the induction hypothesis
3 Strong induction
4 How to mis-use induction
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A Teacher’s Plans Foiled: 7-year old Gauss.

Teacher: Hello class.
Teacher: [Thinking: I sure could use a break from these kids]

Teacher: Please add the numbers from 1 to 100.
Teacher: [Settles in for a nice break while students do busywork]

Gauss: It’s 5050!

Narrator: That’s (100)(101)
2 = 50×101
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Induction

Child Gauss: (∀n ∈ N)

(
n

∑
i=0

i = n(n+1)
2

)
But is it always true? Proof?

Generic problem: For predicate P(n), prove (∀n ∈ N)(P(n))

Can test small values of n directly: P(0)? P(1)?
But.... what about P(100)?
Even worse: Impossible to directly verify for infinitely many n ∈ N.

Another approach – take one isolated step in sequence of natural numbers
Specifically, prove (∀k ∈ N)

(
P(k) =⇒ P(k +1)

)
So: Verify P(0) directly so we know P(0) is true

P(0) =⇒ P(1) since P(0) is true, P(1) is true
P(1) =⇒ P(2) since P(1) is true, P(2) is true
P(2) =⇒ P(3) since P(2) is true, P(3) is true
P(3) =⇒ P(4) since P(3) is true, P(4) is true · · ·

... goes on indefinitely!

Every n is reached in a finite number of steps, so P(n) is true for all n ∈ N!
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Notes Visualization

Visualization: an infinite(?!) sequence of dominoes.

Prove they all fall down.
P(0) = “First domino falls”
(∀k)

(
P(k) =⇒ P(k +1)

)
:

“k th domino falls implies that k +1st domino falls”
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Induction: Proof Form

This is the form for what we call “simple induction” – to prove:

(∀n ∈ N)(P(n)
)

Directly prove P(0) – this is called the base case.

Prove (∀k ∈ N)
(
P(k) =⇒ P(k +1)

)
– this is the induction step.

Just an implication, so do a direct proof, as described in the last lecture.

Assume P(k) is true – this is called the induction hypothesis.

Prove that P(k +1) is true.

This is the standard form and the pieces people expect in an induction proof.

Follow the form and label the pieces!
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Back To Gauss!
Theorem: For all n ∈ N, ∑

n
i=0 i = n(n+1)

2

Proof: We proceed by induction on n.

Base Case (n = 0): ∑
n
i=0 i = 0, and 0(0+1)

2 = 0, so the base case holds.

Induction Hypothesis: Assume the formula holds for n = k , so ∑
k
i=0 i = k(k+1)

2

Inductive Step: We prove the formula holds at n = k +1: ∑
k+1
i=0 i = (k+1)(k+2)

2 .

We separate out the final term in the sum and then apply the induction
hypothesis:

k+1

∑
i=0

i =

(
k

∑
i=0

i

)
+(k +1) =

k(k +1)
2

+(k +1).

Simplifying, we get

k(k+1)
2 +(k +1) = k(k+1)

2 + 2(k+1)
2 = (k+2)(k+1)

2 ,

which is the RHS of what we were trying to prove, completing the induction
step. By the principle of mathematical induction, the theorem follows.
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Another Induction Example

Theorem: For all n ∈ N, n3 −n is divisible by 3.

Proof: We proceed by induction on n.

Base Case (n = 0): When n = 0, n3 −n = 0, which is divisible by 3, so the base case
holds.

Induction Hypothesis: Assume for n = k that (k3 −k) is divisible by 3.

Inductive Step: We prove that when n = k +1,
(
(k +1)3 − (k +1)

)
is divisible by 3.

Start by expanding

(k +1)3 − (k +1) = k3 +3k2 +3k +1−k −1 = k3 +3k2 +2k .

We adjust terms so that we can use the induction hypothesis, as
(k3 −k)+(3k2 +3k) = (k3 −k)+3(k2 +k).

By the induction hypothesis, k3 −k = 3q for some q ∈ Z, so this becomes
3q+3(k2 +k) = 3(q+k2 +k). This is 3 times an integer, so (k +1)3 − (k +1) is
divisible by 3, completing the induction step. By the principle of mathematical
induction, the theorem follows.
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A Famous Theorem: The Four Color Theorem

Theorem: Any map can be colored so that those regions that share an edge
have different colors.

Fascinating history:
• Conjectured but unproven for over 100 years
• (One of the?) first major computer-assisted proof
• Proof by cases (1,834 cases!)
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Simplification: Maps With Just Complete Lines

Simpler map: Only lines allowed (no line segments, curves, ...)

Claim: Any such map formed can be properly colored with at most two colors

We will prove this by induction, but visually – focus on the logic!
⇒ “Visually” is not a proper proof – see notes for written
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Simplification: Maps With Just Complete Lines

Base case (no lines): One color is sufficient

Induction Hypothesis: Assume true for n = k lines...
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Simplification: Maps With Just Complete Lines

Inductive step: Consider a case with n = k +1 lines (picture: k = 3)

Remove a line: Goes from k +1 lines back to k lines
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Simplification: Maps With Just Complete Lines

Inductive step: Consider a case with n = k +1 lines (picture: k = 3)

Remove a line: Goes from k +1 lines back to k lines

Use induction hypothesis: We can color the map with k lines!

Add the (k +1)st line back.
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Simplification: Maps With Just Complete Lines

Inductive step: Consider a case with n = k +1 lines (picture: k = 3)

Remove a line: Goes from k +1 lines back to k lines

Use induction hypothesis: We can color the map with k lines!

Add the (k +1)st line back. Hmmm... not a valid coloring
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Simplification: Maps With Just Complete Lines

Observation: In any region with a valid color, can flip colors and it’s still valid.

FLIP!

Back to the full map, with flipped colors to the right of line
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Simplification: Maps With Just Complete Lines

Observation: In any region with a valid color, can flip colors and still valid.

Back to the full map, with flipped colors to the right of line

Now: Inside regions OK (I.H.), and across regions OK (flipped).
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Strengthening The Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square. n2.

Proof: Let sn denote the sum of the first n odd numbers.

Base Case (n = 0): s0 is an empty sum, so is zero – a perfect square.

Induction Hypothesis: Assume for n = k , sk is a perfect square, say a2. k2.

Induction Step: We prove that for n = k +1, sk+1 is a perfect square. (k +1)2.

1 The (k +1)st odd number is 2k +1, so sk+1 = sk +(2k +1)

2 =⇒ The sum of the first k +1 odds is a2 +(2k +1). k2 +(2k +1).

3 ??? This is k2 +2k +1 = (k +1)2

This completes the induction step, and by the principle of mathematical
induction, the theorem follows.

It seems like proving something more specific should be harder than proving the
looser statement. However, being more specific gave us a more powerful induction
hypothesis to use!
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A Surprisingly Subtle Example

Fibonacci numbers! A sequence where every value is the sum of the two
preceding values. For n ∈ N:

Fn =

{
Fn−1 +Fn−2 if n ≥ 2;
n if n < 2.

Let’s look at a few...
F0 = 0 F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 · · ·

Hmmm... that starts to snowball – does it grow exponentially?

Theorem: For all n ≥ 1, Fn ≥ (3/2)n−2.

For such a simple statement, this requires quite a few changes to our form:

Starting induction at a value of n > 0

Needing multiple values of n in the base case

Strong induction
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Induction: Exponential Growth of Fibonacci numbers
Issue 1: The base case

Theorem: For all n ≥ 1, Fn ≥ (3/2)n−2.

Our high-level goal: lower bound Fn by an exponential function

Could we have used “for all n ∈ N” and had base case n = 0 as before? No!

Problem: Exponential functions (like cn) are always strictly positive, so
impossible to lower-bound F0 = 0.

Does it cause a significant problem? No! With n = 1 as the base case, we
have P(1) =⇒ P(2) =⇒ P(3) =⇒ ··· .

Bottom line: Just make sure you cover all cases in the theorem statement
• Can possibly adjust bounds in theorem statement!
• Generalizing induction: base case is smallest n covered by the theorem
• Warning! We’ll see later that for this problem, just n = 1 doesn’t work!
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Induction: Exponential Growth of Fibonacci numbers
Issue 2: Available induction hypothesis

Let’s sketch out the inductive step

Induction Hypothesis: Assume that for n = k we have Fk ≥ (3/2)k−2.

Inductive Step: We will show that when n = k +1 we have Fk+1 ≥ (3/2)k−1.

Start by using the definition to get Fk+1 = Fk +Fk−1, and since Fk is bounded
by the induction hypothesis, we have Fk+1 ≥ (3/2)k−2 +Fk−1.

??? What can we do with Fk−1???

We actually have what we need, we just didn’t state it.

To get to P(k) we proved P(0) =⇒ P(1) =⇒ ···P(k −1) =⇒ P(k)

Change induction hypothesis from assuming P(k) to assuming (∀n ≤ k)P(n).
• Now Fk−1 ≥ (3/2)k−3 is covered by the induction hypothesis
• Need to be more careful about lower bound for n (base case)
• Introduces some subtle issues (on next slide)
• This is called strong induction
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Induction: Exponential Growth of Fibonacci numbers
Issue 3: Base case, revisited

Strong induction introduces a subtle issue not present in simple induction.

Idea from before: Use n = 1 as the base case (smallest n in theorem)

To establish P(k +1) we used both P(k) and P(k −1).

So to establish P(2) we need P(1) and... P(0)? Oops.

Fortunately, easy to fix:
Prove P(1) and P(2) directly, so first use of induction step is to prove P(3)

⇒ This only “reaches back” to P(1) and P(2), which we proved.

Why this is an issue for strong induction: Reaching back farther than previous
step gives the possibility to skip over the base case.
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Induction: Exponential Growth of Fibonacci numbers
Putting it all together

Theorem: For all n ≥ 1, Fn ≥ (3/2)n−2.

Proof: We proceed by induction on n.

Base Case (n = 1 and n = 2):
When n = 1, Fn = 1 and (3/2)n−2 = (3/2)−1 = (2/3), so Fn ≥ (3/2)n−2.
When n = 2, Fn = 1 and (3/2)n−2 = (3/2)0 = 1, so Fn ≥ (3/2)n−2.

Induction Hypothesis: Assume that Fn ≥ (3/2)n−2 for all 1 ≤ n ≤ k .

Inductive Step: We prove when n = k +1 we have Fk+1 ≥ (3/2)k−1.

By definition, Fk+1 = Fk +Fk−1, and we use the induction hypothesis to bound

Fk+1 ≥ (3/2)k−2 +(3/2)k−3 = (3/2)k−2 +(2/3)(3/2)k−2 = (5/3)(3/2)k−2 ≥ (3/2)k−1

This is what we need for the induction step, so completes the proof.
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A Bad Proof

Theorem: All horses have the same color.

Base Case: P(1) - trivially true.

Induction Hypothesis: Assume for n = k any k horses have the same color.

Induction step: Prove for n = k +1

Given a set of k +1 horses, remove one (Mr. Ed), leaving k horses. By the
induction hypothesis, they must be the same color.

Put Mr. Ed back into the set and remove a different horse (Wilbur). Apply the
induction hypothesis again to show these k horses have the same color.

BoJack was in both sets, and didn’t change colors during this, so it follow that
all k +1 horses must be the same color as BoJack.

This proves the induction step, so the theorem follows.

Obviously wrong, but why?
P(1) is OK. P(10) =⇒ P(11) is actually OK.
What about P(1) =⇒ P(2)? No! There’s no “overlap” in the size-k sets!
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Summary

Basic principle of induction – proving ∀n ∈ N by simple induction

Prove P(0) directly (base case)

Prove that P(k) =⇒ P(k +1) for all k ≥ 0 (inductive step)

What if it doesn’t work? (almost but not quite)

Do we need to change the base case?

Would a stronger theorem (so a stronger induction hypothesis) work?

Would it help to “reach back” farther than just the previous step (just
P(k) isn’t sufficient to prove P(k +1))?

Strong induction lets you use all P(0) through P(k)
Make sure “reaching back farther than the previous step” doesn’t
skip over the base case
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