
Stable Matching

UC Berkeley – Summer 2025 – Steve Tate

Lecture 4

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 1 / 23

The Matching Problem

Two equal size sets, with goal to match one item from each set to the other

Jobs and candidates; residents and hospitals; customers and resources;
tenants and rooms; students and discussion section seats; ...

Candidates list jobs in order of preference Jobs list candidates in order of preference
Candidates
1 C A B
2 A B C
3 A C B

Jobs
A 1 2 3
B 1 2 3
C 2 1 3

How to match?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 2 / 23

Matching: How to Match?

Jobs Candidates
A 1 2 3 1 C A B
B 1 2 3 2 A B C
C 2 1 3 3 A C B

How should they be matched?

Maximize total satisfaction

Maximize number of first choices

Minimize difference between preference ranks

Ensure pairs don’t want to switch

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 3 / 23

Stable Matching

Our Focus: Produce a matching where pairs don’t want to switch

Definition: A matching is disjoint set of n job-candidate pairs.

Matching: (j ,c)
(j∗,c∗)

Definition: A rogue pair (j ,c∗) for this matching:
j and c∗ prefer each other to their match

Definition: A matching is stable if there are no rogue pairs.

Terminology Note: Called a “rogue couple” in the notes.

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 4 / 23

Example Matchings

Jobs Candidates
A 1 2 3 1 C A B
B 1 2 3 2 A B C
C 2 1 3 3 A C B

Matching 1

(A,1)
(B,2)
(C,3)

Any rogue pairs?

Rogue: (C,1)

C prefers 1 to 3
1 prefers C to A

Matching 2

(A,2)
(B,3)
(C,1)

Any rogue pairs?

No rogues!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 5 / 23

Existence of Stable Matchings
Questions we might ask:

Does a stable matching always exist?

How can one find a stable matching?

How do conditions on the problem affect these questions?

Consider a single-set version: stable roommates.

A B C D
B C A D
C A B D
D A B C

A B

C D

No stable matchings!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 6 / 23

The Propose and Reject Algorithm

Each Day:

1 Each job proposes to its favorite candidate that hasn’t rejected it

2 Each candidate rejects all but their favorite job
(which they “put on a string”)

3 Each rejected job crosses out rejecting candidate from its list

Stop when all candidates have a job on a string.

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 7 / 23

Example

Jobs Candidates
A 1X 2 3 1 C A B
B 1X 2X 3 2 A B C
C 2X 1 3 3 A C B

Day 1 Day 2 Day 3 Day 4 Day 5
1 A , BX A AX , C C C
2 C B , CX B A , BX A
3 B

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 8 / 23

The Propose and Reject Algorithm

Each Day:

1 Each job proposes to its favorite candidate that hasn’t rejected it

2 Each candidate rejects all but their favorite job
(which they “put on a string”)

3 Each rejected job crosses out rejecting candidate from its list

Stop when all candidates have a job on a string.

What can we prove about this algorithm?

Does it terminate?

... produce a matching?

...... produce a stable matching?

Who does “better”: jobs or candidates?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 9 / 23

Termination

Does the algorithm always terminate?

Some important observations:

Every day, each job is offered to one candidate

On any non-terminating day, some candidate did not get an offer
⇒ So some candidate got more than one offer

Why?

Pigeonhole Principle

On every non-terminating day, a job crosses an item off its list

Total size of lists? n jobs, n-length list n2 items

Terminates in ≤ n2 steps!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 10 / 23

Candidate Jobs Over Time – Ideas
Improvement Lemma: It just gets better for candidates

More precise statement: If on day t candidate c has a job j on a string, any
job j ′ on candidate c’s string for any day t ′ > t is at least as good as j .

Recall our earlier example:

Day 1 Day 2 Day 3 Day 4 Day 5

1 A , BX A AX , C C C
2 C B , CX B A , BX A
3 B

Candidate 2 has job B on string on day 2; job A on day 4.

Mapping to statement: c = 2, j = B, t = 2, j ′ = A, t ′ = 4.

Does candidate 2 prefer B or A?

Improvement Lemma says j ′ ... is at least as good as j :

prefers A

.

Can candidate 2 have A on a string at a later time?

⇒ Yes – “at least as good” includes same

Let’s prove the Improvement Lemma...
UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 11 / 23

Improvement Lemma – Slight Restatement and Proof
Improvement Lemma: Let candidate c have job j on a string at time t . Then
for all n ∈ N, if c has job j ′ on a string at time t +n, then j ′ is at least as good
(to c) as j .

Proof: We proceed this by induction on k .

Base Case (n = 0): At time t , candidate c has job j on a string.

Induction Hypothesis: Assume the lemma holds for n = k , so if candidate c
has job j ′ on a string at time t +k then j ′ is at least as good as j .

Inductive Step: We prove the lemma holds at n = k +1: if candidate c holds
job j ′′ on a string at time t +k +1 then j ′′ is at least as good as j .

Job j ′ and possibly other jobs make offers to candidate c at time t +k +1, and
c selects its highest-ranked job j ′′ to put on a string.

The highest-ranked job is at least as good as each offer made, so j ′′ is at
least as good as j ′.

By the induction hypothesis we know that j ′ is ranked at least as high as j , so
j ′′ is at least as good as j ′ which is at least as good as j .

Therefore j ′′ is at least as good as j , which completes the proof.
UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 12 / 23

The P&R Algorithm Finds a Full Matching

Lemma: At the completion of the algorithm, every job is matched.

Proof: Assume for the sake of contradiction that some job j is not matched to
a candidate at the end.

As long as a job is unmatched and there are candidates remaining in its list,
the algorithm continues, so job j must have been rejected by all n candidates.

Let c be any candidate – since they rejected j ’s offer, they must have ended
matched to a job they preferred (by the Improvement Lemma).

So all n candidates end up matched to a job.

A job can’t be matched to more than one candidate, since while a candidate
has it on a string it will not be offered to any other candidate.

So all n candidates end up matched to n different jobs, so every job has a
matched candidate.

This contradicts our assumption that j was not matched, which completes the
proof.

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 13 / 23

The Matching Found By The P&R Algorithm is Stable

Lemma: The matching given by the Propose-and-Reject algorithm is stable.

Proof: Let j be any job, and let c be the candidate it is matched to by the
algorithm. We show that j cannot be part of a rogue pair.

Say there is a candidate c∗ (matched to j∗) that j prefers.

j c

j∗ c∗

j prefers c∗ to c.

Since j prefers c∗ to c, it must have offered a job to c∗ before c.

At some point, c∗ rejected j ’s offer (since j moved on to c).

By the Improvement Lemma, c∗ prefers its final job to j .

Therefore, (j ,c∗) cannot be a rogue pair.

This is true for any job j , and any candidate c∗ that it prefers, so there are no
rogue pairs in the matching.

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 14 / 23

How Do Jobs and Candidates Fare?
Definition: A matching is x-optimal if x ’s partner

is its best partner in any stable matching.

Definition: A matching is x-pessimal if x ’s partner
is its worst partner in any stable matching.

Definition: A matching is job optimal if it is x-optimal for all jobs x .

... and so on for job pessimal, candidate optimal, candidate pessimal.

Attention check!

The optimal partner for a job must be first in its preference list.
True or False?

False!

Example: Every job lists candidate 1 first – all candidates list job A last
Can job A match to candidate 1 in any stable matching?

Subtlety here: Best partner in any stable matching.

Question: Is there always a job or candidate optimal matching?
j-optimal for each job j simultaneously? Unclear – let’s figure it out!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 15 / 23

Exploring Optimality With Examples
Example 1

Jobs Candidates
A 1 2 1 A B
B 1 2 2 B A

Matching 1

(A,1)
(B,2)

Any rogue pairs?

No rogues!

A gets top choice
2 gets top choice

Matching 2

(A,2)
(B,1)

Any rogue pairs?

Rogue: (A,1)

A prefers 1 to 2
1 prefers A to B

Is Matching 1 optimal for B, who didn’t get its top choice?

Yes!

Unique stable matching, so optimal for B. Optimal for A, 1, and 2.
Also job-optimal, candidate-optimal, job-pessimal, and candidate-pessimal

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 16 / 23

Exploring Optimality With Examples
Example 2

Jobs Candidates
A 1 2 1 B A
B 2 1 2 A B

Matching 1

(A,1)
(B,2)

Any rogue pairs?

No rogues!

Neither A nor B can improve

Matching 2

(A,2)
(B,1)

Any rogue pairs?

No rogues!

Neither 1 nor 2 can improve

Which is optimal for A?

Matching 1

Which is optimal for B?

Matching 1

Which is optimal for 1?

Matching 2

Which is optimal for 2?

Matching 2

Matching 1 is job-optimal

Matching 2 is candidate-optimal

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 17 / 23

Job-Optimality of Propose and Reject

Theorem: Propose and Reject produces a job-optimal pairing.

Proof Sketch: Let S be the matching produced by the P&R algorithm, and
assume for the sake of contradiction that S is not job-optimal.

P&R produces a stable matching, so no job can stop making offers before it
offers to its job-optimal candidate.

⇒ In P&R, every job makes an offer to its optimal candidate

Since S is not job-optimal, at least one job-optimal candidate rejects

Let t be the first time a job-optimal candidate rejects an offer
⇒ At time t , job j offers to job-optimal c∗ and is rejected

We could really use a picture...

I have a truly marvelous picture to demonstrate this proof that this slide is
too small to contain. – Fermat, 1637

Or maybe he would have said that if he knew what a “slide” is...

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 18 / 23

Job-Optimality of Propose and Reject – Picture It!
Let t be the first time a job-optimal candidate rejects an offer

⇒ At time t , job j offers to job-optimal c∗ and is rejected

Alg Matching S (time t)
c∗

or
de

r j ∗
order

j∗

c∗j

c′

Job-Opt Matching T

c∗
or

de
r j ∗

order

j

c′

j∗

c∗

c∗ is j ’s optimal match

c∗ rejects j at time t , so must accept some job j∗ that they like better

j∗ is matched to some job, say c′ in job-optimal matching

Before time t , j∗ hasn’t rejected its optimal match c′ but offered to c∗

⇒ c′ is lower on j∗’s list than c∗

(j∗,c∗) is a rogue pair in T , so T is not stable. Contradiction!
UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 19 / 23

Well-Ordering Principle

Let t be the first time a job-optimal candidate rejects an offer

...

Before time t , j∗ hasn’t rejected its optimal match

If something “goes bad” there must be a first time the bad thing happens

Related to induction...

Think of induction for “the algorithm doesn’t make a bad move at step k ”

At some step the induction breaks

Identifying that step and using “OK until then” is vital!

Read more about it in the notes...

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 20 / 23

Job-Optimal and Candidate-Pessimal

Theorem: If a stable matching is job-optimal, then it is candidate-pessimal.

Proof Sketch: Let S be a job-optimal stable matching that pairs job j with
candidate c, and assume for the sake of contradiction that there is a stable
matching T that is worse for c.

Matching S
Stable

Job-optimal

j c

Matching T
Stable

Worse for c

j c

j∗ c∗

In T : c matches to a worse candidate j∗

In T : j can’t match better than c since S is job-optimal – matches to worse c∗

But now (j ,c) is a rogue pair in T , so T is not stable.
Contradiction!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 21 / 23

Candidate Optimality

Propose and Reject is job-optimal – what if we want candidate-optimal?

Needed two different sets to match
⇒ Was anything special about either?

No! Completely symmetric

In reality: Propose and reject is proposer-optimal

Solution: Swap roles – candidates propose to jobs
⇒ Now candidate-optimal!

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 22 / 23

Residency Matching

The method was used to match residents to hospitals.

Until 1990s: Hospital optimal

Then: Resident optimal

Now: Placing couples together, other real-world complications

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 23 / 23

Takeaways

Analysis of cool algorithm with interesting goal: stability.

Stability seems like a good idea – is it possible?

Two-set instance: Yes
One-set instance: No

Can we find a stable matching?

Yes! Propose and Reject algorithm
Basic idea: Over time things get better for candidates, worse for jobs
Eventually reaches a balance

... and we can (and did) prove it always finds a stable matching

Beyond stability – several stable solutions – which is better?
⇒ For jobs? For candidates?

UC Berkeley – Summer 2025 – Steve Tate CS70: Discrete Mathematics and Probability Theory 24 / 23

